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INTRODUCTION
Shewhart control charts are extensively used in practice to monitor changes

in process characteristics from the in-control state. There are many types of
control chart applications, ranging from charts that monitor industrial process
characteristics to charts that monitor the number of chronic diseases within
health care. A control chart consists of a time series plot of the relevant process
characteristic augmented by control chart limits (i.e., an upper control limit [UCL]
and a lower control limit [LCL]). These control limits, sometimes supplemented
with additional decision rules, provide easy checks on the stability of the
process parameter. When the statistic falls outside the control limits, it is
probable that the process has changed (i.e., is out of control). The employee or
operator should then investigate the cause of the change and adjust the process
to the in-control state.

A broad range of control charts is available: there are control charts for
monitoring individual measurements of a process characteristic—used when
the process characteristic provides no basis for rational subgrouping—as well as
subgroup control charts suitable for monitoring processes from which samples
are taken periodically. Within the category of subgroup control charts, there
is a distinction between control charts for the location and control charts for
the spread. Figure 1 provides an example of a control chart; in this case the
Shewhart control chart for monitoring the location of the process characteristic
(�X control chart).

A further distinction is made based on the size of the shift to be detected:
when the application requires that smaller shifts have to be detected (small
means �/��/

√
n� < 2, with � the shift, � the in-control standard deviation,

and n the sample size), control charts that take into account the history
of observations are recommended. Examples include the cumulative sum
(CUSUM) and exponentially weighted moving average (EWMA) control charts
(see Page [1954] and Roberts [1959] respectively). Here we focus on the
Shewhart control chart.

Control charts were originally developed and tested assuming that the
process characteristics are known. In real-world applications, however, the
mean and standard deviation of the process characteristic are not known and
have to be estimated before the control chart can be deployed. To derive such
estimates, it is common practice to separate Phase I from Phase II. During



FIGURE 1 Shewhart location control chart.

Phase I, control charts are used retrospectively to
study historical data samples. Once representative
samples are established, the parameters are estimated
and control limits are determined and used for
online monitoring in Phase II. Jensen et al. (2006)
conducted a literature survey of the effects of
parameter estimation on control chart properties and
identified the following issue for future research:

The effect of using robust or other alternative estimators
has not been studied thoroughly. Most evaluations of
performance have considered standard estimators based on
the sample mean and the standard deviation and have used
the same estimators for both Phase I and Phase II. However,
in Phase I applications it seems more appropriate to use
an estimator that will be robust to outliers, step changes
and other data anomalies. Examples of robust estimation
methods in Phase I control charts include Rocke (1989),
Rocke (1992), Tatum (1997), Vargas (2003) and Davis and
Adams (2005). The effect of using these robust estimators on
Phase II performance is not clear, but it is likely to be inferior
to the use of standard estimates because robust estimators
are generally not as efficient (Jensen et al. 2006, p. 360).

Schoonhoven, Nazir et al. (2011) and Schoonhoven,
Riaz, and Does (2011) performed an extensive
study of robust estimation in the context of
Shewhart location and standard deviation control
charts respectively. Nazir et al. (2014) summarized
these findings in a practical procedure that enables
practitioners to create and implement a robust
standard deviation control chart without too much
difficulty. The main purpose of the present column
is to give practitioners a stepwise procedure on how
to set up a robust location control chart.

The following two sections describe the Phase I
and II stages for the Shewhart location control chart.
Next, we demonstrate the procedure for a real-life

example. The final section offers some concluding
remarks.

PHASE I PROCEDURE
The UCL and LCL of the Shewhart location control

chart are given by

ÛCL = �̂+ C�̂/
√
n� L̂CL = �̂− C�̂/

√
n� [1]

with �̂ and �̂ the estimates of the in-control mean
� and standard deviation � , respectively, and C

the constant chosen such that the desired in-control
performance is obtained. Usually, C is chosen such
that the false alarm probability is sufficiently small,
namely, 0.0027. Recall that formula [1] can be used
for control charts in Phase I as well as in Phase II. For
the sake of clarity, we shall add subscripts I and II to
ÛCL, L̂CL, and C to indicate the phase to which we
refer.

Schoonhoven, Nazir et al. (2011) analyzed the
performance of the Phase I location control charts.
They showed that the type of location estimator
used to construct these charts is important. A robust
estimator should be selected first because then the
Phase I limits are not affected by disturbances and
therefore the correct data samples from which �

is estimated are retained. However, an efficient
estimator should be used to obtain the final estimates
in order to ensure efficiency under normality. Below,
we describe a practical step-by-step approach which
meets these requirements.

Step 1: Select Phase I Data
We draw k samples of size n from the process

when the process is assumed to be in control and
we denote these samples by Xij� i = 1� 2� � � � � k and
j = 1� 2� � � � � n. The samples should reflect random,
short-term rather than special-cause variation. To
ensure this, items within a sample should be
produced under conditions in which only random
effects are responsible for the observed variation.
Additional variability due to potential special causes
such as a change in materials or personnel will
then occur only between samples. Furthermore, the
sample should not be selected over an interval
that is too short because measurements may then
be highly correlated and not represent just short-
term variation. In practice the k samples of size
n may contain outliers, sample shifts, or other
contaminations. These can be filtered out in Phase I.
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Step 2: Obtain a Robust Estimate
of the Standard Deviation

The second step is to estimate the standard
deviation using the stepwise procedure given by
Nazir et al. (2014). The resulting estimate is denoted
by �̂ .

Step 3: Construct a Phase I Location
Control Chart

We estimate the mean with a robust estimator,
namely, the 10% trimmed mean of the sample
trimeans (cf. Tukey [1977]), defined by

�TM 10 =
1

k − 2�k/10�×
[ k−�k/10�∑

v=�k/10�+1

TM�v�

]
� [2]

where �z� denotes the ceiling function (i.e., the
smallest integer not less than z) and TM�v� denotes
the v-th ordered value of the sample trimeans. The
trimean of sample i is defined by

TMi = �Qi�1 + 2Qi�2 +Qi�3�/4� [3]

where Qi�2 is the median and Qi�1 = Xi��a� and Qi�3 =
Xi��b� the first and third quartiles with Xi���� the �-th
order statistic in sample i and a = �n/4�, b = n −
a+ 1.

The Phase I location control chart limits are
derived from

ÛCLI = �TM 10 + 3�̂/
√
n� L̂CLI = �TM 10 − 3�̂/

√
n�

Step 4: Screen for Sample Shifts
We plot the TMis of the Phase I samples

(cf. [3]) on the location control chart generated in
step 3 (charting the TMis instead of the sample
means ensures that localized mean disturbances are
identified and samples that contain only one single
outlier are retained).

We exclude from the Phase I data set all samples
whose TMi falls outside the control limits (i =
1� 2� � � � � k).

Step 5: Construct a Phase I individuals
chart

The mean estimate is updated according to
formula

�TM ′ = 1

k′
∑
i	K′

TMi × IL̂CLI≤TMi≤ÛCLI
�TMi�� [4]

with 1D�x� the indicator function, K ′ the set of
samples that are not excluded in step 4 and k′ the
number of non excluded samples.

The next steps should be applied if individual
outliers are likely. First, we construct the limits of the
Phase I individuals control chart from

ÛCLind = �TM ′ + 3�̂� L̂CLind = �TM ′ − 3�̂ � [5]

Step 6: Screen for Individual
Outliers

We plot the individual observations of the samples
remaining from step 4 on the individuals chart
derived in step 5 and remove from the Phase I data
set the observations that fall outside the limits.

Step 7: Obtain the final estimate
of the mean

We now obtain a new estimate of the mean from
the mean of the sample means

��X ′′ = 1

k′′
∑
i	K′′

1

n′
i

∑
j	N ′

i

Xij × IL̂CLind≤Xij≤ÛCLind
�Xij�� [6]

with K ′′ the set of samples that are not excluded
in steps 4 and 6, k′′ the number of non excluded
samples, N ′

i the set of observations that are not
excluded in sample i, and n′

i the number of non
excluded observations in sample i.

PHASE II
In Phase I, we have established the reference

data set. From this data set, the in-control mean is
estimated. We then derive the control limits for Phase
II; that is, the online monitoring stage. Recall that the
formula for the Phase II control limits is given by
[1], �̂ is calculated with the procedure described by
Nazir et al. (2014), and �̂ is calculated in step 7 of the
Phase I procedure described in the previous section.
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What remains is the determination of the factor CII

for the control limits.
Schoonhoven et al. (2009) presented a formula to

calculate CII for the �X control chart based on the
pooled mean of the sample standard deviations, S̃.
They tested this formula for �X charts derived from
a broad range of standard deviation estimators and
concluded that the formula is suitable when the
variance of the estimator is close to the variance of S̃.
Since the variance of the standard deviation estimator
described by Nazir et al. (2014) is close to the variance
of S̃ (see Schoonhoven and Does [2013]), the formula
presented by Schoonhoven et al. (2009) can also be
applied in the procedure discussed here. This is a
nice result because the formula is a plug-in so no
simulations are required to obtain the constants.

In the next part, we continue with the steps in the
approach applicable to Phase II.

Step 8: Construct a Phase II Location
Chart

We obtain CII for the Phase II control limits from
the equation

CII = [7]

c4�k�n−1�+1�
√
k+1tk�n−1��1−
/2�/

√
k�

where c4�m� is defined by

c4�m� =
(

2

m− 1

)1/2
��m/2�

���m− 1�/2�

and tk�n−1��1 − 
/2� denotes the �1 − 
/2�-th
percentile of a t-distribution with k�n − 1� degrees
of freedom and 
 the desired false alarm probability
(usually 0.0027). Values for CII and c4�m� with m =
k�n − 1� + 1 for n = 3� � � � � 10, k = 20� 50 and 
 =
0�0027 are provided in Table 1.

The values for �̂ , �̂, and CII are substituted into
the formula for the �X control limits given by [1].

Step 9: Use the Phase II Location
Chart for Online Monitoring

Newly available data (Yij with i = 1� 2� 3� � � � and
j = 1� 2� � � � � n) are collected periodically and used
to calculate �Yi = 1

n

∑n
j=1 Yij (the mean in Phase II is

used as plotting statistic because the mean is efficient
under normality and sensitive to disturbances). When

TABLE 1 Constants for Phase II Procedure

k = 20 k = 50

n c4(m) CII c4(m) CII

3 0.994 3.257 0.998 3.100
4 0.996 3.194 0.998 3.076
5 0.997 3.163 0.999 3.064
6 0.998 3.145 0.999 3.057
7 0.998 3.133 0.999 3.053
8 0.998 3.124 0.999 3.049
9 0.998 3.118 0.999 3.047

10 0.999 3.113 0.999 3.045

�Yi falls outside the control limits, the cause of this
out-of-control signal should be investigated.

APPLICATION TO A REAL-WORLD
DATA EXAMPLE

In this section we demonstrate the Phase I and II
procedures detailed above.

Step 1: Select Phase I Data
Our data set was supplied by Wadsworth et al.

(2001, pp. 235–237). The operation concerns the melt
index of a polyethylene compound. The data consist

TABLE 2 Melt Index Measurements

Sample Observations TM

1 218 224 220 231 223.25
2 238 236 247 234 238.75
3 280 228 228 221 239.25
4 210 249 241 246 236.50
5 243 240 230 230 235.75
6 225 250 258 244 244.25
7 240 238 240 243 240.25
8 244 248 265 234 247.25
9 238 233 252 243 241.50

10 228 238 220 230 229.00
11 218 232 230 226 226.50
12 226 231 236 242 233.75
13 224 221 230 222 224.25
14 230 220 227 226 225.75
15 224 228 226 240 229.50
16 232 240 241 232 236.25
17 243 250 248 250 247.75
18 247 238 244 230 239.75
19 224 228 228 246 231.50
20 236 230 230 232
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FIGURE 2 Individual value plot of 20 samples of the melt
index.

of 20 samples of size 4 (Table 2). Figure 2 plots
individual values for each sample.

We use the first 19 samples to demonstrate the
Phase I calculations and the last sample to illustrate
Phase II monitoring.

Step 2: Obtain a Robust Estimate
for the Standard Deviation

We use the procedure described by Nazir et al.
(2014) to obtain an estimate of the standard
deviation. Note that in this paper the same data set
is used for illustration purposes. The final estimate
is 7.32.

Step 3: Construct a Phase I Location
Control Chart

First, the 10% trimmed mean of the sample
trimeans is derived from formula [2]. This leads to
a value of 235.22. The constant CI for the location
control chart is 3. The resulting upper and lower
control limits are 246.20 and 224.24.

Step 4: Screen for Sample Shifts
The goal of this step is to filter out localized

disturbances in the mean. To do this, we first
determine the sample trimeans (see the TMs in
Table 2). Samples 1, 8, and 17 fall outside the control
limits of the Phase I location control chart and are
therefore removed from the Phase I data set (see
Figure 3). Note that this suggests the Phase I data are
out of control: it seems that there is an underlying
issue causing the observed pattern. The best step
forward before applying the Shewhart location chart
for monitoring is to identify the cause and prevent it

FIGURE 3 Phase I (and Phase II) location control chart for the
melt index.

from occurring again. In what follows, we continue
the procedure to demonstrate how the remainder of
the Phase I analysis can identify individual outliers.

Step 5: Construct a Phase I Individuals
Chart

We now update the location estimate according
to [4], which means that we take the sum of the
trimeans of all the samples excluding samples 1, 8,
and 17. The mean of the non excluded trimeans is
234.53. The upper and lower control limits of the
individuals chart are calculated from [5], giving 256.49
and 212.57.

Step 6: Screen for Individual Outliers
We plot the resulting individual melt index

measurements (except observations from samples
1, 8, and 17) on the individuals chart. The first
observations in samples 3 and 4 and the third
observation in sample 6 fall outside the control chart
limits and are removed from the Phase I data set (see
Figure 4).

FIGURE4 Phase I individuals control chart for the melt index.
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Step 7: Obtain the Final Estimate
of the Mean

In this step, we obtain the final estimate of � from
[6]. This means that we determine the mean of all
observations, except those in samples 1, 8, and 17,
the first observations in samples 3 and 4, and the
third observation in sample 6, leading to a final value
of 233.80.

Step 8: Construct a Phase II Location
Chart

The values for the constant CII used to calculate
the limits of the Phase II location control chart are
given by formula [7], leading to a value of 3.20. Given
this value and the values of �̂ (7.32) and �̂ (233.80),
the Phase II upper and lower control limits are 245.51
and 222.09, respectively.

Step 9: Use the Phase II Chart for
Online Monitoring

We use sample 20 to demonstrate Phase II
monitoring of the location. First, we calculate �Y from
this sample, giving a value of 232.00. This value falls
between the upper and lower control limits (245.51
and 222.09), so no action is required and the process
can continue (see Figure 3).

CONCLUDING REMARKS
In this article, we have outlined procedures to

construct a robust location control chart. A practical
procedure is given to obtain a robust estimate for
the mean, based on a Phase I analysis. In Phase I,
the initial estimate of � is based on the 10% trimmed
mean of the sample trimeans. This estimator is robust
against both localized and diffuse disturbances so
that the limits of the Phase I control chart are not
affected by potential disturbances. The Phase I
data are then screened for localized and diffuse
disturbances by means of Phase I sample location
and individuals control charts. At the end of Phase I,
� is estimated from the screened data using the
grand sample mean, thus ensuring efficiency. The
stepwise procedure, together with the procedure for
estimating the standard deviation � presented by
Nazir et al. (2014), delivers an easy-to-implement
procedure for setting up a robust monitoring device.
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