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A B S T R A C T

Monitoring high-dimensional processes is a challenging task, as the underlying dependency structure among
variables is often too complicated to estimate accurately. The inherent volatility of dependence, so-called
heteroscedasticity, is rarely mentioned nor considered in process monitoring problems. We consider time-
dependent heteroscedasticity a common cause variability and propose an integrated scheme for monitoring and
diagnosis of changes in the location parameters of high-dimensional processes. Our proposed method consists
of rank-based EWMA control charts which are designed to detect mean shifts in a small subset of variables. A
bootstrap algorithm determines the control limits by achieving a pre-specified false alarm probability. A post-
signal diagnosis strategy is executed to cluster the shifted variables and estimate a time window for the change
point. Simulation results show that the proposed methodology is robust to heteroscedasticity and sensitive to
small and moderate sparse mean shifts. It can efficiently identify out-of-control variables and the corresponding
change points. A real-life example of monitoring online vibration data for predictive maintenance applications
illustrates the proposed methodology.
1. Introduction

Widely used sensors and internet technology create data-rich en-
vironments. In manufacturing systems, hundreds of measurements re-
lated to production and its final products are available to evaluate their
condition and quality. Statistical process monitoring (SPM) tools are
prevalent for detecting persistent changes in data streams. Multivariate
control charts have been proposed for monitoring multiple features
simultaneously, such as the Hotelling 𝑇 2 control charts (Hotelling,
1947). However, they usually lose detection power as the dimension
of the data increases.

In practice, it is rare that all variables change simultaneously. It is
more likely that a small subset of variables changes (Wang & Jiang,
2009). The sparse changes in mean vectors are difficult to detect using
Hotelling 𝑇 2 methods as they are likely to be buried in the noise (Shu
& Fan, 2018). One category of high-dimensional process monitoring
methods is based on dimension reduction algorithms, such as principal
component analysis (PCA) and variable selection (VS). De Ketelaere
et al. (2015) provided a systematic review of PCA-based control charts.
These techniques combine original variables linearly to get a small
group of variables based on in-control (IC) data. Multivariate control
charts are used to monitor these derivative variables. One limitation
of PCA-based methods is that the combinations may exclude variables
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with important information about shifts. In addition, signal decom-
position becomes increasingly difficult with the increasing number of
variables (Jiang et al., 2012).

Compared with PCA-based methods, the VS-based methods select
original variables directly without transformation so that the tasks of
detection and diagnosis are naturally integrated and solved simulta-
neously (Jiang et al., 2012). Peres and Fogliatto (2018) provided an
excellent overview of applying various VS algorithms in multivariate
process monitoring. One of the popular VS algorithms is the least abso-
lute shrinkage and selection operator (LASSO). It can efficiently identify
suspicious out-of-control (OC) variables in the signal diagnosis proce-
dure (Zou et al., 2011). Zou and Qiu (2009) integrated the LASSO into
the multivariate exponentially weighted moving average (MEWMA)
chart. Besides, Wang and Jiang (2009) used a forward variable selec-
tion (FVS) method and a generalized likelihood ratio control chart to
monitor high-dimensional processes. Jiang et al. (2012) and Abdella
et al. (2017) extended the same FVS method to a MEWMA chart and a
multivariate cumulative sum (MCUSUM) chart, respectively.

These VS-based methods are usually based on the normality as-
sumption, and the underlying dependency between the variables is
known or can be estimated accurately. Estimating the covariance ma-
trix is a difficult challenge in high-dimensional process monitoring
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Fig. 1. Illustration of heteroscedasticity using different data sets.
due to the dimensionality and complicated dependence between vari-
ables (Hastie et al., 2009). Nonparametric methods are appropriate
when the underlying distribution is unknown and/or difficult to verify.
Rank tests, such as the Wilcoxon-type rank-sum test, are proved to be
distribution-free and widely used in designing control charts (Shu &
Fan, 2018). Chakraborti et al. (2001) gave an overview of rank-based
univariate control charts. For more recent development of rank-based
monitoring methods, see Capizzi (2015).

Rank tests are useful in detecting sparse mean shifts from mul-
tivariate and high-dimensional processes. Qiu and Hawkins (2001)
proposed a MCUSUM chart based on the cross-sectional antiranks of
the measurements to monitor the changes in the mean vector. The
distribution of an antirank vector is known when the process is in
control, so the CUSUM statistics are distribution-free. This method
is valid for sparse shifts and can be adapted to high-dimensional
scenarios. Li et al. (2017), Zhang et al. (2020), Zou et al. (2012)
proposed different EWMA control charts for high-dimensional process
monitoring based on the spatial rank test. Chen et al. (2016) used the
Wilcoxon rank-sum test to design a nonparametric control chart, which
can achieve satisfactory IC run-length performance for any distributions
with any dimension. Mukherjee and Marozzi (2020) used the rank
statistics based on the Euclidean distances of observations to design
Shewhart-type nonparametric monitoring schemes.

Both the parametric and nonparametric methods for monitoring
high-dimensional mean vectors usually assume that the covariance
matrix is constant before and after the change point, which over-
looks a potential character called heteroscedasticity in process (Hong
et al., 2018). A straightforward definition of heteroscedasticity is the
inequality of error variance over time (Downs & Rocke, 1979). Het-
eroscedasticity is rarely considered in process monitoring, though it
affects the accuracy of parameter estimates and hence the perfor-
mance of control charts for mean vectors. In low-dimensional processes,
heteroscedastic data can be modeled by autoregressive conditional het-
eroscedastic (ARCH) models (Engle, 1982) or generalized autoregres-
sive conditional heteroskedastic (GARCH) models (Bollerslev, 1986).
Dispersion control charts have been developed based on the univariate
or multivariate GARCH models (Bodnar, 2009; Schipper & Schmid,
2001). However, applying the GARCH model to high-dimensional sce-
narios is challenging because of the computational complexity (Frisén,
2008). Bai et al. (2018) used multivariate GARCH and copula to model
high-dimensional time series. This method fits the time series with mul-
tivariate GARCH and then fits errors with copula’s; it is computationally
efficient in high-dimensional scenarios. More recently, Quevedo and
Vining (2022) proposed a Shewhart control chart based on a het-
eroscedastic Gaussian process model for profile monitoring. To our
knowledge, there is no research for detecting mean shifts in high-
dimensional processes with dynamic dispersion parameters specifically.
Though distribution-free methods relax the assumptions about disper-
sion parameters, none involve heteroscedasticity in simulations and
discuss its effect.
2

In this paper, heteroscedasticity is assumed to be a common cause
variability. When data collection procedures are affected by envi-
ronmental factors or inputs, and these dynamic external impacts are
difficult or impossible to remove, data will show heteroscedasticity
over time. We focus on time-dependent heteroskedasticity, i.e., the
covariance matrix varies with time. We define this time-varying het-
eroskedasticity as:

𝛴𝑡 = 𝜌𝑡𝛴 (1)

Where 𝜌𝑡 changes with time 𝑡 and this change affects all variables sim-
ilarly. Note that, seasonal heteroskedasticity is a part of this definition
if 𝜌𝑡 shows a seasonal pattern.

For example, the astronomical measurements of stars are affected by
the changing atmospheric effects (Tamuz et al., 2005). The speed and
the stability measurements in robot experiments show heteroscedastic
noise with different input parameters (Ariizumi et al., 2016). A more
detailed example of heteroscedasticity as a nonremovable environmen-
tal factor is illustrated in Fig. 1(a). The mean-standardized monthly
measurements of mosquito count for dengue prevention in Hong Kong
are affected by seasonality variation (Wang & Zwetsloot, 2019). These
residuals show heteroscedasticity over time with a 0 variance in Jan-
uary and a larger dispersion in summer. As the increasing mosquito
counts are of interest, the seasonal pattern of variance can disturb
the performance of existing monitoring methods. Fig. 1(b) plots Kur-
tosis of spectrum computed in Appendix A when the system operates
normally from January 2021 to Aug 2021. These Kurtosis values are
computed based on the vibration spectrum collected by sensors, and it
is expected that vibration is affected by the system’s health status as
well as the workload (the number of passengers). The workload is a
dynamic environmental factor and can cause heteroscedastic vibration
indexes. When using the vibration index to monitor the health condi-
tion of escalators, heteroscedasticity is a vital variation that needs to
be considered, as it can bury real changes. These examples show that
heteroscedasticity can be an inherent characteristic in a process, which
should be considered in a monitoring scheme, either removing it or via
robust design. It is challenging to model and remove heteroscedasticity
in high-dimensional processes. Hence we prefer a monitoring method
that is robust to heteroscedasticity.

None of the aforementioned high-dimensional methods discusses or
explores the effect of heteroscedasticity in the data when detecting
mean shifts. In this paper, we propose a rank-based EWMA control
chart for detecting sparse changes in high-dimensional mean vectors,
which is robust to time-dependent heteroscedasticity. As small shifts
are more likely to be buried by heteroscedastic noise and detecting
small changes in high-dimensional processes is more challenging, our
research focuses on monitoring small shifts. The scheme consists of a
monitoring and a post-signal diagnosis stage. A data-driven algorithm is
provided to obtain the control limits. After detecting a signal, the post-
signal diagnosis strategy estimates the change period and the subset
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of suspicious variables. Simulation and comparison results show the
IC and OC performance of the proposed method. A real-data example
illustrates the application of the scheme. In the case study, sensor data
is collected to evaluate the health condition of essential components
in escalators. Monitoring sensor data can achieve early event detection
and help in preventative maintenance strategies for escalators.

The structure of this article is as follows. In Section 2, we propose
our novel rank-based monitoring scheme, including the online moni-
toring methods and the post-signal diagnosis strategy. Section 3 shows
the IC performance of the proposed methods. In Section 4, we evaluate
the OC performance of the proposed methods and compare it with two
existing methods. Section 5 uses the vibration case study to showcase
the proposed method. Section 6 concludes the paper.

2. A rank-based monitoring scheme

2.1. Rank-based EWMA statistics

Given a series of individual 𝑝-dimensional observations 𝑿𝑡 =
(𝑥𝑡,1,… , 𝑥𝑡,𝑝)′, 𝑡 = 1, 2,…, the change-point model is

0 ∶ 𝑿𝑡 ∼ 𝐹 0
𝑝 (𝝁0,𝜮𝑡) and 𝐻1 ∶ 𝑿𝑡 ∼

{

𝐹 0
𝑝 (𝝁0,𝜮𝑡), 𝑡 < 𝜏,

𝐹 1
𝑝 (𝝁1,𝜮𝑡), 𝑡 ≥ 𝜏.

(2)

Where 𝐹 0
𝑝 and 𝐹 1

𝑝 are the IC and OC distribution functions, 𝝁0 and 𝝁1
re the corresponding unknown mean vectors. We assume that sparse
ean shifts occur in a subgroup 𝑆 with 𝑝1 (𝑝1 ≪ 𝑝) variables in 𝝁1, the

shifts are sustained and fixed. And 𝜮𝑡 is the unknown IC covariance
matrix, which changes over time. In this paper, we focus on time-
dependent heteroskedasticity where the variances of all variables are
affected by the same time-varying factors, and all variables have the
same heteroscedastic pattern over time. Thus, for each variable 𝑗, its
standard deviation at time 𝑡 is given by 𝜎𝑡,𝑗 = 𝜌𝑡𝜎𝑗 , where 𝜌𝑡 is the
heteroskedasticity factor at time 𝑡. The change-point 𝜏, which indicates
the time point of the process change, is also unknown and needs to be
estimated.

The ranks for 𝑥𝑡,𝑗 , 𝑗 = 1,… , 𝑝 among 𝑿𝑡 are integers between 1
and 𝑝. Practically, the elements in 𝝁0 are unequal, and variables with
large expectations are more likely to have higher ranks. As a result,
the distribution of ranks for each variable becomes incomparable. We
standardize all variables so that they have approximately identical
distributions at the considered time point before computing ranks. The
standard scores at time point 𝑡 for each variable are 𝑧𝑡,𝑗 = 𝑥𝑡,𝑗−�̄�𝑗

�̄�𝑗
,

here �̄�𝑗 and �̄�𝑗 are the IC sample mean and standard deviation of
ariable 𝑗. The primary purpose of standardization is comparison. Note
hat 𝑧𝑡,𝑗 have an expectation of approximately 0 over time when the
rocess is in control. As all variables share the same time-dependent
eteroscedastic pattern, the influence from 𝜌𝑡 is the same on estimated

standard deviations �̄�𝑗 and 𝑧𝑡,𝑗 . Conclusively, the ranks corresponding
to standard scores are comparable and approximately follow a discrete
uniform distribution from 1 to 𝑝. This uniform distribution is identical
over all variables’ ranks. When 𝑡 < 𝜏, the definition and distribution of
the ranks 𝑅𝑡,𝑗 are equal to

𝑅𝑡,𝑗 = 1 +
∑

𝑖≠𝑗
𝐼(𝑧𝑡,𝑗 > 𝑧𝑡,𝑖),

𝑅𝑡,𝑗 ∼  {1, 𝑝}.
(3)

Where  {1, 𝑝} is a discrete uniform distribution with expectation
𝐸[𝑅] = 𝑝+1

2 and variance 𝑉 𝑎𝑟[𝑅] = 𝑝2−1
12 .

We define the sequential EWMA statistics for each variable based
n 𝑅𝑡,𝑗 as

= (1 − 𝜆)𝑌 + 𝜆𝑅 , (4)
3

𝑡,𝑗 𝑡−1,𝑗 𝑡,𝑗
ith the initial value 𝑌0,𝑗 = 𝑝+1
2 and smoothing parameter 𝜆 ∈ (0, 1].

nder the 𝐻0 hypothesis, 𝑌𝑡,𝑗 has the expectation 𝐸[𝑌𝑡,𝑗 ] = 𝑝+1
2 and

variance 𝑉 𝑎𝑟[𝑌𝑡,𝑗 ] =
𝑝2−1
12

𝜆
1−𝜆 (1− (1−𝜆)2𝑡) for 𝑗 = 1,… , 𝑝. Under 𝐻0, 𝑌𝑡,𝑗

can be approximated by a normal distribution (Stoumbos & Sullivan,
2002),

𝐹𝑌𝑡 ≈ 𝑁
(

𝑝 + 1
2

,
𝑝2 − 1
12

𝜆
1 − 𝜆

(1 − (1 − 𝜆)2𝑡)
)

. (5)

All 𝑌𝑡,𝑗 variables follow the same 𝐹𝑌𝑡 distribution. After the change point
𝜏, variables in 𝑆 will have an expected rank 𝐸[𝑅𝑡≥𝜏,𝑗∈𝑆 ] > 𝑝+1

2 for
increasing shifts and equivalently an expected rank 𝐸[𝑅𝑡≥𝜏,𝑗∈𝑆 ] <

𝑝+1
2

for decreasing shifts. So the corresponding OC distributions of 𝑅𝑡,𝑗 , 𝑗 =
1,… , 𝑝 are different from the IC distribution  {1, 𝑝}. Conclusively, the
OC distributions of 𝑌𝑡,𝑗 , 𝑗 = 1,… , 𝑝 are different from 𝐹𝑌𝑡 so that 𝑌𝑡,𝑗 can
be used to detect mean shifts in the process.

2.2. Online monitoring scheme

When 𝑡 > 𝜏, the expectation of 𝑌𝑡,𝑗 for an increasing variable will be
𝐸[𝑌𝑡≥𝜏,𝑗∈𝑆 ] >

𝑝+1
2 , and a decreasing variable will have 𝐸[𝑌𝑡≥𝜏,𝑗∈𝑆 ] <

𝑝+1
2 .

For non-shifted variables, their expectations are approximately equal to
𝑝−𝑝1+1

2 , which is close to 𝑝+1
2 when 𝑝1 ≪ 𝑝. At a time point 𝑡, the ordered

WMA statistics are 𝑌𝑡,(1) < 𝑌𝑡,(2) <,… , < 𝑌𝑡,(𝑝). 𝑌𝑡,(𝑝) highly relates to
increasing variables and can indicate increasing shifts, symmetrically,
𝑌𝑡,(1) can be used to monitor decreasing shifts. The definition of two
separate monitoring statistics for decreasing and increasing shifts is as
follows
𝑈−
𝑡 = 𝑌𝑡,(1) = 𝑚𝑖𝑛{𝑌𝑡,1, 𝑌𝑡,2,… , 𝑌𝑡,𝑝},

𝑈+
𝑡 = 𝑌𝑡,(𝑝) = 𝑚𝑎𝑥{𝑌𝑡,1, 𝑌𝑡,2,… , 𝑌𝑡,𝑝}.

(6)

𝑈−
𝑡 can monitor decreasing shifts and only requires a lower control

limit. And 𝑈+
𝑡 only needs an upper control limit for monitoring increas-

ng shifts. According to the probability theory of order statistics, the IC
umulative distribution functions (CDF) for 𝑈−

𝑡 and 𝑈+
𝑡 are

𝑈−
𝑡
= 1 − [1 − 𝐹𝑌𝑡 ]

𝑝 and 𝐹𝑈+
𝑡
= [𝐹𝑌𝑡 ]

𝑝. (7)

herefore, with a predefined percentile 𝛼, we can compute the control
imits for 𝑈−

𝑡 and 𝑈+
𝑡 by

𝐶𝐿𝑈−
𝑡
= 𝐹−1

𝑌𝑡

(

1 − (1 − 𝛼)
1
𝑝

)

,

𝑈𝐶𝐿𝑈+
𝑡
= 𝐹−1

𝑌𝑡

(

(1 − 𝛼)
1
𝑝

)

.
(8)

Eq. (8) is an approximation. We adapt 𝛼 to achieve target in-control
performance and determine control limits. We use LR-EWMA and UR-
EWMA to indicate the control charts for 𝑈−

𝑡 and 𝑈+
𝑡 , respectively. We

recommend running these two charts simultaneously since the direc-
tions of changes are unknown in practice. Usually, the control limits
for EWMA control charts are designed to get a target IC average run
length (𝐴𝑅𝐿0) in simulations. However, processing high-dimensional
data and computing the 𝐴𝑅𝐿0 is time-consuming. We propose a data-
driven bootstrap method to determine the control limits based on false
alarm probability (𝐹𝐴𝑃 ). 𝐹𝐴𝑃 = 𝑃𝑟(𝑅𝐿 ≤ 𝑡|𝐻0) is the probability
that at least one false alarm is observed in the process from time 1 to
𝑡 (Chakraborti et al., 2008). With finite observations, computing 𝐹𝐴𝑃
is less computationally intensive than computing 𝐴𝑅𝐿0.

Algorithm 1 introduces a bootstrap method to determine the con-
trol limits with a target 𝐹𝐴𝑃 . This algorithm requires a group of IC
observations as input. We will analyze the effect of sample size 𝑁 in
Section 3. Practitioners can set their own criteria to control and stop
the procedure. 𝜖 is the step size to change 𝛼, and a small 𝜖 will result in
more accurate but slower convergence. 𝛥 determines the precision of
the final results. Smaller 𝛥 can make the empirical 𝐹𝐴𝑃 closer to the
preset target value.
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Algorithm 1 Bootstrap control limits
Input 𝐹𝐴𝑃 , 𝑿𝑁×𝑝, 𝜖, and 𝛥
utput 𝛼, 𝑳𝑪𝑳𝑈− and 𝑼𝑪𝑳𝑈+

nitialize 𝛼 = 0.005, 𝐹𝐴𝑃𝑈− = 0, and 𝐹𝐴𝑃𝑈+ = 0;
While |𝐹𝐴𝑃𝑈− − 𝐹𝐴𝑃 | > 𝛥, and |𝐹𝐴𝑃𝑈+ − 𝐹𝐴𝑃 | > 𝛥 do

Compute control limits 𝑳𝑪𝑳𝑈− and 𝑼𝑪𝑳𝑈+ based on Eq. (8)
Generate 𝐵 bootstrap samples 𝑿𝑏

𝑡×𝑝 (𝑏 = 1, .., 𝐵) from 𝑿𝑇×𝑝, each
has 𝑡 observations

Apply the proposed monitoring scheme to all 𝑿𝑏
𝑡×𝑝 samples to

obtain 𝑼−,𝑏, and 𝑼+,𝑏

𝐹𝐴𝑃𝑈− ←
∑𝐵

𝑏=1 𝐼(𝑼
−,𝑏<𝑳𝑪𝑳𝑈− )
𝐵 , and 𝐹𝐴𝑃𝑈+ ←

∑𝐵
𝑏=1 𝐼(𝑼

+,𝑏>𝑳𝑪𝑳𝑈+ )
𝐵

if 𝐹𝐴𝑃𝑈− − 𝐹𝐴𝑃 > 𝛥, and 𝐹𝐴𝑃𝑈+ − 𝐹𝐴𝑃 > 𝛥, then 𝛼 ← 𝛼 − 𝜖;
else if 𝐹𝐴𝑃𝑈− −𝐹𝐴𝑃 < −𝛥, and 𝐹𝐴𝑃𝑈+ −𝐹𝐴𝑃 < −𝛥, then 𝛼 ← 𝛼+𝜖
end while

2.3. Post signal diagnosis strategy

Upon getting a signal, it is often a challenging task to find the
corresponding root causes. We propose a two-step diagnosis strategy to
identify the shifted variables and estimate the change point. Identifying
shifted variables can be viewed as an unsupervised classification prob-
lem. We treat each variable as an observation and cluster them into
different groups. K-means clustering is suitable for this unsupervised
learning task. The ranks 𝑅𝑡,𝑗 value from 1 to 𝑝. When changes are
mall, the ranks of shifted and non-shifted variables may overlap.
eteroscedasticity also aggravates the overlap problem. Therefore, we
luster EWMA statistics by the following equation:

𝑟𝑔𝑚𝑖𝑛
𝑘
∑

𝑖=1

∑

𝒀𝑊 ,𝑗∈𝑆𝑖

‖𝒀 𝑊 ,𝑗 − 𝒄𝑖‖2, (9)

here 𝑊 is the window of statistics to cluster, 𝒄𝑖 is the center for each
luster, and 𝑘 is the number of clusters.

Suppose that either the LR-EWMA or the UR-EWMA chart shows a
ignal at time point 𝑇 (𝑇 > 𝜏). Likely, several data points also shifted
efore 𝑇 as EWMA statistics have a bit of a lag. Therefore, we classify
he 𝒀 𝑊 ,𝑗 (𝑗 = 1,… , 𝑝), which is the vector of EWMA statistics for
ariable 𝑗 within the time window of size 𝑊 , covering 𝑊 observations
rom 𝑇 −𝑊 +1 to 𝑇 , we call this the backward window. If the diagnosis
s urgent after an alarm or costly to collect more alarms, the backward
indow is recommended. But it may include IC data, which affects the

lassification results. Hence alternatively, a forward window, from 𝑇
o 𝑇 + 𝑊 − 1, can improve the classification results. If it is possible
o collect more signals, we recommend the forward window covering
ore OC statistics to achieve more accurate classification and signal
iagnosis.

Selecting an appropriate 𝑊 value is case specific. It should not be
ess than 3 for the k-means algorithm constraints. One possible value

for 𝑊 is to set it equal to the number of monotonic EWMA statistics.
Using the monotonically increasing EWMA statistics before the UR-
EWMA chart signaled as the window size. And using the number of
monotonically decreasing statistics before a signal in LR-EWMA chart
as 𝑊 value. This paper focuses on small shifts, and it is common for the
proposed methods to have some detection delay. With large shifts, we
recommend using either the expected detection delay to determine 𝑊 ,
waiting for a few extra observations before diagnosis, or other diagnosis
strategies.

We recommend using at least 𝑘 = 3 clusters in the k-means algo-
rithm, one for shifted variables and the others for non-shifted variables.
When the changes are small, the difference between shifted and non-
shifted EWMA statistics is also small. If 𝑝1 ≪ 𝑝, �̂� may include many
false-positive cases with 𝑘 = 2 clusters. Using 3 clusters can reduce
this miss-classification problem. We will use simulation to support this
4

statement. We recommend using the EWMA statistics of the signaling
ariable as the center for the shifted group, and the IC mean vector
or one non-shifted group. For the last group, if the signal is detected
y the LR-EWMA chart, we use the monitoring statistics in UR-EWMA
hart as the center. Symmetrically, taking the monitoring statistics in
he LR-EWMA chart as the third center for classification based on the
R-EWMA signal. One bonus of using 3 clusters is identifying potential

hifts in both directions based on the alarm in one chart.
The proposed clustering strategy will return a group of potentially

hifted variables 𝑌𝑡,𝑗 , 𝑗 ∈ �̂�. If EWMA statistics for selected variables
how significant deviation from the IC pattern, we treat the signal as a
eal one and use the following estimator, proposed by Nishina (1992),
o estimate the change point for each shifted variable;

𝜏−𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡(𝑌𝑡,𝑗 >
1 + 𝑝
2

|𝑗 ∈ �̂�, 𝜇𝑡>𝜏,𝑗 < 𝜇𝑡≤𝜏,𝑗 ) + 1,

̂+𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡(𝑌𝑡,𝑗 <
1 + 𝑝
2

|𝑗 ∈ �̂�, 𝜇𝑡>𝜏,𝑗 > 𝜇𝑡≤𝜏,𝑗 ) + 1.
(10)

Nishina (1992) explored the distribution of 𝜏. Though it is a biased esti-
mator, it is computationally efficient and suitable for high-dimensional
applications. In rare situations, 𝑌𝑡,𝑗 , 𝑗 ∈ �̂� for variable 𝑗 do not cross
1+𝑝
2 , hence 𝜏−𝑗 and 𝜏+𝑗 are undefined. We exclude these from the esti-
ated change-point vector �̂� (𝜏𝑗∈�̂� ≠ 0). �̂�− is the change point vector

or decreasing variables related to the LR-EWMA chart. �̂�+ consists of
he change points for increasing variables based on the LR-EWMA chart.

e can estimate the change period based on at least two meaningful
hange points;

̂− ∈ [𝑚𝑖𝑛(�̂�−), 𝑚𝑎𝑥(�̂�−)],

𝜏+ ∈ [𝑚𝑖𝑛(�̂�+), 𝑚𝑎𝑥(�̂�+)].
(11)

. In-control performance evaluation

We summarize the whole procedure of applying the proposed
ethod in Fig. 2. In this section, we explore the IC performance of

ur proposed method under various scenarios, including heteroscedas-
icity. We use a multivariate normal distribution 𝑁𝑝(𝝁0,𝜮) as baseline
odel to investigate performance with various 𝛴 matrices. In addition,

3,𝑝(𝝁0,𝜮) distributions are used to verify the robustness of the proposed
ethod for heavy-tailed distributed data.

In our experiments, we consider 𝑝 = 50, 100 variables with unequal
xpectations in 𝝁0. We define three different covariance matrices, 𝜮1,
2, and 𝜮3, to learn about the effect of different correlation structures
n performance, where 𝜮1 = 𝑰𝑝, 𝜮2 = (−1)|𝜄−𝑚|(𝜎𝜄,𝑚)(1≤𝜄,𝑚≤𝑝), and 𝜮3 =
𝜎𝜄,𝑚)(1≤𝜄,𝑚≤𝑝), 𝜎𝜄,𝑚 = 0.9|𝜄−𝑚|. We model time-dependent heteroskedas-
icity by multiplying the 𝜮 matrix with a constant that varies over
ime. Details will be discussed below. To explore the impact of varying
ample size (𝑁), we set 𝑁 = 50, 100, 200, and 500.

The target 𝐹𝐴𝑃 is set at 0.1 within 𝑡 = 100 observations. We
hoose 𝜆 = 0.1, 𝛼 = 0.005, 𝛥 = 0.02, 𝜖 = 0.001 to determine the
ontrol limits with 𝐵 = 1000 bootstrap samples using Algorithm 1. The
ontrol limits based on Algorithm 1 highly depend on the IC samples.
or each scenario, we use 20 IC samples as inputs of the algorithm to
ompute control limits and take the average value of 𝛼 as the final
esults. All performance results in this paper are obtained from 𝐿 =
000 simulation runs unless indicated otherwise. Table 1 reports the 𝛼
ased on 20 input samples and the corresponding average 𝐹𝐴𝑃 for IC
erformance. These results can be used to evaluate the reliability and
obustness of Algorithm 1 and the proposed control charts.

In baseline models, 𝛼 varies with dimensionality 𝑝, which has
maller values in lower-dimensional cases and larger values in higher-
imensional cases for achieving similar 𝐹𝐴𝑃 . It has similar values with
ifferent 𝜮, which indicates that the control limits are insensitive to the
ata dependency structure. The 𝐹𝐴𝑃 values show that the proposed
ontrol charts are robust to various correlations among variables. When
= 100, the trend that 𝛼 increases with 𝑁 is substantial, such as

rom 0.0064 to 0.0076 under 𝑁 (𝝁 ,𝜮3). This trend is neglectable
100 0
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Fig. 2. Flow chart for the proposed monitoring method.
in low-dimensional processes because of the less noise from variables.
More variables introduce more variation to parameter estimation, stan-
dardization, and results of Algorithm 1. More data can achieve more
accurate parameter estimation and narrower control limits.

The effect from 𝑝 and 𝜮 on 𝛼 when the data are 𝑡3,𝑝(𝝁0,𝜮) dis-
tributed is similar to baseline models. Heavy-tailed distributions cause
smaller 𝛼 and wider control limits than multivariate normal models.
The differences are substantial with 𝑁 ≤ 100 because limited IC data
5

result in less accurate parameter estimation and more variation. The
average 𝐹𝐴𝑃 remains close to the design value of 0.1 despite the non-
normal distributions and variability. Hence, our proposed methods can
achieve satisfactory IC performance with non-normal distributions us-
ing the same parameters in standardization. When 𝑁 = 500, variability
caused by standardization is limited, so the 𝛼 values converge to the
baseline models. We can conclude that the proposed control charts are
robust to heavy-tailed distributions.



Computers & Industrial Engineering 184 (2023) 109544Z. Wang et al.

h

r
b
𝐹
h
d

d
i

a
d
T
r
c
e
f

r
t
𝑁
v
o
s
h
c
t
f
w
1
t
p
s
s
t
u

Table 1
𝛼 and average 𝐹𝐴𝑃 values for the proposed method under normal distributions, t-distributions, heteroscedastic distribution, and varying sample
size. Design 𝐹𝐴𝑃 = 0.1.
𝑀𝑜𝑑𝑒𝑙 𝑝 𝑁 = 50 𝑁 = 100 𝑁 = 200 𝑁 = 500

𝛼 𝐹𝐴𝑃 𝛼 𝐹𝐴𝑃 𝛼 𝐹𝐴𝑃 𝛼 𝐹𝐴𝑃

𝑁𝑝(𝝁0 ,𝜮1)
50 0.0054 0.105 0.0056 0.099 0.0052 0.098 0.0055 0.097
100 0.0058 0.091 0.0062 0.094 0.0061 0.091 0.0064 0.090

𝑁𝑝(𝝁0 ,𝜮2)
50 0.0054 0.103 0.0056 0.096 0.0057 0.095 0.0058 0.093
100 0.0061 0.091 0.0067 0.094 0.0068 0.093 0.0070 0.091

𝑁𝑝(𝝁0 ,𝜮3)
50 0.0051 0.102 0.0055 0.102 0.0055 0.091 0.0056 0.090
100 0.0064 0.093 0.0068 0.088 0.0072 0.091 0.0076 0.091

𝑡3,𝑝(𝝁0 ,𝜮1)
50 0.0014 0.097 0.0021 0.089 0.0034 0.090 0.0040 0.085
100 0.0016 0.089 0.0025 0.092 0.0037 0.088 0.0047 0.084

𝑡3,𝑝(𝝁0 ,𝜮2)
50 0.0016 0.094 0.0029 0.092 0.0037 0.090 0.0045 0.086
100 0.0020 0.096 0.0034 0.094 0.0042 0.090 0.0055 0.089

𝑡3,𝑝(𝝁0 ,𝜮3)
50 0.0017 0.102 0.0026 0.100 0.0040 0.091 0.0050 0.097
100 0.0021 0.097 0.0033 0.093 0.0045 0.092 0.0059 0.087

𝑁𝑝(𝝁0 ,𝜮1
𝑡 )

50 0.0010 0.098 0.0019 0.089 0.0031 0.095 0.0038 0.086
100 0.0010 0.099 0.0022 0.091 0.0032 0.089 0.0055 0.103

𝑁𝑝(𝝁0 ,𝜮2
𝑡 )

50 0.0013 0.096 0.0025 0.092 0.0034 0.092 0.0051 0.100
100 0.0012 0.092 0.0028 0.091 0.0035 0.087 0.0057 0.095

𝑁𝑝(𝝁0 ,𝜮3
𝑡 )

50 0.0010 0.099 0.0022 0.098 0.0034 0.090 0.0050 0.099
100 0.0012 0.094 0.0028 0.088 0.0038 0.086 0.0061 0.089
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We use time-varying covariance matrices to model time-dependent
eteroscedasticity and study the robustness. We do this by setting 𝜮𝑡 =

𝜌𝑡𝜮, where 𝜌𝑡 is set equal to {0.12, 0.22,… , 1.82, 1.92, 1.82,… , 0.12} and
epeat this until the end of the process. Seasonal heteroscedasticity
elongs to the category of time-dependent pattern. Ideally, the average
𝐴𝑃 remains close to the design value of 0.1 despite the introduced
eteroscedasticity. The effect from 𝑝 and 𝜮 on 𝛼 in heteroscedastic
istributions is similar to baseline models. The 𝐹𝐴𝑃 values close to the

design value, we can conclude that the proposed methods are robust to
dependence structures under different distributions. The control limits
estimated with limited IC heteroscedastic data (𝑁 = 50) are wider
than the baseline model. 𝛼 based on heteroscedastic samples converges
to the baseline 𝛼 with increasing 𝑁 . One possible explanation for the
ifference is that heteroscedasticity affects parameter estimation and
ntroduces more uncertainty to the standardization procedure.

We evaluate the bootstrap estimation error by considering the vari-
bility of 𝛼 based on 20 different samples. We compute the standard
eviations of 𝛼 (𝜎𝛼), which are smaller than 0.001 in all scenarios.
hey are relatively small compared with 𝛼, which indicates that the
esults of Algorithm 1 with different IC samples are accurate. The
orresponding 𝐹𝐴𝑃 values based on estimated 𝛼 are close to 0.1, so the
stimated control limits based on an individual IC sample are reliable
or multivariate normal, heavy-tailed, and heteroscedastic models.

The IC performance analysis shows that the proposed methods are
obust to complicated dependency structures and non-normal distribu-
ions. It can estimate control limits precisely with limited observations
≤ 𝑝. When the distributions are non-normal or have heteroscedastic

ariances over time, more data are preferred to increase the accuracy
f estimated control limits. If the estimated parameters are used to
tandardize incoming observations, the estimation error caused by the
eavy tail and heteroscedasticity is consistent and negligible. Hence the
ontrol charts can always get satisfactory IC performance with the con-
rol limits estimated from limited IC observations. An important factor
or computing control limits is the IC sample size. To reduce variability,
e recommend using 𝑁 = 200 IC data points as the input of Algorithm
to compute reliable control limits under different distributions. In

his section, we only consider symmetric distributions because our
roposed methods require approximately identical distributed standard
cores for each variable to compute ranks. Their performance under
kewed distributions is questionable, so we do not recommend using
he proposed methods for monitoring data from skewed distributions
ntil further research proves their efficiency.
6

. Out-of-control performance evaluation

.1. Signal detection

In this section, we compare the OC performance of the proposed
ethod with the distribution-free EWMA (DFEWMA) control chart pro-
osed by Chen et al. (2016) and the interpoint distances (IPD) control
harts proposed by Shu and Fan (2018). We choose these two control
harts for comparisosn because they are distribution-free and can effi-
iently detect sparse shifts in location parameters in high-dimensional
rocesses.

We determine the control limits to ensure different charts have
he same 𝐹𝐴𝑃 , then use two new metrics to quantify their OC per-
ormance. The first metric, the Detection Rate (DR), represents the
etection power. It is the proportion of runs with a signal out of all

imulations, for example, 𝐷𝑅 =
∑𝐿

𝑙=1 𝐼(𝑈
+
𝑡 >𝑈𝐶𝐿𝑈+

𝑡
|𝐻1)

𝐿 for the UR-EWMA
chart. 𝐷𝑅 close to 1 indicates the method is sensitive to increasing
changes. And to assess the timeliness of the monitoring scheme, we
define the Conditionally Expected Detection Delay (CED) as the average
time between the signal point and the change point. The 𝐶𝐸𝐷 for the

UR-EWMA chart is 𝐶𝐸𝐷 =
∑𝐿

𝑙=1 𝑚𝑖𝑛(𝑎𝑟𝑔𝑡(𝑈
+
𝑡 >𝑈𝐶𝐿𝑈+

𝑡
|𝐻1))

𝐿 − 𝜏. A smaller
𝐸𝐷 means faster detection.

For our comparison, we implement the UR-EWMA chart only, as the
R-EWMA and LR-EWMA charts are symmetric, the simulated results
re also valid to the LR-EWMA chart. We use the same heteroscedastic
odels as in Section 3, but with 𝝁0 = 𝟎. For EWMA type control

harts, we use two smoothing parameters 𝜆 = 0.1 and 0.2 for the UR-
WMA chart, and 𝜆 = 0.1 for the DFEWMA chart. The first 𝑝1 = 5

components in the location parameter change by 𝛿 = 0.5 or 1 after
𝜏 = 100 observations. According to the guideline in Chen et al. (2016),
the reference sample for DFEWMA should consist of at least 𝑚0 = 100
observations. As the DFEWMA method accumulates the information,
it will use 𝑚0 + 𝜏 observations as a baseline when the changes occur.
We obtain the control limits for our method and the IPD charts based
on 𝑁 = 200 observations to have a similar setup. Table 2 reports the
results.

Both methods are designed to achieve 𝐹𝐴𝑃 = 0.1 with 𝑡 = 100 ob-
servations. Column 𝛼 (𝐹𝐴𝑃 ) in Table 2 shows 𝛼 and the corresponding
empirical 𝐹𝐴𝑃 values for the UR-EWMA chart and DFEWMA chart. The
definition of 𝛼 in the DFEWMA control chart is the constant conditional

false alarm rate that the chart signals with no previous alarms. Chen
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Table 2
The 𝐷𝑅 and 𝐶𝐸𝐷 of the UR-EWMA, DFEWMA, and IPD charts under heteroscedastic distributions, with varying shift sizes. When the design 𝐹𝐴𝑃 = 0.1.
𝑀𝑜𝑑𝑒𝑙 𝑝 𝛿 𝑈𝑅 − 𝐸𝑊𝑀𝐴𝜆=0.1 𝑈𝑅 − 𝐸𝑊𝑀𝐴𝜆=0.2 𝐷𝐹𝐸𝑊𝑀𝐴 𝐼𝑃𝐷2 𝐼𝑃𝐷inf

𝛼(𝐹𝐴𝑃 ) 𝐷𝑅 𝐶𝐸𝐷 𝛼(𝐹𝐴𝑃 ) 𝐷𝑅 𝐶𝐸𝐷 𝛼(𝐹𝐴𝑃 ) 𝐷𝑅 𝐶𝐸𝐷 𝐶𝐿(𝐹𝐴𝑃 ) 𝐷𝑅 𝐶𝐸𝐷 𝐶𝐿(𝐹𝐴𝑃 ) 𝐷𝑅 𝐶𝐸𝐷

𝑁𝑝(𝟎,𝜮1
𝑡 )

20
0 0.005(0.109) 0.007(0.106) 0.0003(0.106) 0.069(0.121) 0.075(0.095)
0.5 1 14.9 1 14.9 0.798 31.9 1 13.2 1 13.5
1 1 11.4 1 11.3 0.895 10.4 1 9.1 1 11.0

50
0 0.006(0.106) 0.009(0.082) 0.0002(0.094) 0.062(0.089) 0.080(0.120)
0.5 1 13.9 1 13.9 0.541 44.7 0.994 18.2 1 14.4
1 1 10.5 1 10.6 0.913 14.7 1 11.0 1 12.9

100
0 0.007(0.097) 0.012(0.084) 0.0001(0.110) 0.058(0.097) 0.081(0.103)
0.5 1 13.9 1 13.9 0.371 46.0 0.72 34.3 1 15.7
1 1 10.5 1 10.5 0.876 24.4 1 13.1 1 13.7

𝑁𝑝(𝟎,𝜮2
𝑡 )

20
0 0.005(0.093) 0.006(0.099) 0.0005(0.085) 0.162(0.084) 0.118(0.096)
0.5 1 14.8 1 15.3 0.137 47.4 0.738 35.8 1 12.9
1 1 11.4 1 11.6 0.440 42.2 1 11.1 1 10.3

50
0 0.006(0.092) 0.01(0.083) 0.0005(0.092) 0.120(0.076) 0.115(0.114)
0.5 1 13.9 1 13.8 0.111 48.3 0.504 41.4 1 14.7
1 1 10.6 1 10.6 0.241 49.7 1 15.4 1 12.2

100
0 0.006(0.079) 0.014(0.084) 0.0005(0.093) 0.093(0.103) 0.093(0.117)
0.5 1 14.1 1 13.8 0.116 53.5 0.281 48.0 1 15.2
1 1 10.7 1 10.5 0.232 49.3 0.999 16.0 1 12.9

𝑁𝑝(𝟎,𝜮3
𝑡 )

20
0 0.004(0.087) 0.006(0.117) 0.0005(0.082) 0.163(0.079) 0.114(0.091)
0.5 1 14.5 0.998 14.9 0.183 52.8 0.731 32.9 0.985 14.9
1 1 11.0 1 10.9 0.676 37.5 1 12.2 1 11.4

50
0 0.006(0.079) 0.010(0.093) 0.0006(0.088) 0.105(0.080) 0.089(0.108)
0.5 1 14.9 0.998 15.3 0.123 44.9 0.628 39.3 0.999 16.2
1 1 10.9 1 10.5 0.394 45.9 1 13.5 1 12.6

100
0 0.008(0.093) 0.014(0.088) 0.0005(0.092) 0.081(0.097) 0.077(0.108)
0.5 1 15.2 0.998 16.0 0.128 50.7 0.484 39.1 0.997 17.1
1 1 11.2 1 11.1 0.272 45.9 0.999 16.2 1 13.7
et al. (2016) conclude that the IC run length of the DFEWMA chart
follows the geometric distribution under a fixed covariance matrix.
Therefore, for a given 𝛼 the simulated 𝐹𝐴𝑃 ≈ 1 − (1 − 𝛼)𝑡. But the
equation does not hold in our comparison. For example, the 𝐹𝐴𝑃 =
0.1, then the DFEWMA chart should have 𝛼 = 0.001 however it has
much smaller 𝛼 (see Table 2). One possible explanation is that the
control limits for the DFEWMA control chart are based on the empirical
quantile, which is directly affected by the heteroscedasticity in data.
Also its IC performance is affected by correlation, 𝛼 has larger values
under 𝜮2

𝑡 and 𝜮3
𝑡 . For two IPD control charts, we show the control limits

estimated from 100,000 simulation and corresponding 𝐹𝐴𝑃 values,
because they are Shewhart-type control charts with constant control
limits.

The results in Table 2 show that the 𝐷𝑅 of the 𝑈𝑅 − 𝐸𝑊𝑀𝐴𝜆=0.1
chart equals 1 under various dimensions and covariance structures. The
𝑈𝑅 − 𝐸𝑊𝑀𝐴𝜆=0.2 chart is affected by dependence structure as it has
𝐷𝑅 = 0.998 in small shifts scenarios with 𝜮3

𝑡 . Hence our proposed
method is sensitive to small shifts, like 𝛿 = 0.5, with appropriate
smoothing parameters. The DFEWMA method is less sensitive to detect
small changes in the high-dimensional heteroscedastic process, which
results in 𝐷𝑅 < 1. Moreover, its efficiency decreases with increased di-
mensionality. Correlation also significantly affects the OC performance
of DFEWMA control chart. When 𝛿 = 0.5, with complicated dependency,
the 𝐷𝑅 values for DFEWMA control chart are close to the 𝐹𝐴𝑃 , which
means the chart does not signal the shift at all. The 𝐼𝑃𝐷2 control chart
can efficiently monitor sparse changes in low-dimensional processes
with independent variables. Its 𝐷𝑅 values decrease with increasing 𝑝.
To evaluate the effect of sparsity levels, we fix 𝑝1 = 5, which means 25%
variables change among 20 variables, 10% variables change among 50
variables and 5% changes among 100 variables. 𝐼𝑃𝐷2 chart is less
efficient in detecting small and sparse changes in high-dimensional
processes, consistent with the conclusion in Shu and Fan (2018). The
detectability of the 𝐼𝑃𝐷2 chart for small shifts is disturbed by complex
dependence structures. When 𝛿 = 1, 𝐼𝑃𝐷2 can get 𝐷𝑅 = 1 in most
scenarios. Shu and Fan (2018) conclude that the 𝐼𝑃𝐷inf control chart
is sensitive to sparse shifts; it can get 𝐷𝑅 = 1 in all scenarios with
7

𝜮1
𝑡 and 𝜮2

𝑡 . Its performance is affected by complicated dependency
among variables when monitoring small changes, but the results are
still satisfactory.

As for the detection delay, overall, two UR-EWMA charts can de-
tect a signal within 20 observations after the change point. Larger
shift sizes 𝛿 = 1 can reduce the detection delay. They can keep
consistent performance under high-dimensional and dependent models.
The difference between these two charts’ performance is small. With
a low detection rate under 𝜮2

𝑡 and 𝜮2
𝑡 , the corresponding 𝐶𝐸𝐷s of

DFEWMA method, which are about 50, also support the deduction that
the signals might be false alarms. Because we use 100 OC observations
after the change point to make the 𝐷𝑅 sensible. Otherwise, with infinite
observations, the 𝐷𝑅 will always equal 1 for each method. Besides the
effect from shift size, the detection delay of 𝐼𝑃𝐷2 chart is affected
by dimensionality and dependence structures. It has larger detection
delays in high-dimensional scenarios. When 𝛿 = 0.5, the 𝐼𝑃𝐷2 chart
can detect a signal with more than 30 observations after the change
point. Two reasons can explain this result; the first reason is that
the 𝐼𝑃𝐷2 chart is less sensitive to sparse changes. Another reason is
that Shewhart-type control charts are more efficient in detecting large
changes. The 𝐶𝐸𝐷 values of 𝐼𝑃𝐷inf chart are smaller than 20 in all
scenarios, confirming that the 𝐼𝑃𝐷inf chart efficiently detects sparse
changes. But compared with the proposed 𝑈𝑅 − 𝐸𝑊𝑀𝐴 chart, it has
larger detection delays in high-dimensional scenarios with 𝑝 = 50
and 100. Conclusively, our proposed method outperforms the DFEWMA
method in monitoring heteroscedastic processes both in detection rate
and signal speed. Though the IPD charts show satisfactory performance
and robustness to heteroscedasticity, our proposed methods are less
affected by dimensionality and dependence structures. Further, our
proposed method is more sensitive to small and sparse changes.

We compute the average time of processing 200 IC observations for
each method to compare their computational efficiency under various
models as shown in Fig. 3. The 𝑥-axis is the dimensionality, and the
𝑦-axis is the time in seconds. Overall, the UR-EWMA chart and IPD
chart are much faster than the DFEWMA chart, and the superiority is
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Fig. 3. The average processing time (seconds) of the UR-EWMA and the DFEWMA charts for monitoring 200 IC heteroscedastic data.
more prominent in high-dimensional scenarios. When 𝑝 = 100, the UR-
EWMA chart only costs 1 second to monitor a process but the DFEWMA
chart needs 2 minutes. The IPD chart is the fastest alternative for
monitoring high-dimensional processes. One convincing explanation is
that individually estimating the control limits for each time point is
time-consuming in the DFEWMA method.

The comparisons show significant advantages of our proposed
method in monitoring high-dimensional heteroscedastic processes. Our
proposed methods are robust to time-dependent heteroscedasticity, as
they can detect small mean shifts under heteroscedastic noise with
a relatively small detection delay. They are more sensitive than the
Shewhart type IPD charts. With the superiority of 𝐸𝑊𝑀𝐴 statistics,
our methods are computationally efficient and have higher practicality
in high-dimensional processes compared with the 𝐷𝐹𝐸𝑊𝑀𝐴 methods.
We recommend using our method for monitoring high-dimensional
processes because of its robustness, sensitivity, and computational
efficiency. Further, we also propose a diagnosis strategy for finding the
root causes of shifts; the performances of this strategy are shown in the
following section.

4.2. Performance of post signal diagnosis

Next, we study the performance of our signal diagnosis step. We
omit a comparison with the DFEWMA chart and IPD charts from this
section as they do not provide signal diagnosis strategies. After detect-
ing a signal at time point 𝑇 , 𝑊 should be smaller than 𝐶𝐸𝐷 to avoid
including IC statistics. Here we use 𝑊 = 5 in clustering based on the
average detection delay in Table 2. We have also studied 𝑊 = 3 and
𝑊 = 10, and the results are comparable, so we do not include them
in this paper. We use the positive predictive rate (𝑃𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ),
and the true positive rate (𝑇𝑃𝑅 = 𝑇𝑃

𝑃 ) to evaluate the precision
and the sensitivity of the k-means algorithm in Eq. (9). We use the
average estimated period of the change points (𝐶𝑃𝑊 ) to evaluate the
performance of Eq. (11).

Table 3 shows the performance of the signal diagnosis strategy
based on the increasing shifts with 𝛿 = 0.5, 1. When 𝑝 = 20, the
backward and forward windows show 𝑃𝑃𝑅 ≈ 1, and both can filter the
suspicious variables with limited false-positive cases. The 𝑃𝑃𝑅 values
of both windows decrease with the increasing number of variables, but
the forward window is less affected and can keep 𝑃𝑃𝑅 > 0.8. Because
8

the EWMA statistics in the forward window cumulates more shifted
data, the deviation is more significant. Dependency has a positive effect
on the 𝑃𝑃𝑅 performance. The backward window can achieve 𝑇𝑃𝑅 ≈
0.9 in all scenarios, and a positive correlation can improve the 𝑇𝑃𝑅
performance. The 𝑇𝑃𝑅 values for the forward window are close to 1
in all scenarios. The k-means algorithm can identify most of the shifted
variables. When 𝛿 = 1, both 𝑃𝑃𝑅 and 𝑇𝑃𝑅 have larger values in all
scenarios than 𝛿 = 0.5, but the improvements are minor. Practitioners
can choose to adjust the windows’ direction and size based on the trend
of the control chart.

As for the change window estimate in Eq. (11), all results can cover
the real change point 𝜏 = 100. The 𝐶𝑃𝑊 s based on backward windows
include more time points than the 𝐶𝑃𝑊 s based on forward windows,
especially in high-dimensional scenarios. These results may relate to
the false-positive cases in the clustering step. The backward window has
smaller 𝑃𝑃𝑅 values than the forward window with more variables. The
performance of the forward window is less affected by dimensionality.
A positive correlation can improve the estimation results since the
shifts occur in 5 highly correlated variables. As shown in Table 2,
the UR-EWMA chart has smaller 𝐶𝐸𝐷 with 𝛿 = 1, so the maximum
estimated change points are closer to 100 compared with 𝛿 = 0.5. With
significant shifts, the clustering methods can identify shifted variables
more accurately; hence the estimated change windows include fewer
in-control points.

Table 3 also shows the signal diagnosis performance with 𝑘 = 2
clusters and a forward window. All shifted variables can be detected
in all scenarios, so the TPR values are close to 1. However, the PPR
values are smaller than those with 𝑘 = 3 clusters, indicating more false
positive cases are included in �̂� with 𝑘 = 2 clusters. The misclassifi-
cation problems are more significant in more sparse scenarios. Also,
the estimated change windows are wider and include more time points
resulting in less accurate change point estimates because of excessive
false positive cases. These results support the recommendation of using
3 clusters (instead of 2) to achieve reliable diagnosis results.

5. Case study

We use vibration data from escalators in MTR stations to illustrate
the proposed method. The Mass Transit Railway (MTR) has been oper-
ating in Hong Kong for 40 years, with more than 1000 escalators in the
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Table 3
Post signal diagnosis for the UR-EWMA chart. When the design 𝐹𝐴𝑃 = 0.1, 𝑝1 = 5, and 𝜏 = 100.
𝛿 𝑀𝑜𝑑𝑒𝑙 𝑝 (𝒀 𝑡−𝑊 +1 ,… , 𝒀 𝑡)𝑘=3 (𝒀 𝑡 ,… , 𝒀 𝑡+𝑊 −1)𝑘=3 (𝒀 𝑡 ,… , 𝒀 𝑡+𝑊 −1)𝑘=2

𝑃𝑃𝑅 𝑇𝑃𝑅 𝐶𝑃𝑊 𝑃𝑃𝑅 𝑇𝑃𝑅 𝐶𝑃𝑊 𝑃𝑃𝑅 𝑇𝑃𝑅 𝐶𝑃𝑊

0.5

𝑁𝑝(𝝁0 ,𝜮1
𝑡 )

20 0.93 0.88 [87, 108] 0.99 0.97 [86, 109] 0.96 0.98 [86, 110]
50 0.66 0.91 [79, 108] 0.93 0.98 [86, 108] 0.82 0.99 [83, 109]
100 0.35 0.93 [71, 109] 0.82 0.99 [83, 108] 0.53 1.00 [77, 111]

𝑁𝑝(𝝁0 ,𝜮2
𝑡 )

20 0.95 0.87 [87, 106] 0.98 0.94 [87, 107] 0.96 0.97 [88, 108]
50 0.74 0.89 [83, 106] 0.94 0.96 [88, 107] 0.82 0.98 [86, 108]
100 0.48 0.91 [77, 108] 0.85 0.98 [86, 108] 0.60 0.99 [81, 110]

𝑁𝑝(𝝁0 ,𝜮3
𝑡 )

20 0.97 0.96 [90, 106] 1.00 0.99 [91, 106] 0.98 1.00 [91, 107]
50 0.82 0.99 [89, 106] 0.96 0.99 [93, 106] 0.88 1.00 [90, 106]
100 0.55 0.99 [82, 107] 0.89 1.00 [92, 106] 0.67 0.99 [86, 108]

1

𝑁𝑝(𝝁0 ,𝜮1
𝑡 )

20 0.93 0.89 [84, 104] 0.99 0.98 [85, 105] 0.97 0.99 [85, 106]
50 0.67 0.92 [77, 104] 0.95 0.98 [84, 105] 0.84 0.99 [82, 105]
100 0.37 0.95 [69, 105] 0.86 0.99 [83, 105] 0.61 1.00 [75, 106]

𝑁𝑝(𝝁0 ,𝜮2
𝑡 )

20 0.96 0.88 [86, 103] 0.99 0.95 [86, 104] 0.96 0.97 [86, 105]
50 0.76 0.89 [82, 103] 0.95 0.96 [86, 104] 0.86 0.98 [84, 105]
100 0.49 0.92 [74, 104] 0.88 0.98 [84, 104] 0.69 0.99 [80, 106]

𝑁𝑝(𝝁0 ,𝜮3
𝑡 )

20 0.98 0.97 [89, 103] 0.99 1.00 [89, 103] 0.99 1.00 [89, 103]
50 0.82 0.99 [87, 103] 0.97 0.99 [90, 102] 0.92 1.00 [90, 103]
100 0.60 1.00 [80, 104] 0.94 1.00 [91, 102] 0.78 1.00 [86, 104]
Fig. 4. Vibration profiles and the heteroscedasticity.
railway network. MTR conducted a project to develop a comprehensive
health condition model for escalators using mathematical analysis of
the related parameters. The model will be used for predictive mainte-
nance and to support refurbishment decisions. One important escalator
component is the tension carriage, which can maintain the necessary
tension in the paired chains to make the escalator operate properly.
To investigate the condition of the tension carriage, MTR installed two
sensors to collect its vibration data. Each sensor has recorded three
daily profiles from 2021-01-04 to 2021-10-11, resulting in 801 records.
The original data is provided and owned by MTR.

Fig. 4(a) shows two vibration profiles collected by sensors on the
same day. The 𝑥-axis is the frequency, and the 𝑦-axis is the amplitude.
The spectrum can reflect the condition of the tension carriage, but they
are complicated to analyze. According to the engineering comments
from MTR and Shen et al. (2013), we summarize the profiles by 13
indexes (see Appendix A for more details). Consequently, 26 features
are used to describe the condition of tension carriage. Since no me-
chanical failure is reported from January 2021 to August 2021, we
take the records within that period as Phase I data. The sensor records
are missing on some days, so the health indexes for these spectra are
nonexistent. After removing observations with missing values, we have
566 IC data points to compute the IC parameters for each variable and
control limits. Fig. 4(b) shows the time-dependent heteroscedasticity
for the 26 standardized health indicators from the IC sample. The thick
red line is the average variance. All health indicators seem to have
a smaller variance in 13:00–15:00 and a larger variance in 20:00–
22:00. The passenger load will affect the vibration data collected by
9

sensors during normal operation. Thus, all variables are affected by
the same time-varying factors and share a similar time-dependent
heteroscedastic pattern. For Phase II, there are 44 observations from
September to October. Each variable is standardized by the sample
mean and standard deviation computed from the IC data.

We set 𝜆 = 0.2 and 𝐹𝐴𝑃 = 0.1 to obtain the control limits. Fig. 5
plots the control charts. The LR-EWMA chart signals at 8 and 16 until
the end, and the UR-EWMA chart signals at 10, 11 and 18 until the end,
but no reported faults are known during this period.

We diagnose the signal at 8 in LR-EWMA chart and the signal at 10
in UR-EWMA chart using forward windows. Fig. 6 plots the potential
shifted variables in red. Though the k-means algorithm can identify a
group of variables, there are no obvious changes in these variables. It
seems that cumulative low/high ranks cause the signal. Therefore, we
treat them as false alarms.

The LR-EWMA chart signals at 16, which is earlier than the signal
at 18 in the UR-EWMA chart, so we use the alarm in LR-EWMA chart to
diagnose the root causes and change points. We use a forward window
with 𝑊 = 3 to identify the shifted variables. Based on the window
from 16 to 18, we can identify three suspicious decreasing variables,
see Figs. 7(a) and 7(b). The estimated change window includes Sept
07. MTR reported preventive maintenance on that day. According to
Figs. 7(c) and 7(d), 4 increasing variables are detected based on the
window from 18 to 20 for the UR-EWMA chart. The change point is
between Sept 07 and Sept 29. This period includes two more preventive
maintenance on Sept 14 and Sept 29. On Sept 13, MTR did a half-year
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Fig. 5. Control charts.

Fig. 6. False alarm diagnosis.

Fig. 7. Clustering based on LR-EWMA and UR-EWMA charts.
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examination of the corresponding escalator. We can observe significant
changes in the health indicator before and after that date. This case sup-
ports that the proposed monitoring scheme can detect sparse changes
in high-dimensional heteroscedastic data.

6. Conclusion

The innovation of this paper is to consider time-dependent het-
eroscedasticity as a common cause variability in process monitoring
of high-dimensional data. We propose a robust monitoring scheme
for detecting and filtering sparse changes in high-dimensional mean
vectors to cope with time-dependent heteroscedasticity. When the pro-
cess is in control, the properties of the ranks for each variable are
known and robust to changes in underlying process distributions. The
corresponding EWMA statistics can be calculated based on ranks for
each variable, and the approximate distribution is derived. We use the
UR-EWMA and LR-EWMA charts to detect increasing and decreasing
hanges separately. A bootstrap algorithm is proposed to determine
he control limits based on a predefined 𝐹𝐴𝑃 and an IC sample. A

comprehensive signal diagnosis strategy is proposed to identify the
shifted variables and the period of change points.

The simulation results show that the UR-EWMA and LR-EWMA
harts are sensitive to small and sparse changes in the heteroscedastic
rocess. The diagnosis strategy can cluster the suspicious variables and
stimate the change points. In the comparison study, our proposed
harts outperform the DFEWMA chart and the IPD charts in detecting
mall and sparse changes under heteroscedasticity. The data-driven
ontrol limits make our methods computationally efficient and appli-
able in online monitoring. The proposed scheme is easy to use in real
pplications, such as the illustration with sensor data.

Our approach is designed to be robust towards time-dependent
eteroskedasticity. Other forms of heteroskedasticity need to be fur-
her investigated, for example, using the multivariate GARCH model
nd copula to generate simulation data. Both model-based and robust
onitoring schemes for either mean or heteroscedasticity are worth ex-
loring as future research directions. Furthermore, we have evaluated
he performance of the proposed methods with normal and heavy-
ailed distributions. Extending this study to other distributions, such
s skewed distributions, is a subject of future research. The primary
oncentration of this paper is heteroscedasticity, and the dependence
tructures are relatively simple. Exploring the effect of a complicated
ovariance matrix on the proposed methods is another future direction.
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Appendix A

The mathematical expression of 13 health indicators are as follows,

𝐴𝑡 =

√

∑𝑀
𝑖=1 𝑥

2
𝑖

1.5

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑𝑀

𝑖=1 𝑣𝑖𝑥𝑖
∑𝑀

𝑖=1 𝑥𝑖

𝑆𝐹𝑀 =
exp(

∑𝑀
𝑖=1 log(𝑥𝑖)

𝑀 )

�̄�

𝐻 = −

∑𝑀
𝑖=1(

𝑥𝑖
∑𝑀

𝑖=1 𝑥𝑖
× ln( 𝑥𝑖

∑𝑀
𝑖=1 𝑥𝑖

))

ln𝑀

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑𝑀

𝑖=1(𝑥𝑖 − �̄�)3

𝑁𝑠3

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑𝑀

𝑖=1(𝑥𝑖 − �̄�)4

𝑁𝑠4

𝑟𝑒𝑠𝑡𝑓𝑎𝑐𝑡𝑜𝑟 =
max |𝑥𝑖|

√

(
∑𝑀

𝑖=1 𝑥
2
𝑖 )∕𝑀

𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑓𝑎𝑐𝑡𝑜𝑟 =
max |𝑥𝑖|

(
∑𝑀

𝑖=1
√

|𝑥𝑖|∕𝑀)2

ℎ𝑎𝑝𝑒𝑓𝑎𝑐𝑡𝑜𝑟 =

√

∑𝑀
𝑖=1 𝑥

2
𝑖

𝑀
∑𝑀

𝑖=1 |𝑥𝑖|
𝑀

𝐼𝑚𝑝𝑢𝑙𝑠𝑒𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =
max(𝑥𝑖)

∑𝑀
𝑖=1 |𝑥𝑖|∕𝑀

𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑𝑀

𝑖=1(𝑥𝑖 − �̄�)2

𝑀

𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑟𝑜𝑜𝑡𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑣𝑎𝑙𝑢𝑒 = (
∑𝑀

𝑖=1
√

|𝑥𝑖|
𝑀

)2

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑚𝑒𝑎𝑛𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑣𝑎𝑙𝑢𝑒 =
∑𝑀

𝑖=1 |𝑥𝑖|
𝑀

.

Where 𝑥𝑖 is the amplitude under frequency 𝑣𝑖. 𝑖 = 1,… ,𝑀 indicates
he length of spectrum. �̄� =

∑𝑀
𝑖=1 𝑥𝑖
𝑀 is the average amplitude, and

𝑠 =

√

∑𝑀
𝑖=1(𝑥𝑖−�̄�)

2

𝑀−1 is the standard deviation of 𝑥.
The 𝐴𝑡 value is an index recommended by MTR. 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑆𝐹𝑀 ,

and 𝑆𝐻 are three statistics in spectral analysis. The other 9 statisti-
al parameters are recommended by Shen et al. (2013) in vibration
nalysis.

ppendix B. Supplementary materials

Codes for the UR-EWMA and LR-EWMA charts are available on
itHub https://github.com/wyfwzz/Rank-EWMA-chart.
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