
Quality Quandaries: Interpretation
of Signals from Runs Rules
in Shewhart Control Charts

Albert Trip1,

Ronald J. M. M. Does2

1University Medical Center,

Groningen, The Netherlands
2Institute for Business and

Industrial Statistics, University of

Amsterdam, The Netherlands

INTRODUCTION

The Shewhart control chart is for many people the embodiment of

statistical process control (SPC). In the past, many modifications and

improvements have been devised (see Woodall and Montgomery [1999]

for a brief overview). Several modifications or additions were aimed at

more power for out-of-control situations. Among the earlier additions

belong the runs rules from the Western Electric Company (1956). These

rules stem from the idea that a graphical pattern in the chart may help

in identifying an out-of-control situation even before the control limits

have been exceeded. Runs rules are formalizations of such patterns and

therefore easily understood by users. Although many rules have been

devised, for all kinds of patterns, only a few should be selected in practice,

because application of many rules simultaneously leads to an unacceptable

number of false signals (Does and Schriever 1992), and users might easily

get confused.

Many alternatives for the Shewhart control chart have been designed

with an increased power for specific out-of-control situations in mind

(see Woodall and Montgomery [1999] for references). For example, a

small change of the process mean will generally be detected faster with

a cumulative sum (CUSUM) or an exponentially weighted moving average

(EWMA) chart. Many processes, however, will get out of control not just

for one reason but because of one of many. Each failure cause usually

has its own specific effect on the process data: the mean may change

more or less, or the variation, or both. SPC is aimed at finding and

correcting permanent changes as quickly as possible, whereas feedback

control is generally a better alternative for correcting gradual or tempor-

ary changes. Usually, there is no single optimal control chart for all

possible failure causes. The Shewhart chart with additional runs rules

might be considered as an omnibus test for many different permanent

process disturbances.

An effective SPC system requires an out-of-control action plan (OCAP;

see Sandorf and Bassett 1993) to accompany a control chart. An OCAP is

a guide for the user to solve the problem when an out-of-control signal is

given. The form may range from a simple checklist to an extensive flowchart
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with questions and answers. OCAPs aim at quick and

uniform solutions to problems and therefore reflect

the available knowledge about the process. An

effective OCAP demands that most possibilities of

failure are known, as well as solutions. Permanent

fixes are preferred, but if a temporary fix is the only

possibility, then it should be part of the OCAP. The

order of checking the different failure causes is often

important for a speedy recovery of a problem. We

will demonstrate that a signal in a control chart with

additional runs rules may also provide additional

information about the most likely out-of-control

failure causes.

FRAMEWORK

A nearly exhaustive list of out-of-control causes

and effects is the starting point. In an ideal process

all causes would be permanently fixed, but in the

real world this is impossible or too expensive for

most causes. These causes are therefore part of the

OCAP. Knowledge of the (relative) frequencies of

the causes may help to find the problem quickly.

Causes with serious consequences might get priority,

however, or the ones that are easy to check, even

if they have low frequency. A cause-and-effect

analysis—giving this information—is an important

element of a systematic approach for introducing

SPC (Does et al. 1999).

Assume that the failure causes C1, C2, . . ., Cn are

included in the OCAP. The relative frequencies of

these causes will approximately be known from the

history of the process. This information is needed,

because chances are higher (in general) that a prob-

lem is solved quickly if the reason is first sought

among the most frequently occurring causes. The

relative frequency of cause Ci is quantified as fi
(i¼ 1, . . ., n). In a cause-and-effect analysis the

frequencies are rated from 1 to 10 (or 1 to 5), but

in fact any rating with higher numbers for higher

frequencies will do.

Assume that decision rules R1, R2, . . ., Rm are used

in a control chart with additional runs rules. If an

out-of-control signal is given, then at least one of

these rules is responsible. There is a probability of

a false signal, but the OCAP will be activated

anyway, to find the failure cause. In a stable system,

with failure causes having reproducible effects,

probability relations with the decision rules emerge

if the system would be observed long enough. We

use these relations to make more efficient OCAPs.

When a decision rule is responsible for a signal,

the failure causes with the highest conditional

probabilities of occurring, given this rule, are the

most likely candidates. We therefore need to

establish the conditional probabilities P(CijRj) for

all i 2 {1, . . ., n} and j 2 {1, . . ., m}.

PðCijRjÞ¼
PðCiRjÞ
PðRjÞ

¼
PðRjjCiÞ�PðCiÞ

PðRjÞ
/PðRjjCiÞ� fi j 2 1; . . . ;m fixed ½1�

For these conditional probabilities we need to know

the conditional probabilities P(RjjCi). Note that this is

in fact a rather Bayesian approach; the prior frequen-

cies fi of the failure causes Ci are improved by the

posterior probabilities P(CijRj).
Estimating the conditional probabilities P(RjC)

from observed frequencies is virtually impossible,

because an in-control process has by definition only

few signals. But the probabilities can be inferred

from the supposedly known effects of failure causes

and the probability distribution of the process.

For example, if R1 is the standard Shewhart

decision rule (based on three-sigma control limits),

and C1 is a failure cause with the effect that the pro-

cess standard deviation gets twice as large (without

changing the process mean), then P(R1jC1)¼ 0.1336

(assuming that the in-control process has a normal

distribution with independent observations). And if

the effect of failure cause C2 is a shift of the process

mean amounting to 0.5r (with the same standard

deviation), then P(R1jC2)¼ 0.00644. These examples

show that the quantitative effects of all failure causes

on the parameters of the distribution should be

known. Educated guesses based on the qualitative

descriptions that people normally give are in many

cases the best one can achieve. But analysis of past

data, or observed effects from designed experiments,

can sometimes be used for better estimates.

Now assume that decision rule R2 is this runs rule:

a signal is given when two out of three consecutive

data points are beyond one of the two-sigma limits

(‘‘warning limits’’). The rule R2 is used as an addition

to rule R1, so there will be more signals than with R1
only. In this article only the additional signals are

attributed to rule R2; all other signals are attributed
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to rule R1 even if R2 would signal as well. It is

common practice to attribute signals to the shortest

(least complicated) rule (see Göb et al. [2001] for

another example). Calculating P(R2jC1) is therefore

not as simple as calculating P(R1jC1). Another com-

plication is that P(R2jC1) depends on the number of

observations since the failure cause. The probability

is obviously 0 at the first observation. However, after

some observations the probability stabilizes. A

solution for calculating the average probability

P(R2jC1) can be obtained by regarding the process

as a Markov chain. Brook and Evans (1972) used

the Markov chain approach to derive the probability

distribution of the run length of CUSUM charts.

Champ and Woodall (1987) applied the method to

a Shewhart chart with supplementing runs rules.

The above example with R1 and R2 is described in

more detail in Champ and Woodall (1990). For our

purpose (i.e., the calculation of the average probabil-

ities P(RjC)), we do not need the distribution of the

run lengths. It is sufficient to know the average run

length (ARL). For example, with failure cause C1

the average run length of the combined rules R1
and R2 is 6.279. The probability of a signal is there-

fore 0.1593. Because P(R1jC1)¼ 0.1336, it follows

that P(R2jC1)¼ 0.0256.

DECISION RULES

The Western Electric Company (1956) defines

eight runs rules. Nelson (1984) recommended the

same eight rules. A further reduction is obligatory

in a manually operated system, and we decided to

limit ourselves to only four really simple decision

rules:

Rule R1: one value beyond one of the three-sigma

limits.

Rule R2: two out of three consecutive values beyond

one of the two-sigma limits.

Rule R3: four out of five consecutive values beyond

one of the one-sigma limits.

Rule R4: nine consecutive values above or below the

central line.

This combination of rules is selected by other

authors as well (Alwan et al. 1994; Fu et al. 2003;

Göb et al. 2001), although they use eight consecutive

points in rule R4. This system of decision rules can be

treated as a Markov chain and is therefore suited for

the computational methods of the previous section.

We deliberately skipped the familiar rule with

six consecutive increasing or decreasing values,

especially because the power is small (Trip and

Wieringa 2006; or in a different context, Aparisi

et al. 2004). Another disadvantage of this rule is that

it does not fit into a Markov (finite) chain framework.

Monte Carlo simulations would therefore be needed

to investigate the complete system, leading to

approximate results only.

With the method of the previous section, the

probabilities P(RijC) (i¼ 1, . . ., 4) can be calculated

for any failure cause C with known effects on the

process mean and standard deviation. But, due to

interfering rules, this method will slightly under-

estimate the probabilities of the longer rules, as

Figure 1 illustrates.

An SPC system with rules R1–R4 gives two signals,

at observations 8 (R3) and 10 (R2). Without R3 there

would be a single signal at observation 9, and with

just R4 there would be a single signal at observation

12. The example shows that a shorter rule may give

way to a longer rule. It also shows that the longer

rule may be ‘‘interrupted’’ by a shorter one. The latter

case will obviously occur more often. That is why the

ARLs of R1, R1þR2, R1þR2þR3, and R1þR2þR3þ
R4 are used to compute the separate contributions

from R1, R2, R3, and R4, respectively. The contri-

bution of R2 will therefore slightly be overestimated

at the expense of R3, and R4.

Exact results are possible, but the price to pay is to

distinguish between all possible absorption states

(Champ and Woodall 1997). In the system with four

decision rules there are 15 different absorption states

FIGURE 1 Example of interfering runs rules.

353 Quality Quandaries

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
a
e
z
,
 
P
a
b
l
o
]
 
A
t
:
 
2
1
:
2
9
 
5
 
O
c
t
o
b
e
r
 
2
0
1
0



(or 30 in case of a nonsymmetrical situation). The

number of different OCAP schemes would be the

same and therefore hardly useful in daily practice.

The reader will have noticed the implicit and

obvious assumption that the process continues with

a clean slate after a signal is given. After all, SPC is

a tool for adjusting or repairing a process to bring

it in control again.

TABLES OF CONTRIBUTIONS OF
SEPARATE RUNS RULES

This section presents tables for a Shewhart chart

with the decision rules of the previous section. For

the in-control process we assume a standard normal

distribution with independent observations, and the

control limits of the Shewhart chart are �3. The dis-

cussion is aimed at samples of size 1 (‘‘individual

measurements’’), but the results can also be applied

to a chart of the sample means. For sample sizes lar-

ger than 1 a separate chart for the sample variation

(e.g., an R-chart) is much more efficient to monitor

the process variation. For individual measurements

the moving range (MR) chart, which might be

considered as an alternative for the R-chart for this

particular case, is not a good alternative (Trip and

Wieringa 2006).

The average run lengths of the in-control process

are given in Table 1.

The ARL in an SPC system with the four decision

rules is 109.0479, so the probability of a false signal

is 0.009170. Rules R1–R4 account separately for prob-

abilities 0.002700, 0.001736, 0.003089, and 0.001645,

respectively. The contributions of R1–R4 to the total

number of signals are 29.4, 18.9, 33.7, and 17.9%.

These percentages are used for comparisons with

out-of-control situations in Tables 2a–2d.

TABLE 1 Average Run Lengths of the

In-Control Process

Rule (s) ARL

1 370.3794

1þ 2 225.4325

1þ 3 166.0509

1þ 4 216.6891

1þ 2þ 3 132.8908

1þ 2þ 4 158.7345

1þ 3þ 4 130.1834

1þ 2þ 3þ 4 109.0479

TABLE 2a Contribution of Decision Rule R1

m

R1 0 0.25 0.5 1 1.5 2 2.5 3

0.5 0.0 0.0 0.0 0.0 0.6 7.4 33.9 76.1

0.75 2.6 1.7 1.7 3.8 11.6 29.2 55.2 79.7

0.9 17.1 12.4 10.0 13.2 24.1 42.2 63.6 81.9

1 29.4 23.9 19.7 22.1 33.1 49.7 68.0 83.3

r 1.1 39.7 35.2 30.4 31.6 41.6 56.3 71.8 84.6

1.25 51.3 48.7 45.0 45.0 52.9 64.5 76.4 86.3

1.5 64.6 63.8 62.3 62.3 67.1 74.5 82.2 88.8

2 79.9 79.9 79.9 80.7 82.8 85.8 89.1 92.3

2.5 87.7 87.8 87.9 88.6 89.8 91.2 92.9 94.5

3 92.0 92.0 92.1 92.6 93.3 94.1 95.0 96.0

Reference contribution in bold italic; contributions exceeding the refer-
ence contribution in bold. Values in percentages.

TABLE 2b Contribution of Decision Rule R2

m

R2 0 0.25 0.5 1 1.5 2 2.5 3

0.5 0.0 0.0 0.0 0.8 16.9 64.5 64.5 23.8

0.75 2.3 2.5 3.6 12.4 33.5 49.8 41.4 20.1

0.9 12.5 12.0 13.2 22.1 35.6 41.2 32.6 17.6

1 18.9 18.7 19.7 26.4 34.7 36.2 28.2 16.1

r 1.1 22.6 22.8 23.8 28.3 32.8 31.9 24.6 14.7

1.25 24.1 24.6 25.6 28.0 29.0 26.5 20.3 12.9

1.5 22.2 22.4 23.0 23.6 22.7 19.7 15.3 10.4

2 15.3 15.3 15.2 14.7 13.6 11.7 9.4 7.1

2.5 10.2 10.2 10.1 9.5 8.7 7.6 6.3 5.0

3 7.0 7.0 6.9 6.5 6.0 5.3 4.5 3.7

Reference contribution in bold italic; contributions exceeding the refer-
ence contribution in bold. Values in percentages.

TABLE 2c Contribution of Decision Rule R3

m

R3 0 0.25 0.5 1 1.5 2 2.5 3

0.5 0.1 0.6 4.0 54.1 80.9 28.1 1.6 0.0

0.75 17.8 22.3 31.4 55.4 51.2 21.0 3.4 0.2

0.9 34.7 37.6 41.9 47.4 37.0 16.5 3.8 0.4

1 33.7 36.7 48.9 40.1 29.6 13.9 3.8 0.5

r 1.1 28.6 31.2 34.0 32.7 23.6 11.6 3.6 0.7

1.25 20.9 22.4 24.4 23.3 16.8 8.9 3.2 0.8

1.5 12.3 12.7 13.4 13.0 9.7 5.7 2.5 0.8

2 4.7 4.7 4.7 4.4 3.6 2.5 1.4 0.7

2.5 2.0 2.0 2.0 1.8 1.5 0.5 0.8 0.5

3 1.0 1.0 0.9 0.9 0.8 0.6 0.4 0.3

Reference contribution in bold italic; contributions exceeding the refer-
ence contribution in bold. Values in percentages.
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A persistent shift of the mean and=or simul-

taneous change of the standard deviation will be

the result of a failure cause. For shifts from 0 to 3,

and for standard deviations from 0.5 to 3, ARLs are

calculated. Tables 2a–2d give the relative contribu-

tions of the different decision rules to the total num-

ber of signals for several out-of-control processes.

Contributions exceeding the reference percentages

(i.e., the cell with l¼ 0 and r¼ 1; corresponding

percentage is indicated in bold italic in the tables)

are printed in boldface, meaning that the decision

rule is more sensitive than in an in-control process.

The decision rule with the largest excess is shown

in Table 3.

R1 is in particular sensitive to large changes of the

mean and=or the standard deviation. R4, on the other

hand, is especially sensitive to small changes of

the mean with less than usual variation. R2 and R3
are somewhere between these extremes, with R2
more sensitive to larger deviations than R3.

Tables 2a–2d indicate that the contributions of the

decision rules are sensitive to parameters m and r.
The consequence is that the estimates of the effects

of a failure cause on the process are important for

the designed OCAP. Getting good estimates is one

of the toughest problems, however. It is necessary

to learn from the process while using the OCAP

and to update the method whenever new substantial

information is available.

CASE STUDY

Douwe Egberts, a Sara Lee International sub-

sidiary, is the leading manufacturer and distributor

of coffee and tea in The Netherlands. In one of its

facilities, instant coffee and liquid coffee extract are

produced. One of the key processes is the extraction

of coffee from roasted beans, taking place in a series

of cylinders and connected with storage tanks. The

time it takes to extract coffee from one cylinder is

the cycle time of the process. The cycle time is a good

indicator whether or not the process runs smoothly

and is therefore selected for monitoring with SPC

methods. Many failure causes will show up in longer

cycle times than usual. The in-control cycle time is on

average 30 minutes and 13 seconds with a standard

deviation of 1 minute and 39 seconds.

Along the lines of Does et al. (1999), a team was

set up for introducing a control chart and OCAP for

the cycle time. The team identified 12 important

failure causes with consequences for the cycle time,

amounting to about 90% of all failures:

. C1–C4: leakage of pumps or tubes (at four spots);

. C5: defects in the control system of the equipment;

. C6–C9: contamination of the tubes or filters (at four

spots);

. C10: damaged grinding mill;

. C11–C12: broken stirring devices (at two spots).

The frequencies of these causes were established

from the experience of operators and from the

knowledge and database of maintenance technicians.

The effects of the failure causes on cycle time could

partly be determined from an extended database with

detailed process information. As an example, the

failure cause ‘‘contamination of the filter before the

tap tank’’ is explained here. On a scale from 1 to 10

(‘‘hardly ever’’ to ‘‘nearly always’’) the frequency of

TABLE 3 The Decision Rule with the Largest Excess Over the

Reference Contribution

m

0 0.25 0.5 1 1.5 2 2.5 3

0.5 4 4 4 4 3 2 2 1

0.75 4 4 4 3 2 2 1 1

0.9 4 4 4 3 2 2 1 1

r 1 ref. 3 3 2 2 1 1 1

1.1 1 1 2 2 2 1 1 1

1.25 1 1 1 1 1 1 1 1

1.5 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

TABLE 2d Contribution of Decision Rule R4

m

R4 0 0.25 0.5 1 1.5 2 2.5 3

0.5 99.9 99.4 96.0 45.1 1.5 0.0 0.0 0.0

0.75 77.3 73.5 63.3 28.4 3.7 0.1 0.0 0.0

0.9 35.7 38.0 34.9 17.2 3.3 0.1 0.0 0.0

1 17.9 20.7 11.7 11.4 2.6 0.2 0.0 0.0

r 1.1 9.1 10.8 11.8 7.3 2.0 0.2 0.0 0.0

1.25 3.6 4.3 5.0 3.6 1.2 0.2 0.0 0.0

1.5 1.0 1.1 1.3 1.1 0.5 0.1 0.0 0.0

2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0

2.5 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Reference contribution in bold italic; contributions exceeding the refer-
ence contribution in bold. Values in percentages.
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this cause was given the value 8. The effect is that the

pressure in the extraction cylinder rises and that the

process becomes somewhat less stable. The conse-

quence on the cycle time will be that both the stan-

dard deviation and the average increase ‘‘a bit.’’

Pressing the team for numbers they estimated the

effect as 10%more standard deviation and 30-second

longer cycle times on average. Of course these were

only rough estimates, but a sample from the database

pointed in the same direction. More reliable data

required more investigation, but the weak point

was that past failure causes have not been recorded

adequately. The historical database was therefore of

limited use for this investigation (as is often the case

with historical databases), but for a start the infor-

mation was sufficient.

A 30-second increase of the cycle time is 0.3 stan-

dard deviations. From Tables 2a–2d we can infer the

conditional probabilities of the decision rules given

this failure cause from the entries at l¼ 0.25 and

r¼ 1.1 (interpolation between the entries at

l¼ 0.25 and l¼ 0.5 would give slightly better

results). The probabilities of a signal would be

35.2, 22.8, 31.2, and 10.8% for rules 1–4 respectively.

Table 4 contains the conditional probabilities of a

signal of the four decision rules for the 12 failure

causes of the SPC team.

For entries of l not in Tables 2a–2d, probabilities

were obtained through interpolation. The last

columns of Table 4 are calculated with formula [1],

to give the ‘‘scores,’’ which are proportional to the

conditional probabilities P(CijRj). They show that

the most likely failure cause depends on the rule

that issued a signal. A signal from R1 or R2 indicates

that C12 is the most likely failure cause, but a signal

from R3 or R4 points at C7 as the most likely candi-

date. The complete order of likely failure causes

for the different decision rules is given in Table 5.

Some failure causes are difficult to detect; for

example, it can be hard to pinpoint the exact location

of a leakage. The use of Table 5 is that inspection can

be more to the point, and searching time is reduced.

For example, C1 is generally the least probable among

the four failure causes related to leakage (C1–C4) but it

is suddenly the most likely one if R2 is signaling.

Thanks to this analysis, a much more advanced sch-

eme for searching failure causes was introduced than

originally intended. The OCAP was only an intermedi-

ate solution, however, because most failure causes

were permanently eliminated one after another.

SUMMARY AND CONCLUSIONS

Runs rules are natural extensions to the standard

Shewhart control chart. This article shows that

additional advantage of runs rules can be achieved

TABLE 4 Properties of 12 Failure Causes

Effect on: Conditional probabilities (%) Scores/ P(CijRj)

Failure cause Frequency l r R1 R2 R3 R4 R1 R2 R3 R4

C1 3 2 0.5 7.4 64.5 28.1 0.0 22.2 193.5 84.3 0.0

C2 3 0.2 1 25.0 18.7 36.1 20.1 75.0 56.1 108.3 60.3

C3 5 0.5 1 19.7 19.7 48.9 11.7 98.5 98.5 244.5 58.5

C4 5 0.5 1.5 62.3 23.0 13.4 1.3 311.5 115.0 67.0 6.5

C5 2 0 2 79.9 15.3 4.7 0.1 159.8 30.6 9.4 0.2

C6 5 0.3 1.1 34.2 23.0 31.8 11.0 171.0 115.0 159.0 55.0

C7 8 0.3 1.1 34.2 23.0 31.8 11.0 273.6 184.0 254.4 88.0

C8 8 0.1 1.25 50.3 24.3 21.5 3.9 402.4 194.4 172.0 31.2

C9 3 1.2 0.75 6.9 20.8 53.7 18.5 20.7 62.4 161.1 55.5

C10 3 3 1 83.3 16.1 0.5 0.0 249.9 48.3 1.5 0.0

C11 4 0 2 79.9 15.3 4.7 0.1 319.6 61.2 18.8 0.4

C12 9 0 1.25 51.3 24.1 20.9 3.6 461.7 216.9 188.1 32.4

TABLE 5 Most Likely Failure Causes

Order of most likely failure causes

1 2 3 4 5 6 7 8 9 10 11 12

R1 C12 C8 C11 C4 C7 C10 C6 C5 C3 C2 C1 C9

R2 C12 C8 C1 C7 C4=C6 C3 C9 C11 C2 C10 C5

R3 C7 C3 C12 C8 C9 C6 C2 C1 C4 C11 C5 C10

R4 C7 C2 C3 C9 C6 C12 C8 C4 C11 C5 C1=C10
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for problem solving, because the particular decision

rule that gives an out-of-control signal is also

informative about the state of the current process.

Because the effects of different failure causes on

the process are also different, the two can be

combined in order to speed up problem solving. A

case study illustrates potential benefits.

A successful implementation of the method

requires, on the one hand, that failure causes and

effects are summarized quantitatively. This is partly

an extension of the well-structured method of Does

et al. (1999) for the introduction of SPC. The most

difficult part is to quantify the effects of failure causes

on the process; historical databases and designed

experiments might be used for improving subjective

estimates. Experience in time will also help to

improve estimates. A regular update of Table 4, lead-

ing to a dynamic OCAP, will therefore be necessary.

The other requirement is to know how a Shewhart

control chart with additional runs rules performs in

a state of control, and under all kinds of deviations.

The article shows that nearly exact results can be

obtained for a set of commonly used runs rules,

for which the process can be regarded as a Markov

chain.
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