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Optimized control charts using indifference regions

Alex Kuiper and Rob Goedhart

Department of Business Analytics, Amsterdam Business School, University of Amsterdam, Amsterdam, The Netherlands

ABSTRACT
In statistical process monitoring, the CUSUM and EWMA control charts have received consid-
erable attention because of their remarkable ability to detect small sustained shifts. In prac-
tice, small process variation and shifts are anticipated beforehand in many processes, so the
focus should be on detecting a moderate to a large shift. The aforementioned charts iden-
tify minor changes in population parameters as out-of-control scenarios; thus, “small” and
potentially practically insignificant shifts are producing signals. To counteract this, both
charts are amended to accommodate an indifference region by optimizing the detection of
a shift at the outer boundaries of the indifference region. The results show that the adapted
CUSUM and EWMA monitoring schemes yield comparable results. On nearly all occasions,
the CUSUM chart outperforms the EWMA chart, yet the EWMA chart seems more robust
and is easier to interpret. Furthermore, we provide two practical examples to illustrate the
use-case of optimized charts to mitigate small (unimportant) variations, such as seasonality
and modest temporary shifts. Overall, this work provides a general approach tailored to
practice in quality control, e.g., as prescribed by ISO standards. It also answers a recent call
in statistical process monitoring literature to reconsider the design of control charts.
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average run length; control
charts; CUSUM chart; EWMA
chart; indifference region;
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1. Introduction

Control charts are commonly used tools in statistical
process monitoring (SPM). These charts aim to detect
changes (e.g., shifts) or incidents in processes as a
result of special causes. These changes are often eval-
uated in terms of shifts from some in-control process
parameter, such as the mean or standard deviation.
The aim is to detect such a shift as quickly as possible,
which has been the starting point for a rich literature
proposing various methods. For an overview of cur-
rent directions in theory and applications of SPM, we
refer to Woodall and Montgomery (2014).

The common practice for designing a control chart
is to start with defining or modeling the in-control
process behavior. For example, assuming normally
distributed data, this can be done by estimating the
in-control mean l0 and standard deviation r0. When
monitoring the mean of a variable, the process is typ-
ically considered out-of-control in the literature when
the current process mean l ¼ l0 þ dr0=

ffiffiffi
n

p
is unequal

to l0 (equivalently d 6¼ 0), where d represents the shift
size and n, is the subgroup size. Control charts are

typically designed to satisfy a specified false alarm rate
(average run length) as long as the process is in con-
trol, which we denote as FAR0 (ARL0). Depending on
the type of control chart, there may be options to
tune the out-of-control performance to detect shifts of
a specified size d more quickly. However, for any
value of l other than l0, the process is usually consid-
ered out of control.

Recently, it has been questioned to reconsider this
paradigm as it might misfit practice, for example,
when applied in industry (Woodall and Faltin 2019).
In their discussions, the authors appeal to amend the
control chart design by using an in-control region in
which a slight shift should not always be considered
an out-of-control situation. They provide examples
and explanations of when and why this approach
would be beneficial.

The approach of using an indifference region has
also received attention in the past, as can be found in
Ewan and Kemp (1960); Freund (1957, 1960);
Woodall (1985, 1986); Yashchin (1985, 2018), amongst
others. The returning underlying motivation is that
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many assignable causes may lead to real but small
process changes that may not be important to prac-
tice. For example, many processes contain minor sea-
sonal influences or other day-to-day variations (e.g.,
different operators) that cause small (temporal) shifts
in the process parameters. These effects may not be
part of, or go unnoticed in a Phase I study. For
example, this can occur when the considered time
period is too short to incorporate seasonal patterns or
when an estimator cannot completely capture this
information. These issues can also be caused by over-
dispersion, as discussed in Goedhart and Woodall
(2022). Furthermore, suppose the variation is small
relative to the process specification limits and is tem-
poral (such as for seasonal variation). In that case, it
may be desirable to have an approach that can disre-
gard these types of shifts that normally would cause
signals. Acting upon these irrelevant signals even
aggravates process variation—a phenomenon that is
called overadjustment.

Related to this framework are the complementary
concepts of statistical and practical significance in
control charts. A statistically significant result does
not necessarily imply practical importance. For similar
discussions in a hypothesis framework, see for
example Wasserstein and Lazar (2016), Snee and
Hoerl (2018), Woodall and Faltin (2019), and Blume
et al. (2019). The consideration of using indifference
regions also resonates with the international standard
as prescribed by the International Organization for
Standardization (ISO 2020). In this specific standard,
the use of acceptance control charts (Freund 1957) is
recommended, which exhibits a region wherein the
user is indifferent about the chart’s performance. An
illustration of this is provided in Figure 1. In the

figure, three regions centered around the target level
are distinguished:

1. The rejectable (out-of-control) region, which is
outside the upper and lower Rejectable Process
Limit (RPL).

2. The indifference region, which is between the
Acceptable Process Limit (APL) and the RPL.

3. The acceptable (in-control) region, which is
between the upper and lower APL. Within this
region, the target or l0 (center line) is indicated
by the “4” in the middle.

Note that the displayed regions relate to limits for
individual observations. However, as mentioned in the
standard (ISO 2020), the focus is on process accept-
ability rather than product disposition, and the limits
are to be determined accordingly. The consequence is
that the in-control situation is no longer considered a
single value of the process metric of interest but an
interval. This is the essence of the three-region
approach discussed by Woodall and Faltin (2019).
Such an approach qualifies for situations where the
variation in the process can be tolerated to a larger
extent, for example, when the specification limits are
much wider than typical process variation. For this
purpose, Woodall and Faltin (2019) illustrate how this
paradigm can be accommodated by a cumulative sum
(CUSUM) chart.

Performance comparisons of various control charts
in different regimes have been fertile research ground,
e.g., Srivastava and Wu (1993); Hawkins and Wu
(2014); Diko, Goedhart, and Does (2020). As an
extension of this line of research, we demonstrate how
the CUSUM, EWMA, and Shewhart control charts
can be designed and optimized using indifference
regions and compare their performance for various
scenarios.

The paper is organized as follows. In Section 2, we
outline the control charts considered, the objectives,
and the notation. In Section 3, we evaluate and com-
pare the performance and robustness of the optimized
control charts for various indifference regions in dif-
ferent scenarios. Next, a discussion is provided in
Section 4, followed by two examples in Section 5 that
demonstrate its value to practice. Finally, we conclude
in Section 6.

2. Definitions and monitoring schemes

In this section, we outline the Shewhart, CUSUM, and
EWMA control charts and submit them to the

Figure 1. The theoretical setting of an indifference region
(white); process variation manifests itself vertically. The upper
and lower APL demarcate the acceptable region for the under-
lying process, with the center line (dashed) indicating the tar-
get value. The two RPL lines demarcate the boundaries
whereafter it is rejectable. Figure inspired by ISO 7870-3:2020.
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indifference region approach. We consider two-sided
Phase II control charts to monitor a process for which
observations Xij are obtained each time period i in
subgroups of size n, with j ¼ 1, :::, n: The Xij are
assumed to follow a normal distribution with mean
l0 þ dr0=

ffiffiffi
n

p
and standard deviation r0, where d rep-

resents the (standardized) size of a possible shift, and
where l0 and r0 are assumed to be known following a
Phase I study. We refer to Jones-Farmer et al. (2014)
for an overview of Phase I analysis for process
improvement and control. Note that d¼ 0 means that
the process is typically considered in-control.

Throughout we consider the standardized variables
Zi ¼

ffiffiffi
n

p ð�Xi � l0Þ=r0, where �Xi ¼ 1
n

Pn
j¼1 Xij: Note

that Zi follows a standard normal distribution for d¼ 0
and a Nðd, 1Þ distribution for d 6¼ 0: If the in-control
Xij are not normally distributed, the well-known Box-
Cox approach (for a comprehensive overview, see Sakia
(1992)), or the approach of Chou, Polansky, and
Mason (1998) using a Johnson transformation can be
used to achieve (approximate) normality of these data.
Evidently, transformations should be used with care;
see, for example, the work by Khakifirooz, Tercero-
G�omez, and Woodall (2021), who show that outliers
can be masked in Phase I if transformations are used.
Santiago and Smith (2013) showed clear shortcomings
when using a transformation to normality when data
stems from the exponential distribution.

2.1. Indifference regions and optimization
framework

In Phase II, the monitoring phase, the process mean
equals l ¼ l0 þ dr0=

ffiffiffi
n

p
: In most applications, the

process is considered out-of-control for any value of
d 6¼ 0, which is different when using indifference
regions. In particular, when considering the use of an
in-control region as discussed in Woodall and Faltin
(2019) and in the ISO standard (see Figure 1), a
region is determined for which the process is consid-
ered in-control, even when l 6¼ l0: In the case of a
two-sided control chart for detecting an increase or
decrease in the process mean, the indifference region
approach could be described as follows:

� The in-control region, 0 � jdj � d0, where d0 is
the acceptable (standardized) shift size (worst
acceptable).

� The indifference region: d0 < jdj � d1, with d1 the
shift size desired to be detected quickly (best
unacceptable).

� The out-of-control region: jdj > d1:

Comparing this set-up to that of Figure 1, then we
observe that d0 ¼ APLU � l0 ¼ l0 � APLL and d1 ¼
RPLU � l0 ¼ l0 � RPLL : So, both d0 and d1 are to be
determined based on the practitioner’s knowledge of
which shifts are practical significance in the process.
After this, choices need to be made on the desired
properties of the control chart. Woodall and Faltin
(2019) implement this three-region approach by
adjusting the CUSUM chart to match the performance
of the classical Shewhart control chart with standard
limits at a given level d ¼ d0:

In this paper, we adapt this approach by adjusting
the control charts to match a pre-specified in-control
value ARL0 when d ¼ d0: Then, we optimize the out-
of-control performance to detect shifts of size d ¼ d1
as quickly as possible. These two goals set the parame-
ters of the CUSUM and EWMA control charts. Note
that the Shewhart control chart depends on only one
parameter, such that the value of ARL0 dictates both
the in-control and out-of-control performance dir-
ectly; there is no optimization step.

2.2. Shewhart control chart

The standard Shewhart control chart comprises an
upper control limit (UCL) and a lower control limit
(LCL). It depends on a single parameter (the control
limit constant) which we denote as LS. The charting
statistic for the Shewhart control chart equals Zi, and
the UCL and LCL equal LS and �LS, respectively. A
signal is provided if the charting statistic is above the
UCL or below the LCL. A common choice for the
control limit constant is LS ¼ 3, which yields a false
alarm rate (FAR0) of 0.0027 or, equivalently, an
in-control average run length (ARL0) of 370.4. Since
ARL0 ¼ 1=FAR0 for the Shewhart control chart, the
required value of LS when using indifference regions
as described in Section 2.1 is found by solving the fol-
lowing equation:

1=ARL0 ¼ 1� PðLCL < Zi < UCLÞ
¼ 1� UðLs � d0Þ þ Uð�Ls � d0Þ, (1)

where UðXÞ is the standard normal cumulative distri-
bution function, and where Zi � Nðd0, 1Þ:

2.3. The CUSUM control chart

The CUSUM control chart was originally introduced
by Page (1954). In this paper, we consider the stand-
ardized CUSUM chart as described by Montgomery
(2020), which consists of two charting statistics,
namely:
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Cþ
i ¼ maxð0,Cþ

i�1 þ Zi � kÞ;
C�
i ¼ minð0,C�

i�1 þ Zi þ kÞ, (2)

where Cþ
0 ¼ C�

0 ¼ 0 and k> 0 represents a reference
value. A signal is given if Cþ

i > LC or C�
i < �LC,

where LC represents the control limit constant for the
CUSUM chart.

The CUSUM chart is thus based on two parame-
ters, the reference value k and the control limit con-
stant LC. The optimal reference value k to detect a
shift of size d1 has been proven to be k ¼ d1=2, see
for example Woodall (1986); Woodall and Adams
(1993). The value of LC can then be chosen to provide
a specified value of ARL0:

When considering the indifference region
approach, note that an increasing shift toward d ¼ d1
can be viewed as a shift of size ðd1 � d0Þ from the tar-
get value d0, for which the optimal value of k would
be k ¼ ðd1 � d0Þ=2: The same holds, of course, for a
decreasing shift from the target value �d0 to �d1:
This was also pointed out by Woodall and Faltin
(2019), and can be incorporated as a target value in
Equation (2) as follows:

Cþ
i ¼ maxð0,Cþ

i�1 þ Zi � ðd0 þ kÞÞ;
C�
i ¼ minð0,C�

i�1 þ Zi þ ðd0 þ kÞÞ, (3)

Since d0 þ k ¼ d0 þ ðd1 � d0Þ=2 ¼ ðd1 þ d0Þ=2, the
optimal CUSUM chart when using our indifference
region approach is equivalent to using k ¼ ðd1 þ
d0Þ=2 in the standard CUSUM of Equation (2). The
parameter LC can then be tuned to match the speci-
fied ARL0 for d ¼ d0, which can be found using the
approaches implemented in R by Knoth (2014).

2.4. The EWMA control chart

The EWMA control chart was introduced by Roberts
(1959) as an alternative to the standard Shewhart con-
trol chart to be more capable of detecting small shifts.
To do so, the charting statistic of the EWMA control
chart (denoted as Yi) takes a weighted average of the
new observation and past performance and can be
denoted as follows:

Yi ¼ ð1� kÞYi�1 þ kZi, (4)

where 0 < k < 1 represents the weight given to the
most recent observation, and where Y0 ¼ 0: A signal
is given when

Yij j > LE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� k
1� ð1� kÞ2i
� �r

, (5)

where LE represents the control chart constant for the
EWMA control chart.

Two parameters have to be chosen for the design
of an EWMA monitoring scheme, namely k and LE.
Note that when k¼ 1, the EWMA chart is equivalent
to the Shewhart control chart; for more details, see
the seminal work by Lucas and Saccucci (1990).
Typically, smaller values of k are used when focusing
on detecting minor shifts. However, contrary to the
CUSUM control chart, there is no closed-form solu-
tion for the optimal value for either of the two param-
eters of the EWMA control chart. Montgomery (2020)
found that values for k in the interval 0:05 � k � 0:25
work well in practice, while also mentioning that val-
ues 0.05 and 0.1 with appropriate control limits per-
form very well for both normal and non-normal
distributions.

An optimization variant of the EWMA chart has
been studied in Aparisi and Garc�ıa-D�ıaz (2007). First,
they set several criteria—either predetermined or
found via using a Taguchi loss function—on the in-
control performance, possibly using an asymmetric
indifference region. Next, they employ a genetic algo-
rithm to optimize the EWMA chart while meeting the
criteria at the outer ends of the in-control region. Our
approach does not require the use of such a meta-
heuristic. It directly searches for the quickest detection
of (out-of-control) shifts of a particular size d1 while
ensuring a specific in-control performance ARL0 at d0,
which determines the two parameters k and LE. To do
so, similar to Hawkins and Wu (2014), we apply a
grid search to determine the optimal combination of
parameters for the chosen settings of ARL0, d0, and
d1. We use the approaches implemented in R by
Knoth (2014) for this part. Furthermore, to make the
comparison with the CUSUM control chart fairer, we
henceforth take the steady-state limits that are
obtained when i ! 1 in Equation (5), which means a

signal is only produced if Yij j > LE
ffiffiffiffiffiffi
k

2�k

q
:

3. Comparing Shewhart, CUSUM and EWMA
control charts

In the previous section, we outlined the methodology
for adapting the Shewhart control chart and optimizing
the EWMA and CUSUM monitoring schemes to
incorporate the indifference region approach. Under
these optimized settings for the different control chart-
ing schemes, we again use the routines provided by
Knoth (2014) in R to compute the corresponding
ARLs. We compare the various monitoring schemes in
an extensive head-to-head comparison, considering the
ARLs to detect an out-of-control shift. We also provide
and discuss the optimal parameter values for the
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control chart designs. Subsequently, we will consider
some robustness checks: zero-state versus steady-state
performance in Section 3.2; dependency of the
approach on Phase I estimates in Section 3.3; and
finally, the impact of non-normality in Section 3.4.

3.1. Performance evaluation

For our evaluation we start with d0 equal to 0 (only
an in-control point), and also consider d0 equal to 0.5,
1, and 2. For the out-of-control situations, we con-
sider a tiny (d1 ¼ d0 þ 0:5), small (d1 ¼ d0 þ 1),
medium (d1 ¼ d0 þ 2), large (d1 ¼ d0 þ 3), and a very
large (d1 ¼ d0 þ 4) shift. All charts are adjusted to
yield a pre-specified value of ARL0 when d ¼ d0,
where we considered ARL0 ¼ 100 and ARL0 ¼ 500 to
use a smaller and larger value for comparison
purposes.

In Tables 1 and 2, we list the parameter values
obtained from the calculations described in Section 2
for the three control charts considered for ARL0 ¼
100 and ARL0 ¼ 500, respectively. For the Shewhart
chart, a higher value of d0 obviously leads to a larger
value of LS. For the CUSUM chart, a larger value of
d0 comes with a larger value of k but a lower LC, rap-
idly decreasing when d1 increases. Moreover, the LC
parameter is hardly affected by an increase in d0 when
d0 � 0:5: To be specific, we observe similar patterns
in the LC values of d0 with equal size of the indiffer-
ence region d1 � d0; e.g., LC ¼ 4:419, 4.418, and 4.418
for pairs ðd0, d1Þ ¼ ð0:5, 1Þ, ð1, 1:5Þ, and ð2, 2:5Þ,
respectively.

To provide some intuition on this pattern, note that
a unit increase of d0 when d0 is already large increases
the limits of the Shewhart with the same size. For
example, considering the cases d0 ¼ 1 and d0 ¼ 2, the
values of LS are 3.327 and 4.326, respectively. For the
CUSUM chart, this change is incorporated in the value
k. For example, when d0 increases from 1 to 2, k jumps
by 1 while the LC values remain the same. This is
because the charts essentially become one-sided for
large jd0j: Focusing on the EWMA control chart, the
optimal parameter patterns are more convoluted
because of Equation (5). Larger d0 values result in
larger values of k and LE. The LE values increase in d1
when d0 ¼ 0, whereas when d0 6¼ 0, LE decreases if d1
increases. Finally, when d1 increases, the EWMA con-
trol chart’s parameters converge to its Shewhart coun-
terpart, i.e., k close to 1 and LE ¼ LS, echoing the
literature that has acknowledged the excellent capability
of a Shewhart control chart to detect large shifts.

From a computational point of view, note that all
optimizations were performed by relying on a stand-
ard grid search of ARL-computation functions of
Knoth (2014). However, we found that a small modifi-
cation was needed in two settings. To be precise, in
the case of d0 ¼ 2 and d1 ¼ 2:5 for ARL0 ¼ 100 and
ARL0 ¼ 500 the grid search had to be adjusted,
bounded from below to circumvent it to generate
unrealistic parameter combinations or errors. The
bounds can easily be retrieved from neighboring set-
tings. Second, in these cases, we also had to increase
the number of nodes for the Gauss-Legendre quadra-
ture underlying the Nystroem method to solve the
related ARL integral equation; in these cases, they

Table 1. Shewhart, CUSUM, and EWMA control chart parame-
ters for ARL0 ¼ 100:

Shewhart
CUSUM EWMA

d 0 d1 LS k LC k LE
0 0.5 0.250 5.597 0.066 1.994

1 0.500 3.502 0.183 2.336
2 2.576 1.000 1.874 0.493 2.532
3 1.500 1.131 0.788 2.570
4 2.000 0.582 0.942 2.575

0.5 1 0.750 4.419 0.213 3.466
1.5 1.000 2.852 0.360 3.250
2.5 2.842 1.500 1.543 0.704 2.986
3.5 2.000 0.876 0.959 2.860
4.5 2.500 0.345 1.000 2.842

1 1.5 1.250 4.418 0.261 4.660
2 1.500 2.849 0.422 4.149
3 3.327 2.000 1.532 0.803 3.535
4 2.500 0.861 1.000 3.327
5 3.000 0.329 1.000 3.327

2 2.5 2.250 4.418 0.310 6.798
3 2.500 2.849 0.487 5.766
4 4.326 3.000 1.532 0.937 4.454
5 3.500 0.860 1.000 4.326
6 4.000 0.329 1.000 4.326

Table 2. Shewhart, CUSUM, and EWMA control chart parame-
ters for ARL0 ¼ 500:

Shewhart CUSUM EWMA

d 0 d1 LS k LC k LE
0 0.5 0.250 8.585 0.047 2.594

1 0.500 5.071 0.134 2.883
2 3.090 1.000 2.665 0.365 3.045
3 1.500 1.708 0.676 3.085
4 2.000 1.110 0.886 3.090

0.5 1 0.750 7.267 0.118 4.568
1.5 1.000 4.389 0.238 4.106
2.5 3.386 1.500 2.326 0.505 3.710
3.5 2.000 1.473 0.832 3.472
4.5 2.500 0.900 1.000 3.386

1 1.5 1.250 7.267 0.140 6.261
2 1.500 4.389 0.274 5.281
3 3.878 2.000 2.323 0.553 4.473
4 2.500 1.467 0.912 3.970
5 3.000 0.892 1.000 3.878

2 2.5 2.250 7.267 0.163 9.378
3 2.500 4.389 0.312 7.439
4 4.878 3.000 2.323 0.608 5.888
5 3.500 1.466 1.000 4.878
6 4.000 0.892 1.000 4.878
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were increased to 120, whereas in all other experi-
ments, 40 were already sufficient.

In the Tables 3, 4, 5, and 6 the ARL values are
obtained by using the control chart schemes as pro-
posed in this paper. They are generated by setting
ARL0 ¼ 500 at various d0 levels (d0 equal to 0, 0.5, 1,
and 2, respectively). For clarity, the settings used to
optimize the control charting schemes (i.e., the
required ARL0 at d0 and the detection of a shift of
size d1) are displayed in bold type in reported per-
formance across all tables. Note also that the choice of
d1 does not impact the Shewhart chart, as it has only
one parameter (LS). Note that the performance differ-
ence between the optimized CUSUM and the EWMA
control charts is typically small, and a CUSUM con-
trol chart generally outperforms the EWMA chart.

Specifically, in Table 3 (d0 ¼ 0), we observe that
the EWMA control chart yields better performance
when d1 ¼ 0:5: But for d1 ¼ 1, its performance of
detecting a larger shift size deteriorates as reflected by
the out-of-control ARL scores to supersede the
CUSUM counterparts. For d0 > 0, as exhibited by
Tables 4, 5, and 6, the CUSUM control chart outper-
forms the EWMA chart uniformly, both for which
they are designed to detect (the values in bold type)
and the even larger (out-of-control) shift sizes.
However, considering the in-control performance
(d < d0), the EWMA chart is favored because of the
higher ARLs when the process is in control. The
results when evaluating the same scenarios for
ARL0 ¼ 100 using the settings of Table 1 are consist-
ent with the ones presented in the tables for ARL0 ¼
500; therefore, these experiments are not included.

3.2. Steady-State performance

Concerning the latter, in Table 7, we evaluated the in-
control ARLs of the corresponding charts in the

steady state. By design, these ARLs should have a
zero-state average run length near either ARL0 ¼ 100
or ARL0 ¼ 500: Except in the cases of no acceptable
region and the interest for small shifts (d0 ¼ 0 and
d1 ¼ 0:5 or 1) the differences are negligible.
Furthermore, when either d0 or d1 increase, the
steady-state and zero-state ARLs come closer together
for both control charting schemes.

3.3. Dependency on Phase I estimates

Another critical concern is related to our procedure of
optimizing the CUSUM or EWMA control chart. In
our optimization attempts, we find the parameters that
result in a specific performance on a particular shift
(l ¼ l0 þ d0r0) while it is optimized to detect another,
higher shift (l0 þ d1r0); both are in terms of several
standard deviations r0 of the mean l0: Thus, the
framework presumes knowledge of l0 and r0, whereas
in practice the true values are hardly available. There
are different approaches possible to deal with this,
where we will focus on two. One approach is to set
pre-determined values of d0 and d1, and adjust the
three regions based on the Phase I estimates. This is
done in Section 3.3.1. Another approach is to use more
practically informed limits where the three regions are
fixed and where d0 and d1 are determined after Phase I
estimation. This will be studied in Section 3.3.2.

3.3.1. Fixed design parameters (d0 and d1)
Naturally, in a Phase I study, l0 and r0 are estimated.
So, for determined values d0 and d1 the uncertainty in
the parameters affects the position of the indifference
region and corresponding limits. As an illustration,
consider without loss of generality a standard normal
process (i.e., l0 ¼ 0 and r0 ¼ 1) with d0 ¼ 1 and
d1 ¼ 3: In Figure 2, we illustrate these values in the
case of known parameters on the left-hand side. In
practice, we have to adapt our procedures to account
for the process to be estimated at a different level,
using l̂0, and to account for a different variation r̂0:

For example, while an actual mean shift of d0 stand-
ard deviations would be a Phase II mean of l ¼ d0,
our estimate of this shift size would be a mean of l̂ ¼
d0 � l̂0: More importantly, it also entails that the per-
formance for shifts of d and �d is no longer identical.
Therefore, in the case of estimated parameters, we
evaluate the control chart performance for the shift
furthest away from our estimated mean.

For implementation in R (with random seed 1), we
evaluate the performance using estimated parameters
by generating samples of sizes m from a Nð0, 1Þ

Table 3. ARL values for ARL0 ¼ 500 and d0 ¼ 0:
d1 ¼ 0:5 d1 ¼ 1 d1 ¼ 2 d1 ¼ 3

d Shewhart CUSUM EWMA CUSUM EWMA CUSUM EWMA CUSUM EWMA

0 500 500 500 500 500 500 500 500 500
0.5 202 31.1 28.8 38.9 34.3 81.4 65.4 140 124
1 54.6 12.2 11.5 10.5 10.2 14.7 13.4 27.2 25.8
1.5 17.9 7.58 7.22 5.82 5.77 5.75 5.72 8.23 8.57
2 7.26 5.55 5.32 4.06 4.07 3.41 3.51 3.89 4.15
2.5 3.60 4.41 4.24 3.15 3.18 2.45 2.57 2.44 2.58
3 2.15 3.69 3.56 2.60 2.64 1.94 2.06 1.79 1.86
3.5 1.52 3.19 3.10 2.25 2.28 1.62 1.74 1.44 1.47
4 1.22 2.84 2.75 2.03 2.06 1.38 1.49 1.22 1.24
4.5 1.09 2.53 2.44 1.88 1.92 1.20 1.29 1.10 1.11
5 1.03 2.26 2.19 1.72 1.78 1.09 1.15 1.04 1.04
5.5 1.01 2.09 2.06 1.53 1.61 1.03 1.06 1.01 1.01
6 1.00 2.02 2.01 1.33 1.41 1.01 1.02 1.00 1.00

Bold values highlight the design values d0 and d1.
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distribution. We use the sample average (�X) and
standard deviation (s) to estimate l̂0 ¼ �X and r̂0 ¼
s=c4ðmÞ: Note that the constant c4ðmÞ is often used to
obtain an unbiased estimate of r0. Next, note that the
distance between the original indifference lines
(d0 and �d0) to the center line of the estimated con-
trol charts is equal to jl̂0 � d0j and jl̂0 þ d0j, which
are not identical (unless l̂0 equals 0). The maximum
distance is thus equal to jl̂0j þ d0: Since part of the

objective is to constitute a specified ARL (ARL0) for a
shift of size d0 on either side, we choose to use the
maximum distance as shift size in our evaluation. The
ARL on the other side (smallest distance) will be
larger, so the considered ARL values can be viewed as
the minimum ARL for shifts d0 or �d0 when parame-
ters are estimated.

In addition, the estimation of r0 needs to be incor-
porated; remark the larger bandwidth (r̂0 > r0) on

Table 4. ARL values for ARL0 ¼ 500 and d0 ¼ 0:5:
d1 ¼ 1 d1 ¼ 1:5 d1 ¼ 2:5 d1 ¼ 3:5

d Shewhart CUSUM EWMA CUSUM EWMA CUSUM EWMA CUSUM EWMA

0 1Eþ 03 1Eþ 05 3Eþ 05 2Eþ 04 3Eþ 04 3Eþ 03 5Eþ 03 2Eþ 03 2Eþ 03
0.5 500 500 500 500 500 500 500 500 500
1 117 25.9 29.9 30.9 34.4 56.1 55.6 88.9 92.7
1.5 33.8 10.4 11.8 9.2 10.4 12.2 13.4 20.4 23.9
2 12.1 6.53 7.45 5.14 5.81 5.08 5.75 6.94 8.61
2.5 5.33 4.80 5.51 3.60 4.08 3.07 3.47 3.45 4.15
3 2.86 3.83 4.42 2.81 3.19 2.22 2.51 2.21 2.50
3.5 1.83 3.21 3.71 2.34 2.65 1.76 1.99 1.64 1.76
4 1.37 2.78 3.23 2.05 2.29 1.46 1.67 1.33 1.38
4.5 1.15 2.45 2.89 1.85 2.07 1.25 1.42 1.16 1.18
5 1.06 2.19 2.59 1.66 1.94 1.12 1.23 1.06 1.07
5.5 1.02 2.05 2.31 1.46 1.80 1.05 1.11 1.02 1.02
6 1.00 1.99 2.11 1.27 1.63 1.01 1.04 1.01 1.01

Bold values highlight the design values d0 and d1.

Table 5. ARL values for ARL0 ¼ 500 and d0 ¼ 1:
d1 ¼ 1:5 d1 ¼ 2 d1 ¼ 3 d1 ¼ 4

d Shewhart CUSUM EWMA CUSUM EWMA CUSUM EWMA CUSUM EWMA

0 1Eþ 04 2Eþ 08 5Eþ 09 2Eþ 06 8Eþ 06 4Eþ 04 1Eþ 05 1Eþ 04 1Eþ 04
0.5 3Eþ 03 3Eþ 05 3Eþ 05 3Eþ 04 4Eþ 04 6Eþ 03 8Eþ 03 3Eþ 03 3Eþ 03
1 500 500 500 500 500 500 500 500 500
1.5 115 25.9 32.6 30.9 37.7 55.9 60.6 87.8 102
2 33.1 10.4 13.1 9.16 11.3 12.2 14.7 20.2 27.8
2.5 11.9 6.53 8.38 5.14 6.32 5.08 6.22 6.91 9.98
3 5.27 4.80 6.27 3.60 4.45 3.07 3.70 3.44 4.62
3.5 2.84 3.83 5.07 2.81 3.49 2.22 2.66 2.20 2.65
4 1.82 3.21 4.28 2.34 2.91 1.75 2.11 1.64 1.80
4.5 1.36 2.78 3.73 2.05 2.51 1.46 1.77 1.33 1.38
5 1.15 2.45 3.31 1.85 2.22 1.25 1.52 1.16 1.17
5.5 1.06 2.19 3.03 1.66 2.06 1.12 1.31 1.06 1.07
6 1.02 2.05 2.81 1.46 1.97 1.05 1.16 1.02 1.02

Bold values highlight the design values d0 and d1.

Table 6. ARL values for ARL0 ¼ 500 and d0 ¼ 2:
d1 ¼ 2:5 d1 ¼ 3 d1 ¼ 4 d1 ¼ 5

d Shewhart CUSUM EWMA CUSUM EWMA CUSUM EWMA CUSUM EWMA

0 9Eþ 05 9Eþ 14 4Eþ 15 2Eþ 10 1Eþ 13 9Eþ 06 3Eþ 08 1Eþ 06 9Eþ 05
0.5 2Eþ 05 8Eþ 11 1Eþ 14 4Eþ 08 6Eþ 09 1Eþ 06 7Eþ 06 2Eþ 05 2Eþ 05
1 2Eþ 04 4Eþ 08 1Eþ 09 3Eþ 06 7Eþ 06 9Eþ 04 2Eþ 05 3Eþ 04 2Eþ 04
1.5 3Eþ 03 3Eþ 05 2Eþ 05 3Eþ 04 3Eþ 04 6Eþ 03 7Eþ 03 3Eþ 03 3Eþ 03
2 500 500 500 500 500 500 500 500 500
2.5 115 25.9 35.5 30.9 41.5 55.9 66.5 87.8 115
3 33.1 10.4 14.7 9.2 12.5 12.2 16.4 20.2 33.1
3.5 11.89 6.53 9.64 5.14 6.98 5.08 6.83 6.91 11.89
4 5.27 4.80 7.37 3.60 4.97 3.07 4.01 3.44 5.26
4.5 2.84 3.83 6.04 2.81 3.94 2.22 2.87 2.20 2.84
5 1.82 3.21 5.16 2.34 3.32 1.75 2.29 1.64 1.82
5.5 1.36 2.78 4.53 2.05 2.89 1.46 1.94 1.33 1.36
6 1.15 2.45 4.06 1.85 2.56 1.25 1.69 1.16 1.15

Bold values highlight the design values d0 and d1.
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the right side of Figure 2. For the three charts under
consideration, the following adjustments are made (cf.
Section 2, where r0 � 1):

� L̂S ¼ LSr̂0 for the Shewhart chart;
� L̂C ¼ LCr̂0, and k̂ ¼ kr̂0 ¼ d0þd1

2

� �
r̂0 for the

CUSUM chart;
� and L̂E ¼ LEr̂0 for the EWMA chart.

We evaluate the ARL performance conditional on
Phase I estimates using these adjusted parameters. For
several Phase I sample sizes m, we generate 10,000
simulated samples, which are used to obtain 10,000
conditional ARL values. In addition, the scenarios (in
terms of d0 and d1) are varied. The results are sum-
marized in Table 8, which reports the average condi-
tional ARL (AARL) and the standard deviation of the
conditional ARLs (SDARL) for each setting.

In Table 8, we vary the sample size m and study
the dependency of our framework on Phase I esti-
mates by reporting the AARL and SDARL values.
Indeed, when m is low, we find that the ARLs are
more volatile, as SDARLs are larger and AARLs vary
more for different values of d0. As expected, when m
increases, the values become more accurate, and the
SDARL decreases. Moreover, the EWMA chart seems
to mitigate the Phase I uncertainty better than the
CUSUM control chart, as observed by the lower
SDARLs values. A possible explanation for the worse
CUSUM chart performance is that the uncertainty
around r0 is directly affecting both the control limits

(via L̂C) and the charting statistic (via k̂), whereas for
the EWMA and Shewhart control charts it only affects

the control limit—L̂E and L̂S, respectively—but not
the charting statistic. Zooming in on their performan-
ces, we find that the EWMA chart is more robust
when d0 is small, i.e., below 1.

Still, we observe that for higher d0 values, i.e., the
values at which we fix the ARL0 performance (here to
100), the problem is more persistent. So, using these

Table 7. Average steady-state run lengths of the in-control
(zero-state) CUSUM and EWMA control charts, wherein the
ARL0 ¼ 100 and ARL0 ¼ 500 are set for the d0 and are opti-
mized for detection of a shift of size d1, see Tables 1 and 2).

Setting ARL0 ¼ 100 ARL0 ¼ 500

d0 d1 CUSUM EWMA CUSUM EWMA

0.5 91.1 93.5 473 485
1 96.4 97.0 490 494

0 2 99.1 99.1 498 498
3 99.8 99.8 500 500
4 100 100 500 500
1 98.8 99.4 493 499
1.5 99.3 99.5 497 499

0.5 2.5 99.8 99.8 499 500
3.5 100 100 500 500
4.5 100 100 500 500
1.5 99.6 99.8 494 500
2 99.8 99.8 498 500

1 3 100 99.9 500 500
4 100 100 500 500
5 100 100 500 500
2.5 99.8 99.9 494 500
3 99.9 99.9 498 500

2 4 100 100 500 500
5 100 100 500 500
6 100 100 500 500

Figure 2. Dependency of the framework on Phase I estimates, used in the computation of the AARL and SDARL metrics; in this
example d0 ¼ 1 and d1 ¼ 3 (l0 ¼ 0 and r0 ¼ 1).
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methods only in cases with sufficient data is advisable
to ensure sufficiently accurate estimates of l0 and r0,
say around m¼ 500 observations when d0 ¼ 2: This
might feel restrictive, but considering the use-case of
an (optimized) indifference region, one likely has
extensive track records when considering such an
approach.

As an additional analysis of the effects of parameter
estimation, we evaluate the out-of-control AARL and
SDARL for one specific set of parameters
(ARL0 ¼ 100, d0 ¼ 1, and d1 ¼ 2). These results are
shown in Table 9, where we also included the respect-
ive in-control (d¼ 1, cf. Table 8) AARL and SDARL
as well as the case of known parameters m ¼ 1: We
observe that the differences in AARL for varying sam-
ple sizes are small, as all AARL values are comparable
to the case of m ¼ 1: The main difference is in the
SDARL values. As anticipated, the SDARL decreases
when the sample or shift size increases.

3.3.2. Fixed indifference regions
So far, we studied the effect of Phase I estimates by
adjusting the indifference regions using these esti-
mates. It demonstrates the impact of estimation error
when we have pre-determined values for d0 and d1.
This helps to understand how Phase I uncertainty
impacts the performance and therefore helps the
reader decide their d0 and d1 when parameters are
estimated.

Note that in practice, it might be wise for a practi-
tioner to compensate a larger estimate of r0 by

choosing a smaller value of d0. An alternative angle is
thus to keep a fixed indifference region, where the
choice of d0 and d1 are dependent on the Phase I esti-
mates. This approach is outlined in Figure 3, where
taking Phase I uncertainty into consideration leads to

estimating d̂0 and d̂1 to ensure the same indifference
region. So, after measuring l̂0 and r̂0 we establish

d̂0 ¼ d0r0
r̂0

and d̂1 ¼ d1r0
r̂0

: In the example displayed in

Figure 3, the upper limit of the indifference region is

equal to l0 þ 3, which results in d̂1 ¼ 3=r̂0: Similarly,

we would find d̂0 ¼ 1=r̂0:

Next, in a similar vein as in Section 3.3.1, we com-
pute the AARL and SDARL using this approach. The
corresponding tables, Table 10 for in-control and
Table 11 for out-of-control performances, show simi-
lar patterns as the study that has been carried out in
the previous section. In fact, we find that keeping the

indifference regions fixed, by choosing suitable d̂0 and

d̂1, counteracts the Phase I uncertainty to some

extent: a high/low r̂0 will decrease/increase d̂0 and

d̂1, yielding lower SDARL values in both tables. The
out-of-control performance also improves, as can be
observed by comparing Table 11 to Table 9. The
explanation is that by fixing the indifference region,

Table 8. The average (AARL) and standard deviation (SDARL)
over the in-control ARLs when applying Shewhart, CUSUM,
and EWMA control charts over different Phase I estimates,
where d1 ¼ d0 þ 1 and ARL0 ¼ 100 are fixed, but d0 and the
Phase I sample sizes m vary.

Shewhart CUSUM EWMA

Sample size d 0 AARL SDARL AARL SDARL AARL SDARL

0 113 69.5 101 53.9 94.6 42.4
0.5 98.5 64.4 86.5 61.5 84.5 55.0

m¼ 100 1 103 82.2 99.6 106 97.3 92.1
1.5 112 110 121 202 115 157
2 123 150 158 429 140 283
0 105 37.1 99.7 31.0 96.9 25.6
0.5 94.8 35.7 86.5 34.8 85.6 32.2

m¼ 250 1 96.1 42.4 91.0 48.7 90.8 44.9
1.5 99.0 51.3 97.3 68.1 96.5 60.5
2 102 61.7 106 96.4 103 80.9
0 102 24.8 99.7 21.2 98.2 17.8
0.5 94.9 24.5 88.6 24.4 88.1 22.9

m¼ 500 1 95.3 28.5 90.8 32.1 90.9 30.0
1.5 96.6 33.4 93.7 41.3 93.8 37.8
2 98.2 38.7 97.4 52.5 97.0 46.7
0 101 17.1 99.8 14.8 99.0 12.5
0.5 95.6 17.3 91.0 17.5 90.6 16.5

m¼ 1000 1 95.7 19.9 92.0 22.4 92.3 21.1
1.5 96.3 23.0 93.5 27.8 93.8 25.8
2 97.1 26.2 95.3 33.9 95.5 30.8

Table 9. The average (AARL) and standard deviation (SDARL)
over the ARLs when applying Shewhart, CUSUM, and EWMA
control charts over different Phase I estimates for different
shift sizes d, where d0 ¼ 1, d1 ¼ 2, and ARL0 ¼ 100 are fixed,
but the Phase I sample sizes m vary. The case m ¼ 1 repre-
sents the case of known parameters.

Shewhart CUSUM EWMA

Sample size d AARL SDARL AARL SDARL AARL SDARL

1 103 82.2 99.6 106 97.3 92.1
1.5 29.5 18.7 14.8 6.87 17.0 8.00

m¼ 100 2 10.6 5.21 5.70 1.30 6.68 1.67
2.5 4.76 1.75 3.43 0.51 3.99 0.63
3 2.61 0.68 2.49 0.29 2.89 0.34
1 96.1 42.4 91.0 48.7 90.8 44.9
1.5 28.2 10.2 14.8 3.96 16.8 4.59

m¼ 250 2 10.4 2.98 5.78 0.82 6.75 1.03
2.5 4.70 1.03 3.47 0.33 4.03 0.40
3 2.60 0.41 2.51 0.18 2.91 0.21
1 95.3 28.5 90.8 32.1 90.9 30.0
1.5 28.2 6.82 15.0 2.71 17.1 3.13

m¼ 500 2 10.4 2.01 5.86 0.57 6.84 0.72
2.5 4.73 0.70 3.51 0.23 4.07 0.28
3 2.62 0.28 2.53 0.13 2.93 0.15
1 95.7 19.9 92.0 22.4 92.3 21.1
1.5 28.3 4.84 15.2 1.96 17.3 2.26

m¼ 1000 2 10.5 1.43 5.92 0.41 6.90 0.52
2.5 4.76 0.50 3.53 0.17 4.09 0.20
3 2.63 0.20 2.54 0.09 2.95 0.11
1 100 – 100 – 100 –
1.5 29.5 – 16.1 – 18.2 –

m ¼ 1 2 10.8 – 6.11 – 7.11 –
2.5 4.90 – 3.60 – 4.17 –
3 2.69 – 2.58 – 2.98 –
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you already incorporate some prior knowledge about
the process in the determination of the control limits.

3.4. Impact of Non-Normality

In addition to parameter estimation, many other
aspects could be taken into account, such as the per-
formance of the optimized charts under different data
distributions. The EWMA control chart is known to
be more robust to non-normality than the Shewhart
control chart; see, for example, Borror, Montgomery,

and Runger (1999). To assess the impact of non-nor-
mality on optimized control charts, we expand our
experiments to cover some settings with skewed and
heavy-tailed data distributions. The package SPC does
not cover non-normal settings, so we resort to the
well-established Markov chain approach. This
approach is introduced to assess the performance of

Figure 3. Dependency of the framework on Phase I estimates when having a fixed indifference region. It is used in the computa-
tion of the AARL and SDARL metrics; in this example d0 ¼ 1 and d1 ¼ 3 (l0 ¼ 0 and r0 ¼ 1).

Table 10. The average (AARL) and standard deviation (SDARL)
over the in-control ARLs when applying Shewhart, CUSUM,
and EWMA control charts over different Phase I estimates,
where d1 ¼ d0 þ 1 and ARL0 ¼ 100 are fixed, but d0 and the
Phase I sample sizes m vary.

Shewhart CUSUM EWMA

Sample size d 0 AARL SDARL AARL SDARL AARL SDARL

0 114 72.1 99.1 52.3 92.9 41.3
0.5 93.8 52.0 76.9 36.2 75.9 32.9

m¼ 100 1 91.6 48.4 76.7 36.0 77.9 34.5
1.5 91.5 48.2 76.7 36.0 79.1 35.5
2 91.5 48.2 76.7 36.0 79.8 36.1
0 105 37.4 98.6 30.1 95.8 24.9
0.5 92.5 29.1 82.2 23.3 81.7 21.5

m¼ 250 1 91.2 27.6 82.1 23.2 83.0 22.1
1.5 91.2 27.5 82.1 23.2 83.7 22.5
2 91.2 27.5 82.1 23.2 84.2 22.7
0 102 25.7 99.0 21.8 97.5 18.3
0.5 93.5 21.4 86.3 18.4 85.9 17.1

m¼ 500 1 92.6 20.5 86.2 18.3 86.9 17.4
1.5 92.6 20.4 86.2 18.3 87.4 17.6
2 92.6 20.4 86.2 18.3 87.8 17.7
0 101 17.8 99.3 15.3 98.6 12.8
0.5 94.8 15.1 89.6 13.4 89.4 12.4

m¼ 1000 1 94.2 14.4 89.5 13.3 90.1 12.6
1.5 94.2 14.4 89.5 13.3 90.4 12.7
2 94.2 14.4 89.5 13.3 90.7 12.8

Table 11. The average (AARL) and standard deviation (SDARL)
over the ARLs when applying Shewhart, CUSUM, and EWMA
control charts over different Phase I estimates for different
shift sizes d, where d0 ¼ 1, d1 ¼ 2, and ARL0 ¼ 100 are fixed,
but the Phase I sample sizes m vary. The case m ¼ 1 repre-
sents the case of known parameters.

Shewhart CUSUM EWMA

Sample size d AARL SDARL AARL SDARL AARL SDARL

1 91.6 48.4 76.7 36.0 77.9 34.5
1.5 27.0 11.6 13.4 2.92 15.4 3.55

m¼ 100 2 10.0 3.38 5.52 0.75 6.44 0.91
2.5 4.57 1.17 3.38 0.37 3.92 0.42
3 2.54 0.47 2.47 0.25 2.86 0.27
1 91.2 27.6 82.1 23.2 83.0 22.1
1.5 27.2 6.8 14.2 1.97 16.2 2.34

m¼ 250 2 10.1 2.02 5.71 0.49 6.65 0.59
2.5 4.63 0.71 3.45 0.24 4.01 0.27
3 2.58 0.29 2.51 0.16 2.90 0.17
1 92.6 20.5 86.2 18.3 86.9 17.4
1.5 27.6 5.05 14.7 1.55 16.7 1.82

m¼ 500 2 10.2 1.50 5.81 0.37 6.77 0.45
2.5 4.68 0.53 3.49 0.18 4.05 0.20
3 2.60 0.21 2.53 0.12 2.92 0.12
1 94.2 14.4 89.5 13.3 90.1 12.6
1.5 28.0 3.56 15.1 1.11 17.1 1.31

m¼ 1000 2 10.4 1.06 5.90 0.26 6.87 0.32
2.5 4.74 0.37 3.52 0.12 4.08 0.14
3 2.62 0.15 2.54 0.08 2.94 0.09
1 100 – 100 – 100 –
1.5 29.5 – 16.1 – 18.2 –

m ¼ 1 2 10.8 – 6.11 – 7.11 –
2.5 4.90 – 3.60 – 4.17 –
3 2.69 – 2.58 – 2.98 –
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the CUSUM control chart in Brook and Evans (1972),
and, for example, used in Borror, Montgomery, and
Runger (1999) to assess the robustness of the EWMA
chart.

The non-normal distributions considered are the
Gamma distribution and Student’s t-distribution. It is
known that for a Gamma distribution with parameters a
(scale) and b (rate) the skewness is given by 2ffiffi

a
p , while

for the symmetric t-distribution the excess kurtosis equals
6

4�� with � the degrees of freedom. For comparison pur-
poses, we added the normal distribution to the experi-
ments in Table 12 as the middle case. As a result,
moving upward from the normal distribution, the distri-
bution becomes heavier tailed, while in the downward
direction, it becomes more skewed. As a final note, the
parameters for the Shewhart, CUSUM, and EWMA
charts at each combination of d0 and d1 follow from
Table 2 (ARL0 ¼ 500).

Studying Table 12 in more detail, we find that the
performance of the optimized control charts degrades
quickly when deviating from normality, with the
Shewhart chart showing the worst scores, in line with

Borror, Montgomery, and Runger (1999) for non-
optimized EWMA charts. Here, for d0 ¼ 1 or 2, and
d1 ¼ d0 þ 2—two boldfaced blocks—the EWMA and
CUSUM charts show comparable ARLs under non-
normality. Between these two charts, the EWMA chart
receives fewer signals in the in-control region (above
the boldfaced blocks). In contrast, in most cases, the
CUSUM chart has faster detection in the out-of-con-
trol region (below the boldfaced blocks).

4. Discussion

The motivation of the three-region approach is to
focus on detecting practically significant shifts, not
small shifts caused by minor (perhaps temporary)
common causes. Such situations frequently occur in
practice, see Freund (1957), and have recently
received renewed attention by Woodall and Faltin
(2019). Answering their call, we implement this
approach to the EWMA and CUSUM control chart-
ing schemes by allowing a slight common cause vari-
ation in the in-control parameter via d0. The evasion
of too many signals has also resonated in the

Table 12. The ARL values for different data distributions for ARL0 ¼ 500 and various combinations of d0 and d1.
d0 ¼ 0 & d1 ¼ 2 d0 ¼ 1 & d1 ¼ 3 d0 ¼ 2 & d1 ¼ 4

d Distribution Shewhart CUSUM EWMA Shewhart CUSUM EWMA Shewhart CUSUM EWMA

t (5) 95.8 139 165 245 378 666 673 995 2.22Eþ 03
t (20) 253 332 359 1.75Eþ 03 4.59Eþ 03 1.27Eþ 04 2.01Eþ 04 5.76Eþ 04 4.23Eþ 05
t (40) 342 407 423 3.53Eþ 03 1.17Eþ 04 3.51Eþ 04 8.57Eþ 04 3.65Eþ 05 4.76Eþ 06

0 Normal 500 500 500 9.49Eþ 03 4.40Eþ 04 1.31Eþ 05 9.33Eþ 05 9.48Eþ 06 2.55Eþ 08
Gam(4.1) 110 153 203 362 639 1.48Eþ 03 1.73Eþ 03 3.44Eþ 03 1.54Eþ 04
Gam(2.1) 79.2 109 148 210 333 692 740 1.27Eþ 03 4.34Eþ 03
Gam(0.5.1) 48.8 65.3 87.7 91.9 124 210 202 280 621

t (5) 43.4 16.1 14.9 131 174 177 424 647 1.01Eþ 03
t (20) 50.2 14.9 13.6 303 361 353 3.46Eþ 03 9.10Eþ 03 1.72Eþ 04
t (40) 52.2 14.8 13.5 380 424 416 7.04Eþ 03 2.33Eþ 04 4.54Eþ 04

1 Normal 54.6 14.7 13.4 500 500 500 1.90Eþ 04 8.79Eþ 04 1.65Eþ 05
Gam(4.1) 26.7 15.4 13.3 81.0 102 107 362 639 1.11Eþ 03
Gam(2.1) 23.8 16.0 13.5 61.2 77.4 81.6 210 333 544
Gam(0.5.1) 21.4 18.7 14.8 41.1 51.3 53.9 91.9 124 178

t (5) 9.11 3.39 3.52 33.1 13.6 17.0 142 187 173
t (20) 7.57 3.41 3.51 32.4 12.4 15.0 305 363 342
t (40) 7.40 3.41 3.51 32.7 12.3 14.8 381 424 408

2 Normal 7.25 3.41 3.51 33.1 12.2 14.7 500 500 500
Gam(4.1) 7.36 3.57 3.68 20.0 12.9 13.6 81.0 102 101
Gam(2.1) 7.60 3.62 3.76 18.6 13.4 13.6 61.2 77.4 77.0
Gam(0.5.1) 9.02 3.66 4.03 17.9 15.9 14.6 41.1 51.3 51.1

t (5) 2.19 1.95 2.07 6.48 3.05 3.76 33.4 13.6 19.0
t (20) 2.16 1.94 2.06 5.47 3.07 3.71 32.4 12.4 16.8
t (40) 2.16 1.94 2.06 5.36 3.07 3.71 32.7 12.3 16.6

3 Normal 2.15 1.94 2.06 5.26 3.07 3.70 33.1 12.2 16.4
Gam(4.1) 2.51 1.96 2.07 5.74 3.22 3.96 20.0 12.9 14.6
Gam(2.1) 2.68 1.96 2.06 6.03 3.28 4.10 18.6 13.4 14.4
Gam(0.5.1) 3.47 1.89 2.03 7.44 3.31 4.67 17.9 15.9 15.3

t (5) 1.17 1.35 1.49 1.79 1.76 2.11 6.48 3.05 4.12
t (20) 1.21 1.37 1.49 1.82 1.75 2.11 5.47 3.07 4.03
t (40) 1.22 1.38 1.49 1.82 1.75 2.11 5.36 3.07 4.02

4 Normal 1.22 1.38 1.49 1.82 1.75 2.11 5.26 3.07 4.01
Gam(4.1) 1.21 1.43 1.54 2.07 1.78 2.13 5.74 3.22 4.32
Gam(2.1) 1.19 1.45 1.57 2.20 1.79 2.13 6.03 3.28 4.48
Gam(0.5.1) 1.00 1.53 1.66 2.75 1.77 2.10 7.44 3.31 5.17

Bold values highlight the design value d0.

QUALITY ENGINEERING 381



literature on the economic design of control charts,
e.g., Rahlm (1985) and Lorenzen and Vance (1986).
Still, we stress that the approach outlined here is
fundamentally different as the extra margin chosen
by the user is optimized and thus does not follow
economic considerations of the cost of reacting to
signals. Besides, these costs are often hard to esti-
mate, and the approach has several flaws that may
ultimately lead to poor control chart designs, see
Woodall, Lorenzen, and Vance (1986).

As opposed to the Shewhart control chart with a
single parameter, the EWMA and CUSUM charts
have additional flexibility to optimize toward the
detection of particular shifts of size d1, allowing the
optimization of these control charting schemes. The
performance comparison reveals that the CUSUM
control chart appears best suited to this task, except
when d0 and d1 are both small. However, the EWMA
control chart is slightly more robust. Besides perform-
ance and robustness, some other considerations play a
role when selecting the right control charting scheme,
which we discuss below.

4.1. Optimization issues

Obtaining the optimal parameter values for the
CUSUM control chart is straightforward, as the opti-
mal value of k is known to be k ¼ ðd0 þ d1Þ=2: The
other parameter, LC, can then be chosen to match a
specified ARL value. For the EWMA chart, optimiza-
tion always requires an evaluation of both its parame-
ters simultaneously. Moreover, with this optimization,
some scenarios generate k values outside the
desired region of k 2 ½0:05, 0:25� as prescribed by
Montgomery (2020). While it is, of course, possible
to restrict the optimal parameter search to this inter-
val, it comes at the cost that it will deteriorate the
theoretical performance of the EWMA control chart.
In addition, trying to distill patterns in the optimal
parameters as a function of d0 and d1 (boundaries of
the indifference regions), we find that for the
CUSUM chart, they behave monotonically, while for
the EWMA chart that is not the case as its parame-
ters greatly interact.

Another computational issue with the EWMA may
come forward when d0 is large (e.g., 2 or larger) and
when d1 is close to d0 (e.g., d0 þ 0:5Þ: While the opti-
mal parameters for the CUSUM charts are still easily
obtained in these situations, the optimization of
EWMA may run into issues, as the determination of
parameters could become too difficult to use standard
settings of Knoth (2014), i.e., for computation the

number of quadrature nodes used in the approxima-
tion should be increased.

4.2. Small indifference regions

The issue in optimizing the EWMA control chart that
creates computational issues is a too-small indiffer-
ence region combined with a relatively high d0; the
difference between d0 and d1 is only 0.5, while d0 ¼ 2:
In such a case, it comes down to two conflicting goals;
at d0, we aim for a specific ARL0 performance, while
at d1, we optimize to detect such a shift quickly. So,
as these goals are fundamentally different, choosing d0
and d1 close, i.e., having a tiny indifference region
(especially for the EWMA chart), may lead to prob-
lems in this framework.

A strategy to avoid a too-small indifference region
is to reconsider the settings of d0, d1, and ARL0 from
a practical point of view. The purpose of an indiffer-
ence region is to have a range of values in which the
performance is not so critical. Thus, a straightforward
approach to alleviating potential computational issues
of the EWMA chart would be to make the difference
between d0 and d1 (much) larger. For example, choose
a smaller value of d0, and set ARL0 to a larger value.
However, if the ARL0 is set higher at a lower d0, one
should collect more data to offset the possible estima-
tion error, as seen in Section 3.3, where we study the
impact of Phase I estimates in our approach. Another
practical resolution would be to choose a larger value
of d1.

4.3. Interpretability of the charts

Interpretability is another relevant aspect. Between the
CUSUM and the EWMA control charts, the EWMA
chart has the advantage that the charting statistic
(although it is a weighted average) remains in the ori-
ginal unit of measure. The CUSUM chart does not
have this property as it tracks a positive and negative
cumulative sum, which only sums positive or negative
differences from a reference value. Moreover, because
no individual values are plotted in the CUSUM and
EWMA charts, it cannot be observed directly from
these charts whether an individual value is out-of-spe-
cification, which touches upon the difference between
statistical and practical significance, see Woodall and
Faltin (2019); Blume et al. (2019) for recent discus-
sions. The Shewhart control chart does not have this
discrepancy. However, due to their (much) better
detection of persistent shifts, the modified CUSUM
and EWMA charts are still recommended over the
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Shewhart control chart. In the next section, we apply
the proposed methodology to some examples to high-
light its value in practice.

Both charts are still amenable to various alterna-
tives, which have not been studied to ensure a

“fair” and comprehensible comparison. First, one
could consider EWMA and CUSUM charts with
different limits. Whereas we have taken fixed lim-
its, one could opt for time-varying limits and other
variations, see Knoth (2003) and Crosier (1986),

Figure 5. Standard and optimized (ARL0 ¼ 500 at d0 ¼ 1, and d1 ¼ 3) CUSUM and EWMA control charts applied to CQA.

Figure 4. Shewhart control chart applied to CQA (with control limits at 3r0).
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which are part of Knoth’s R package spc. Second,
in the spirit of the CUSUM chart to have two mon-
itoring statistics, one could opt for two one-sided
EWMA charts, see Gan (1993).

5. Practical examples

In this section, we consider two examples. The first
example is inspired by the paper of Woodall and

Figure 6. Shewhart control chart applied to CQA (standard and optimized, d0 ¼ 1).

Figure 7. Standard and optimized (ARL0 ¼ 500 at d0 ¼ 1, and d1 ¼ 3) CUSUM and EWMA control charts applied to CQA.
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Faltin (2019), which exhibits a more extreme use case
of implementing an indifference region. The second
example involves wafers from a hard-bake process,
which can be found in Montgomery (2020). The stat-
istical software Minitab is used to execute the
experiments and to generate the figures. The figures
for the EWMA chart are manually rendered in
Minitab to be able to implement steady-state limits,
which is not an option in Minitab.

5.1. Case 1: Critical quality attribute (CQA)

Our first example extends to the case study reported
in Woodall and Faltin (2019). Inspired by that
example, we synthesized data with the same character-
istics in Phase I, e.g., mean 6 and standard deviation
0.06. So, we simulated 200 data points from a normal
distribution with these characteristics; we added some
minor seasonal variation with an amplitude of one
standard deviation to mimic insignificant and tempor-
ary shifts. The resulting values are given in the control
chart of Figure 4. Note that the seasonal effect is only
considered present in Phase II.

In this case study, the specification limits are much
wider than the control limits of the process, i.e., 4 and
8 versus 5.82 and 6.18, as observed in Figure 4.
Therefore, it is sensible not to react to some small
variation, e.g., small and expected seasonality, which
can be considered common noise instead of special
causes of variation. Thus, to modify the control chart-
ing schemes, we have to allow the process to return to
“normal”. Note that the absence of seasonality in a
Phase I study and the presence of it in Phase II might
occur when the Phase I study was carried out during
a limited part of a seasonal cycle. Or, for example,

when the moving range (MR) estimator is used to
estimate the process dispersion.

Because there is a great discrepancy between the
control and specification limits, we adapt the EWMA
and CUSUM control charts using the proposed
approach. Taking some extreme values from Table 2,
i.e., ARL0 ¼ 500 at d0 ¼ 1 (as the amplitude of the
seasonal variation is one standard deviation) and d1 ¼
3, we adjust the original time-weighted charts. Both
charts are given in Figure 5. When comparing the
standard to the optimized versions, we observe that
the original charts easily detect seasonal effects and
produce many signals. Note that the ARL0 at d0 ¼ 0 is
168 for the standard CUSUM control chart (k¼ 0.5;
LC ¼ 4) and 560 for the standard EWMA control
chart (k ¼ 0:2; LE ¼ 3); by default, the CUSUM chart
is thus set more sensitive than the EWMA chart.
Applying our procedure to accommodate the seasonal
variation results in only one or two signals. Naturally,
setting d0 to an even higher setting will fully mitigate
the signals produced because of the seasonality. Yet,
true shifts go unnoticed for a longer period, which
will be part of our experiment in Section 5.2.

In a second adaptation of CQA, we excluded the
seasonality but added two small temporary shifts and
one larger persistent shift. Specifically, to our 200 data
points, we added a shift of one standard deviation
from observation 21 until 40, and we subtracted one
standard deviation from observation 101 until 120.
The persistent shift (3 standard deviations) occurs at
observation 161. In line with the previous example,
we use the parameters of Table 2 with d0 ¼ 1 and
d1 ¼ 3, such that our modified charts are designed to
ignore the temporary variation while detecting the
true persistent shift as early as possible. Indeed, in

Figure 8. Shewhart control charts, standard and adapted, applied to the Flow Width data with parameters based on l0 ¼ 1:5056
and r0 ¼ 0:0625:
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Figure 6 the standard Shewhart control chart detects
extra signals, whereas the adjusted Shewhart with the
limits raised to be at 3.878 standard deviations (r0) of
l0 still finds one signal related to the temporary shift.
As seen in the left panels of Figure 7, the standard
CUSUM and EWMA charts easily detect the tempor-
ary shifts that occur far before the true persistent shift,

which is, of course, detected by both. The panels on
the right-hand side show that the adjusted CUSUM
and EWMA charts can fully disregard these temporary
shifts and immediately detect the true persistent shift
at 161. This example underpins the promise of modi-
fying the CUSUM and EWMA charts to make them
less sensitive to small “unimportant” shifts.

Figure 9. An application of optimized control charts using indifference regions. In all altered schemes d0 ¼ 1 where ARL0 ¼ 500,
while in (c) & (d) are optimized to detect a shift at d1 ¼ 2 and in (e) & (f) at d1 ¼ 3; see also Table 2.
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5.2. Case 2: Wafers from a hard-bake process

Where our first example was specifically designed to
illustrate the purpose of the proposed method, our
next example relates to Chapter 6 of Montgomery
(2020) about wafers from a hard-bake process. In the
original example, subgroups of size 5 are selected; we
converted these subgroups to individual values, for
which the historical mean is l0 ¼ 1:5056 and standard
deviation r0 ¼ 0:0625: Moreover, as the USL and LSL
for this process are set at 1.0 and 2.0, so one could
question whether this process should be monitored so
closely. Therefore, we implement the standard
Shewhart control chart and the adapted one based on
the corresponding parameter from Table 1.

The application of a standard Shewhart control chart
(limits at 3 standard deviations) signals at observation
43, whereas the adapted chart signals at observation 45,
as seen in Figure 8. Next, we use our framework of
indifference regions where in addition to requiring the
ARL0 to be 500 at d0, we optimize for detecting specific
shifts at d1 equal to 2 or 3, which is done in Figure 9.
Note that in this scenario, the shift seems persistent, and
thus should be deemed a true shift, which is also con-
cluded in Montgomery (2020). Fortunately, our opti-
mized versions are still capable of detection, but at a
later stage. So, this example illustrates the tradeoff of
employing an indifference region—to disregard unim-
portant shifts—and swiftness of detection in case of a
true shift (not in the in-control region). The larger the
indifference region, the later a true shift will be detected.

An interesting comparison is between Figures 9(c)
and 9(d), where the EWMA chart only signals at 45,
while the CUSUM chart still signals at 43. Finally, if
d1 ¼ 3 is set to 2, both charts signal only at observation
45. Interestingly, the EWMA bounds decrease as the k
parameter has increased when comparing Figures 9(c)
and 9(e).

6. Concluding remarks

In process reliability, this work leverages optimization to
advance control chart schemes to better fit practice.
Answering the call of Woodall and Faltin (2019) and
aligning with the international standard, ISO (2020), we
provide an approach accessible to the average practi-
tioner approach that wants to utilize the leeway between
the control limits (the range of the process fluctuations)
and specification limits (the range in which products are
acceptable). Often there is quite a gap between these dif-
ferent types of limits, which allow the sensitive time-ser-
ies charts to return to normal; one can argue that for
practice, many control charting schemes are overly

sensitive and that somehow larger deviations from the
target can be accounted for as normal process variation,
i.e., common noise. The reduction of signals is also res-
onated in the literature on the economic design of con-
trol charts, but with a different motivation (Rahlm 1985;
Lorenzen and Vance 1986).

To do so, we employ the framework of an indifference
region to disregard signals from small shifts or minor
seasonal effects. The CUSUM and EWMA control charts
are adapted to meet a specified average run length ARL0
at a mean shift of d0 > 0 standard deviations. At the
same time, they are optimized to detect a shift of d1ð>
d0Þ standard deviations. In this way, the indifference
region automatically demarcates two other regions; within
l06d0, we find the in-control region and further out-
ward, beyond l06d1, the out-of-control region.

Comparing the optimized EWMA and CUSUM
charts to the standard Shewhart control chart and
their unaltered counterparts, we show that they are
particularly promising for practice when there is suffi-
cient leeway compared to the specification limits of a
process. Out of these two, we conclude that the
CUSUM chart is the better choice as it generally out-
performs the EWMA chart slightly and has some
advantageous computational properties, i.e., one of its
parameters can be immediately set, and thus only one
parameter has to be determined. Although an EWMA
chart is easier to interpret as it has the same unit of
measure for its statistic as the original data, the
EWMA parameter combinations can become tedious,
especially when the indifference region is small.
Finally, we find that in many instances, EWMA’s
weight parameter k lands outside the advised and
common range reported in standard statistical litera-
ture (Montgomery 2020).

The optimization procedures and comparison of
the Shewhart, optimized EWMA, and CUSUM
charts are primarily focused on dealing with nor-
mally distributed data. When data do not come
from a normal distribution, the EWMA and
CUSUM charts outperform the Shewhart chart, as
expected. However, the performances of these charts
might be improved by using data transformations
(Chou, Polansky, and Mason 1998). Finally, since
the optimization procedures intrinsically rely on
design choices and Phase I estimates, the robustness
of the approach is assessed as well. Checking the
sensitivity of the framework on Phase I estimates
reveals that sufficient data should be available to
have a reliable optimized EWMA or CUSUM
chart—considering the use case of an indifference
region, a condition that is easily met.
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