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Abstract. Appointment schedules, in essence, balance supply and demand and are often
employed in settings where resources are scarce and thus a high utilization is realized (e.g.,
healthcare). Whereas most of the existing literature focuses on the single-server case, a
framework is developed to study appointment scheduling in multiserver settings. Relying
on phase-type approximations, general service-time distributions are modeled, which are
fed into a recursive approach allowing evaluation and optimization of an objective func-
tion that balances expected waiting times and idle times. Studying optimized schedules for
multiple servers reveals that the start and end of a session can deviate greatly from the
dome-shaped pattern as established for the single-server case. Furthermore, a comparison
of various multiserver setups shows that significant performance gains can be achieved
when servers are pooled. This allows an explicit quantification of the cost of continuity of
care. In addition, session overtime as well as early finish of servers can be incorporated in
the approach; the benefits of the additional flexibility that a multiserver setting provides
are summarized. For the stationary plateau of the dome, to which the optimal interarrival
times converge, steady-state appointment schedules are obtained by exploiting the embed-
ded Markov chain; these schedules are shown and argued to converge quickly to optimal
solutions obtained in a heavy-traffic regime. In this regime, algebraic solutions are derived,
which provide interesting managerial guidelines when the pooling of servers is considered
in appointment scheduling.
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1. Introduction
Appointment schedules are often used in settings
where resources are scarce; for that reason, ap-
pointment schedules are used in healthcare. Cur-
rent literature mainly focuses on the single-server
setting. In healthcare, such a setting is often appro-
priate as continuity of care is obeyed: patients see
the same physician during the course of their
treatments.

Some settings, however, do not fit well into this
framework; these include magnetic resonance imag-
ing (MRI), X-ray facilities, and operating rooms. Each
of these cases has multiple resources that are present,
and it is logical that the next patient will be served by
the first resource to become available. Other examples
can be found in legal counselling, technical support
appointments, visa application processes, dental hy-
giene services, and medical rehabilitation services
(see, e.g., El-Sharo et al. (2015) and Soltani et al.
(2019)). Especially in healthcare, our analysis will
demonstrate the benefits when relaxing the continuity
of care restraint in situations where multiple service
providers are able to provide the same service. In fact,

Green et al. (2013) conclude that, to fulfil the growing
need of primary care in the near future, the pooling of
physicians is inevitable.

The benefits of increased flexibility by pooling re-
sources are assumed reduction of patient or client
waiting times and increased utilization. The decision
of whether to pool resources, such as MRIs or physi-
cians, is of a tactical nature, as it concerns the assign-
ment of clients to resources; see Hulshof et al. (2012)
and Ahmadi-Javid et al. (2017).

A complicating factor in appointment scheduling is
random service times (Ho and Lau 1992, Cayirli and
Veral 2003). This randomness is reflected in a combi-
nation of the following:

• Idling resources as a result of having excessive ca-
pacity, resulting in idle time

• Session overruns as a result of insufficient capacity
toward the end of the schedule, creating overtime

• Waiting clients as a result of insufficient capacity,
resulting in waiting time

An appointment schedule tries to find a balance by
minimizing a weighted sum of these ramifications of
under- and overcapacity.
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To define the problem in a mathematical frame-
work, let there be s servers and n > s clients to be
scheduled. Let ti and Bi be the arrival and service
times of the ith client, respectively. Assume that each
server starts by serving one of the initial s clients, so
t1 � t2 � : : : � ts � 0: Thus for each subsequent client
i ∈ {s+ 1, : : : ,n}, Wi denotes the waiting time and Ii
the idle time, which is the time that resources are idle
before the ith client’s arrival. In addition, define the
overtime O as the time that the session runs over
the scheduled session end time T: The objective is to
determine a schedule, given by arrival epochs (ts+1,
: : : , tn) of the n – s subsequent clients, so as to mini-
mize the total expected idle time, waiting time, and
overtime over the session. By considering the interar-
rival time between two appointment epochs xs+i :�
ts+i − ts+i−1, the problem can equivalently be formulat-
ed as

min
(xs+1, : : : ,xn)

∑n
i�s+1

cIEIi + cWEWi( ) + cOEO, (1)

where cI, cW, and cO are cost parameters to be chosen
at the discretion of the practitioner.

The computation of these metrics is typically done
by considering the evolution of the schedule as a queue.
In our case, the resulting queueing system is, using
Kendall’s notation, a D/G/s queue: deterministic inter-
arrival times (not necessarily uniformly spaced), general
service times, and s servers.

Our methodology relies on the fact that service
times can be approximated well by mixtures of expo-
nentials—that is, phase-type distributions, wherein
each exponential distribution can be thought of as
a state of the system. Such a description can be ex-
tended to the multiserver setting for which we derive
a tractable recursive procedure by exploiting its semi-
Markovian nature to keep track of the system, allow-
ing evaluation of the objective function. For optimized
multiserver appointment schedules, we find that the
resulting interarrival times feature singular patterns that
do not appear in the single-server setting. Furthermore,
comparing equivalent configurations in the number of
servers, the potential gains of pooling in appointment
scheduling with random service times are quantified as
well as the impact of various environmental and free
parameters, such as randomness of the service times,
the cost parameters, and the occurrence of no-shows.

2. Literature Review
We divide literature on appointment scheduling into
two streams: single-server systems and multiserver
systems. The former class has been studied exten-
sively; or comprehensive reviews on these efforts, re-
fer to Cayirli and Veral (2003), Gupta and Denton
(2008), and Ahmadi-Javid et al. (2017). Study on

multiserver systems has usually been restricted to the
domain of multistage settings. Few works have focused
on the single-stage, multiserver setting for appointment
scheduling (i.e., the D=G=s queue), which is analytically
explored in this paper. Next we highlight work that re-
lates to our research.

2.1. Single-Server, Single-Stage Environments
The single-server setting—that is, s � 1—is naturally ap-
plicable to the single-stage case. This does not, however,
constrain the framework from being applicable to amul-
tistage setting—for example, when other stages have
more than sufficient capacity not to be a bottleneck
(e.g., a reception). InWelch and Bailey (1952), the single-
server environment was first formulated. These authors
also formulated the well-known Bailey–Welch appoint-
ment rule that assigns multiple clients to the first slot
to circumvent possible idle time in early stages of the
schedule. Ho and Lau (1992) study variations on this
appointment rule and find that among important envi-
ronmental factors affecting the performance of an ap-
pointment schedule, the most important are the number
of clients to be scheduled, service-time variability, and
no-shows.

Another stream of research aside from the study of
appointment rules is that of developing methods for
finding optimal arrival epochs. An example is the
work by Denton and Gupta (2003), who introduce a
sequential bounding approach in which the problem
is framed as a linear program. Using the L-shaped al-
gorithm, they successively partition the outcome
space to approximate an optimal solution. Klassen
and Yoogalingam (2009) use simulation in conjunction
with optimization to address the single-stage appoint-
ment scheduling problem. Another paradigm is to
solve this problem over a discrete grid, such as in
Kaandorp and Koole (2007), who assume exponential
service times. Zacharias and Yunes (2020) show the
concept of multimodularity to hold for general sto-
chastic service times, which guarantees the success of
efficient optimization algorithms.

A common method to obtain tractability is the use
of phase-type distributions (Asmussen et al. 1996),
which have proven to provide good levels of ac-
curacy. In the context of appointment scheduling,
Wang (1997) is the first work to employ phase-type
distributions to derive a recursive system. In the same
stream, Bosch and Dietz (2001) use phase-type distri-
butions to analyze the waiting time and overtime over
a grid of schedules and show submodularity to ensure
convergence. Kuiper et al. (2015) introduce a general
method to approximate service times by a phase-type
counterpart, allowing computation of relevant queue
metrics and facilitating steady-state analyses. They
show that it provides good approximations for both
the log-normal and Weibull distributions.
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Another approach is to discretize time; such an ap-
proach is followed by De Vuyst et al. (2014) and Begen
and Queyranne (2011) to facilitate evaluation and op-
timization. Finally, we show that the results of Mak
et al. (2015), who study appointment scheduling con-
sidering worst-case distributions, are closely related
to the results we obtained in steady state.

Focusing on the solutions that these approaches pro-
duce, many have reported that the optimized interar-
rival times depict a dome-shaped pattern (Wang 1997,
Denton and Gupta 2003, Kaandorp and Koole 2007,
Hassin and Mendel 2008, Klassen and Yoogalingam
2009, Kuiper et al. 2015). Appointments early in the
session and toward the end are more condensed,
whereas in the middle, the interarrival times between
appointments are lengthier.

2.2. Multistage Environments
As noted in Cayirli and Veral (2003) and Ahmadi-
Javid et al. (2017), the majority of the literature focuses
on single-server appointment scheduling. However,
multiserver settings are nevertheless prevalent in
healthcare. The first extension to consider is the addi-
tion of servers in series, creating a multistage environ-
ment. For example, a client may first have an X-ray
and then have an appointment with a specialist.

Rising et al. (1973) study a system of multiple stages
at a university outpatient clinic by means of Monte
Carlo simulation. Cox et al. (1985) develop and simu-
late a queueing model for the multistage setting found
in an ear, nose, and throat outpatient clinic. Also rely-
ing on simulation, White et al. (2011) study a system
in which—besides introducing capacity constraints—
they distinguish between two patient types, one of
whom requires an X-ray before appointment. In sur-
gery scheduling, Saremi et al. (2013) use simulation
optimization in order to address a multistage operat-
ing room scheduling problem, incorporating the avail-
ability of surgeons.

Another sequential service setting is studied in Zhou
and Yue (2019), inwhich they introduce a stochastic lin-
ear program, which is solved by combining a sample
average approximation and linear programming (see
Denton and Gupta 2003). A two-stage tandem setting
is studied analytically in Kuiper and Mandjes (2015).
Klassen and Yoogalingam (2019) study, by means of
simulation, the clinic’s effectiveness when part of the
physician’s work is taken over in an earlier stage by
assistants.

Finally, we mention research that considers sys-
tems with multiple stages and servers. Most of this
work is case specific and relies on simulation (see,
e.g., Côté and Stein (2007)). Another example is the
work by Alvarez-Oh et al. (2018), who study a sim-
ple system in which patients have to be seen by one
of two nurses and then a dedicated provider (single

server). Mandelbaum et al. (2020) develop a data-driven
robust optimization approach based on uncertainty sets
that accommodates a multiserver setting with various
patient flows. They apply their model on a cancer cen-
ter’s infusion units and report a 15%–40% reduction of
waiting and overtime costs.

2.3. Multiple Parallel Servers
Another extension of the single-server framework is
that of servers in parallel. In the specific setting where
there is server preference, we refer to section 5.1 in
Ahmadi-Javid et al. (2017) and references therein. Here,
we focus on the case where clients are indifferent to
servers.

Denton et al. (2010) study the problem of schedul-
ing surgeries to multiple operating rooms (parallel
servers), where in a first stage it is decided how many
servers to open such that in the second stage, surger-
ies are assigned to specific operating rooms. Once as-
signed, each operating room acts as a single-server
system. El-Sharo et al. (2015) consider a model to de-
cide how many clients should be overbooked to slots
in a multiserver setting. For each server, a separate ap-
pointment schedule is made. Only when a patient be-
comes an overflow patient, or a patient is failed to be
served in his or her initially assigned slot, will that pa-
tient be allocated to any other server.

As these two examples still make a schedule as-
signed to a specific resource, we find a closer resem-
blance to our setting in Swisher et al. (2001). They
apply discrete event simulation to a clinic to study its
performance in a steady state; in this setting, the
patient does not go to a specific physician. Further-
more, Harper and Gamlin (2003) study, by means of
simulation, the impact of various appointment rules.
Sickinger and Kolisch (2009) study an appointment
schedule with two computer tomography (CT) scan-
ners. These scanners serve the same queue, which
consists of three patient classes—namely, outpatients,
for whom the schedule is built, and inpatient and
emergency patients, who provide the randomness to
be tackled by the design of an appointment schedule.
They find that a generalized Bailey–Welch rule per-
forms well.

Zacharias and Pinedo (2017) offset no-shows by pro-
viding a recursive method to compute various per-
formance metrics that are optimized by a local search
algorithm. Soltani et al. (2019) focus on a legal counsel-
ling center where service times are random and model
this randomness by matching the first two moments
by a discrete service-time distribution, assigning proba-
bilities to multiples of the slot size. More important, as
optimization turns out to be computationally intensive,
a load-based appointment scheduling heuristic is pro-
posed, which provides a performance increase of 16%.
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2.4. Contribution and Organization
Our approach augments the current literature on
multiserver appointment scheduling by providing a
computational approach in continuous time that in-
corporates service-time variability and the occurrence
of no-shows, which are considered the major sources
of variation that affect the performance of an appoint-
ment schedule (Ho and Lau 1992, Hassin and Mendel
2008).

Relying on phase-type approximations, we extend
the phase-type recursion introduced for the single-
server setting (Wang 1997) to the multiserver setting
by compressing the state space. For performance
measures of interest, such as idle and waiting time,
we obtain semianalytical derivations. After optimiza-
tion, the interarrival times exhibit some striking pat-
terns at the beginning and end of the session that
deviate from the dome-shaped pattern reported in lit-
erature. Furthermore, the approach enables us to
quantify the benefits of pooling in appointment sched-
uling, which addresses the tactical decision on how to
allocate resources—an unchallenged question in the
literature on appointment scheduling in healthcare
(Ahmadi-Javid et al. 2017).

We extend the work to steady state, which enables
the evaluation of the performance gain for large num-
bers of clients and servers effectively. Interestingly,
because appointment schedules are often employed in
high utilization environments, we find that the prob-
lem cast in the heavy-traffic regime captures the
steady state accurately. This insight emphasizes that
performance improves by a factor of

��
s

√
when pooling

s servers.
The structure of the rest of this paper is as follows.

In Section 3 we state the general scheduling problem
for the multiserver setting and show the intrinsic com-
plexity of the problem compared with the single-
server setting, and we demonstrate our approach to
make the problem tractable. In Section 4 we explain in
detail how the phase-type distribution of a system
with s parallel servers can be obtained and how it fa-
cilitates computation of key performance metrics. In
Section 5, we use the methodology to compute opti-
mal schedules for a given number of clients under
various settings so that we can study the form of the
optimal solution as well as the gain from combining
servers. Then in Section 6 we extend our phase-type
methodology to the steady state and consider a corre-
sponding heavy-traffic analysis, which enables us to
gain better insight into the benefits of pooling. Finally,
we conclude in Section 7.

3. Problem Definition
Empirical research reports that patients arrive early
more often than late, and therefore it is typical to

assume that patients are punctual (Cox et al. 1985,
Cayirli and Veral 2003). In the interest of generality,
we will henceforth refer consistently to clients and
servers. Furthermore, we restrict our model to identi-
cal servers and homogeneous clients except for a short
discussion on the ramifications of relaxing these as-
sumptions. We assume that servers start nonempty
and that there are n clients to be scheduled. Further-
more, in line with appointment scheduling literature,
clients are served according to a first-come, first-
served discipline, and there is no preemption nor
sharing of servers.

3.1. Single-Server Performance Metrics
In the single-server setting, assuming punctuality, we
start a session with the first client to arrive at time
t1 � 0. Define the interarrival time between the ith cli-
ent and his predecessor as xi :� ti − ti−1 for i � 2, : : : ,n.
Furthermore, let x1 � 0. Then it is standard by the
Lindley recursion (Lindley 1952) that the waiting times
are defined recursively by the following equation:

Wi �max {Bi−1 +Wi−1 − xi−1, 0} �max {Si−1 − xi−1, 0},
(2)

where the sojourn time Si �Wi +Bi: Obviously, S1 �
B1, as the first client does not have to wait. The session
end time, also known as the makespan, is defined as
the moment when the final client leaves the system,
which is at tn + Sn, which is equal to the sums of idle
and service times; that is,

∑n
i�1(Bi + Ii): Thus the sum

of idle times and overtime are deduced from

∑n
i�1

Ii � tn + Sn −
∑n
i�1

Bi and O �max tn + Sn −T,0{ },
(3)

where T is the predefined targeted session end time.
There have been many methods proposed to compute
these metrics (Ahmadi-Javid et al. 2017). Once a method
is found, these metrics can be used to evaluate the objec-
tive function in Display (1).

3.2. Complexity of a Multiserver System
Unfortunately, in a multiserver setting, despite the fact
that the waiting queue is shared, these recursions do
not apply, as noted in the seminal work by Kiefer and
Wolfowitz (1955). One of the critical issues is that the
ith departure is not necessarily by the ith client. Be-
cause clients are served by several servers in parallel,
there can be overtaking; a client is still in service while
another server can become available to serve the subse-
quent client, so that eventually the subsequent client
can leave the system earlier than his predecessor. Thus
the waiting time of one client does not exclusively de-
pend on the sojourn time of its predecessor, which

Kuiper and Lee: Appointment Scheduling for Multiple Servers
4 Management Science, Articles in Advance, pp. 1–19, © 2022 INFORMS



makes the problem considerably more challenging
and the Lindley recursion inapplicable.

As phase-type distributions have a state-space rep-
resentation, they permit for keeping track of the system.
In detail, it is possible to keep track of which client is
being served by which server; for this purpose, we
need to consider tuples of s dimensions, where 0 de-
notes a server as empty. The domain of each element
in the tuple is in the simplest case just the number of
possible clients. For example, in Table 1 we show the
number of configurations when there are two servers
and five clients to be served. The shaded empty cells
cannot be reached as they contain cases where both
servers are serving the same client (black) or that a cli-
ent jumps from one server to another (gray). A simple
computation of the number of possible client configu-
rations reveals that this number increases by n2 − n+ 2,
where n is the number of clients. In general, in a similar
way, it can be shown that for s servers, the number of
possible configurations isO(ns).

3.3. Compressing the State Space
In line with the literature, we assume homogeneous
servers and clients. First, without loss of generality,
we normalize the mean service time to one for all
clients—that is, EBi � µi � 1. Second, we express the
service-time variability in terms of the squared coeffi-
cient of variation:

scv � VarBi

(EBi)2
� VarBi: (4)

As clients are served according to a first-come, first-
served discipline, it suffices for the ith client to keep
track of the work ahead of him—that is, the number of
clients in and the status of the system upon and after
his arrival; for these purposes, define the variables Yi

and Zi, respectively. Because the status of the system
is given by the current phase(s) of the client(s) in ser-
vice, Zi is often multidimensional. Its dimension de-
pends on the number of clients who are currently in
service. Keeping track of these variables allows the

computation of waiting times and also session end
time. As an example, client i’s waiting time Wi can be
inferred from the moment a server comes available
for the ith client (i.e., when there are fewer than s cli-
ents in service):

Wi � inf {t ≥ 0 | Yi(t) ≤ s} � inf {t ≥ 0 | Yi−1(t+ xi) < s}:
(5)

Idle time requires more thought. The makespan de-
notes the session end time; multiplying this quantity
by s gives the servers’ total capacity over the course of
the session and evidently contains all idle times.

Obviously, in a multiserver setting, it is possible
that there is no need to keep all servers active
throughout the entire session. In Section 5.2 we dis-
cuss the impact of this additional feature and why not
to include this in the objective function. Last, referring
to Equation (3), the notion of session overtime will be
carried over to the multiserver case. In the next section
we propose a method that enables tracking of the sys-
tem in continuous time and thus computation of these
performance metrics in expectation.

4. Methodology
In this section we outline the method that enables
computation of the system. We do so by relying on
phase-type distributions, which has been a widely ac-
cepted method in queueing (Neuts 1981, Tijms 1986,
Asmussen et al. 1996) and, specifically, appointment
scheduling (Wang 1997, Bosch and Dietz 2001, Kuiper
et al. 2015). To keep track of the multiserver system
we exploit the property that a convolution of multiple
phase-type distributions can again be described by a
phase-type distribution.

A service-time distribution Bi is approximated by a
phase-type counterpart

Bi ~ PH(α,S), (6)

where α is a row vector describing initial probabilities
and S the transition matrix.

Following the standard approach, a mixture of two
Erlang distributions is advised in cases where the
service-time distribution has a SCV smaller than 1—
that is, Ek−1,k(µ;p), requiring k phases. Furthermore, a
hyperexponential distribution, H2(µ1,µ2;p), with bal-
anced means is used in cases where SCV is larger than
1; this has k � 2 phases. The middle case, when SCV �
1, corresponds to the exponential distribution and has
just one phase. Without loss of generality, the service
times are set to 1, as in the single-server case in Kuiper
et al. (2015).

4.1. Phase-Type Recursion
We are interested in the bivariate process Ys+i(t),(
Zs+i(t)) for i � 0, : : : ,n− s that describes the full evolu-
tion of the system, where we have

Table 1. The 22 Possible Configurations of Five Clients on
Two Servers

*Indicates the starting state, client 1 on the first server and client 2
on the second server.

Kuiper and Lee: Appointment Scheduling for Multiple Servers
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• Ys+i(t) ∈ 0, 1, : : : , s+ i clients in the system, as we
start with s clients in service, and

• Zs+i(t) � Z1(t), : : : ,Zξ(t)( ), where ξ �min {Ys+i(t),
s}, and for each ℓ � 1, : : : ,ξ, Zℓ(t) ∈ 1, : : : ,k:

Note that k denotes the number of phases of the phase-
type counterpart. Without loss of generality, Zℓ can be
seen as the ℓ th server, because of homogeneous servers.
There are at most ξ servers to record as either there are
Ys+i clients to be served or all s servers are active.

Because there is no distinction between which
server serves which client, the number of unique
combinations of states depends only on the number
of servers and possible phases. The maximum num-
ber of states required turns out to be

∑n
i�1 kmin i,s{ },

which is O(n)—a remarkable reduction compared
with naively considering all unique routings (cf.
O(ns) as in Section 3.2).

Corresponding to the bivariate process, we define
the probabilities of finding j clients in the system,
j ∈ 0, : : : , s+ i{ }, and the server(s) in phase(s) mℓ ∈
1, : : : , k{ } for ℓ ∈ {1, : : : ,ξ}:
p(s+i)j,(m1,: : : ,mξ)(t) � P Ys+i(t),Zs+i(t)( ) � j, (m1, : : : ,mξ)( )[ ]

:

Define the row vector that contains all possible phases
for j clients in service by

p(s+i)j (t) � p(s+i)j,(k,: : : ,k)(t), : : : , p(s+i)j,(k,: : : ,1)(t), : : : ,
(

p(s+i)j,(1,: : : ,k)(t), : : : , p(s+i)j,(1,: : : ,1)(t)
)
,

(7)

which is a vector of size kmin {j,s}. The quantity p(s+i)j (t)1
is the probability that j clients remain in the system t
time units after client (s+ i)’s arrival, where 1 is a col-
umn vector of appropriate size.

In the special case that all service times are expo-
nentially distributed, the workload vector Ys+i(t) is
only needed to describe the evolution of the system,
because each client’s service comprises just a single
phase. Consequently, the p(s+i)j (t) become singletons
that describe the probabilities that j clients remain t
amount of time after the arrival of the ith client.

For the general case, the probabilities by Equation
(7) describe the evolution of the system. Because each
server starts by serving a client and no new clients
have yet arrived, the initial probability vector of the
system is given by the following concatenation:
αs � (α⊗⋯ ⊗α,0∑s−1

j�1 kj); the Kronecker product in this
vector is applied exactly (s− 1) times. The transition
matrix is given by

Ss �
S(s) U(s) 0 ⋯ 0
0 S(s−1) ⋱ ⋱ ⋮
⋮ ⋱ ⋱ U(3) 0
0 ⋯ 0 S(2) U(2)
0 ⋯ 0 0 S(1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where S(ℓ) (diagonal) and U(ℓ) (upper diagonal) are de-
fined recursively (1 < ℓ ≤ s) by

S(ℓ) � I|S| ⊗ S(ℓ−1) + S⊗ I|S(ℓ−1) |, (9)

U(ℓ) � I|U(ℓ−1) | ⊗U(1) +U(ℓ−1) ⊗ I|U(1) |, (10)

with S(1) � 1, U(1) � −S1, |A| being the number of
rows in matrix A, and I|·| is an identity matrix with | · |
rows and columns. In fact, U(1) is the traditional phase-
type exit vector that corresponds to service completion.
The elements of the transition matrix in Equation (8)
can be understood as S(ℓ), describing the transitions be-
tween states in which ℓ servers are busy, and U(ℓ), the
exit matrix that defines the transitions to only ℓ− 1 serv-
ers being busy and thus one server becoming idle.

The vector p(s)(t) is fully described by a phase-type
distribution PH(αs,Ss):
p(s)(t) � p(s)s (t),p(s)s−1(t), : : : ,p(s)1 (t)

( )
� αsexp Sst( ): (11)

For a phase-type representation of the system after the
arrival of all other clients, a recursive procedure will
be proposed. In the same fashion as for the initialisa-
tion, we are interested in the vector after the (s+ i) th
client has entered the system, with i � 1, : : : ,n− s; us-
ing Equation (7), we find

p(s+i)(t) � p(s+i)s+i (t),p(s+i)s+i−1(t), : : : ,p(s+i)s+1 (t),p(s+i)s (t),
(

p(s+i)s−1 (t), : : : ,p(s+i)1 (t)
)
:

(12)

Furthermore, the probability of being in the absorbing
state of an empty system is found by

p(s+i)0 (t) � 1 − p(s+i)(t)1:

To find an expression that tracks these probabili-
ties over time, we introduce a phase-type distribu-
tion, (αs+i,Ss+i), for each client i ∈ {1, : : : ,n− s}. The
transition matrix Ss+i is found by extending Ss by i
times, adding S(s) along the diagonal. In addition,
we also need to describe the flow from one cli-
ent being finished to the next one being served.
For this purpose, we place the transition matrix
T(s) along the upper diagonal, which will be de-
fined as

Ss+i �

S(s) T(s) 0 ⋯ 0 0 0
0 S(s) T(s) ⋱ ⋮ ⋮ ⋮
0 0 ⋱ ⋱ 0
⋮ ⋱ ⋱ S(s) T(s) 0
0 0 ⋯ 0 S(s) T(s) 0
0 Ss

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

�: Swait
i T(s)

s
0 Ss

( )
, (14)
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where T(s) follows from the recursion

T(ℓ) � I|T(ℓ−1) | ⊗T(1) +T(ℓ−1) ⊗ I|T(1) |, with

T(1) � −S1⊗α:

Thus each block S(s) added to the diagonal in Equation
(13) corresponds to states where one might find an ad-
ditional client in the waiting queue. For example, after
the (s+ i)th client’s arrival, there can be at most i – s cli-
ents waiting. Analogously, the exit matrix T(s) describes
transitions from a saturated system with j > s clients in
the system to one with precisely j− 1 ≥ s (cf. U(ℓ) for
ℓ ∈ 2, : : : , s); see Equation (10), which correspond each
time to the ℓ th server becoming available.

The initial probability vector αs+i, for i � 1, : : : ,n− s,
captures the intrinsic recursivity of the approach. Be-
cause on arrival of a subsequent client the system can
be saturated, all s servers are busy, and the client en-
ters the waiting queue or is accepted by an available
server. The corresponding vector αs+i can be derived
from p(s+i−1)(xs+i) as defined in Equation (11) and
reads for client s+ i who arrives xs+i time after his pre-
decessor:

αs+i � f p(s+i−1)(xs+i),α
( )

:� p(s+i−1)s+i−1 (xs+i), : : : ,p(s+i−1)s+1 (xs+i),p(s+i−1)s (xs+i),
(

α⊗ p(s+i−1)s−1 (xs+i), : : : ,α⊗ p(s+i−1)1 (xs+i),
α⊗ p(s+i−1)0 (xs+i)

)
, (15)

wherein the states in the first line of (15) correspond
to saturation and in the second line of (15) to the start
of service for the new client. Furthermore, note that
this vector has ks entries more than its predecessor.
Thus after arrival of the (s+ i) th client, the evolution
of the system as in Equation (12) is described by
PH(αs+i,Ss+i).

4.2. Computation of Performance Metrics
Knowing the phase-type representation of the system
after each client’s arrival, we can compute his waiting
time by considering an embedded phase-type distri-
bution. For this purpose, we specifically look at the
probabilities that correspond to instances in which cli-
ents are waiting. Thus for clients i � 1, : : : ,n− s,

p(s+i)wait (t) :� p(s+i)s+i (t),p(s+i)s+i−1(t), : : : ,p(s+i)s+1 (t)
( )

, (16)

these probabilities adhere to the recursion earlier, and
naturally, one can define a start vector on arrival by
αwait
i � p(s+i)wait(0). Furthermore, the transitions between

these probabilities over time are described by Swait
i , as

defined in Equation (14):

FWs+i(t) � 1− p(s+i)wait (t)1 � 1−αwait
i exp Swait

i t
( )

1,

where 1 is a column vector of appropriate size. Also,
for phase-type distributions, the moments can readily
be obtained by using its representation, so that

∑n
i�s+1

EWi �
∑n−s
i�1

−αwait
i (Swait

i )−11: (17)

For idle and overtime, define FMs+i(t) as the cumula-
tive distribution function of the makespan of finishing
the first s + i clients t time units after ts+i (i � 1, : : : ,
n− s); this is given by

FMs+i(t) � p(s+i)0 (t) � 1− p(s+i)(t)1 � 1−αs+iexp Ss+i t( )1,
so that EMs+i � −αs+iS−1s+i1: In particular, the makespan
corresponding to having all n clients served demar-
cates the session, and so the sum of all idle times can
be described as the total time available in the system
minus time spent in service. Similarly, overtime is in-
curred for all servers if a client remains in service after
the targeted session end time, T. Thus the respective
metrics for the servers’ idle times and overtimes are
given by

EI(s) � s (EMn + tn) −
∑n
i�1

EBi, (18)

EO(s) � s
∫ ∞

0
max t+ tn −T,0{ }dFMn(t): (19)

The targeted session end time in the multiserver case
is set to the sum of mean service times divided by the
number of servers; as such, it becomes equivalent to
the single-server case. Note that the performance
measures are superscript so as to indicate that in a
multiserver setting, idle time and overtime are in-
curred by all servers until the last server finishes the
last client.

4.3. Convexity
For the single-server appointment scheduling prob-
lem in continuous time, strong stochastic convexity ar-
guments can be invoked to prove that the waiting
times are convex in the interarrivals. This follows
from the fact that the Lindley recursion of Equation
(2) consists of convex operators; see theorem (2.15) of
Shanthikumar and Yao (1991). Other performance
metrics can be expressed as convex functions of wait-
ing times to establish convexity of the objective func-
tion (1); see, for example, Wang (1993) and Kuiper
et al. (2021) for a proof that does not rely on stochastic
convexity arguments.

For the multiserver queue, recursive systems exist
that keep track of the workload per server (e.g., Kiefer
and Wolfowitz 1955). Unfortunately, not all operators
in this system are convex. As a consequence, strong
stochastic convexity arguments cannot be applied to
show convexity for general service-time distributions.
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Indeed, Harel (1990) found a counterexample that
shows in stationarity that expected waiting times as a
function of the interarrival time in the D/G/s queue
are not convex, using a bimodal service time distribu-
tion: with 2=3 probability, the service time equals 5,
and with 1=3, it equals 11 time units.

For phase-type distributions it is widely known that
they can be used to approximate any nonnegative dis-
tribution arbitrarily closely. The counterexample of
Harel (1990) can easily be replicated by using a combi-
nation of two Erlang distributions with appropriate
means and many phases. Hence waiting times are not
convex in interarrival times for the subclass D/PH/s
either.

However, our phase-type distributions are unimo-
dal, and we have strong reason to believe that our sol-
utions are global optima, as various starting points
led to the same solutions. Finally, as considered in
Section 6, we show that the optimization problem con-
sidered in the heavy-traffic regime—to which, in es-
sence, many of the problems converge—is convex.

For the discrete analogue of the single-server ap-
pointment scheduling problem, Zacharias and Yunes
(2020) establish multimodularity to guarantee that a
global minimum is found. Our methodology can be
used to show that multimodularity does not extend to
the multiserver setting. For this purpose, consider a
schedule of equal slots: the first s clients arrive at the
first slot starting at time 0, and all subsequent clients
arrive according to an equidistant schedule,
xs+i � EB=s. Then, choosing n � 10 and considering
phase-type distributed service times with (1) SCV � 1.5
and the number of servers s � 2, 3, or 4 or (2) SCV �
0.75 and the number of servers s � 3 or 4, we find that
neither the expected idle times of Equation (18) nor
the ones corrected for early leave (see Equation (22) in
Section 5.2) adhere to the first property as stated in
lemma 1 of Zacharias and Yunes (2020). Indeed, upon
inspection, the proofs of multimodularity of the
single-server performance metrics rely on keeping
track of the workload per slot by means of the Lindley
recursion, but this principle fails as the variables for
clients’ waiting times and servers’ workload do not
coincide in a multiserver setting (Daley 1997).

5. Multiserver Appointment Scheduling
in Transient Settings

In this section we employ our methodology to com-
pute appointment schedules for themultiserver setting
and contrast that with implementing a complementary
setup of optimized single-server appointment sched-
ules. In addition, the impact of service-time variability,
no-shows, and some relevant modifications to the ob-
jective functions, such as early leave of servers, are
studied.

In our analyses we examine the optimal solutions
found when appointments are scheduled for multiple
servers. For our computations we relied on a standard
machine, and our programs are written in MATLAB.
For minimization, MATLAB’s built-in routine fmincon
is employed. We use the metrics as defined in Section
4.2 and set the cost of waiting time to 1 (cW � 1) so
that the cost ratio of idle to waiting time simplifies to
cI. Hence, our minimization becomes

min
xs+1, : : : ,xn

cIEI(s) +
∑n
i�s+1

EWi + cOEO(s), (20)

so that the nontrivial arrival epochs follow from
ts+i �∑i

j�1 xs+j.
The explicit expressions for the metrics given in Sec-

tion 4.2 facilitate computation. Note that if cO � 0, the
objective function reduces to a closed-form expres-
sion. Research by Klassen and Yoogalingam (2014)
suggests that including overtime into the objective
function has roughly the same impact as increasing
the weight put on idle time. As a consequence, most
of our experiments concentrate on the case of idle and
waiting time only, although in Section 5.2 we specifi-
cally study the inclusion of overtime. We verified the
optimizations by choosing as different starting points
vectors consisting of only zeros, ones, average service
rates (1=s), and the heavy-traffic solution as obtained
in Section 6.2.

5.1. Structure of the Optimal Solution
Studying the patterns of the optimal interarrival times
of multiserver appointment schedules for various
numbers of clients, the characteristic dome-shaped
plateau to which solutions converge can be identified.
For example, in Figure 1 for s � 1 clear dome shapes
appear. For the pooled schedules, where s � 2, 3, or 4,
the middle solutions converge to steady-state values,
encompassing the long-term balance between idling
and waiting. Note that because the number of clients
to be scheduled is fixed, there is one interarrival fewer
to be determined if the number of servers s increases.

At the start of a session, as seen in Figure 1 and also
in Figure 2, we observe a reversed bullwhip in the inter-
arrival times; a steep decline in the interarrival times
is followed by a damping pattern of iteratively in-
creasing and decreasing interarrival times. The reason
for this pattern is that the synchronized start of service
is completely absorbed by the randomness in the sys-
tem if there are sufficient clients to be scheduled.
Comparing Figures 1 and 2, the extent of this effect is
amplified for lower values of SCV. In the extreme case
of no uncertainty (i.e., the D/D/s queue), the optimal
schedule for s servers would be the arrival of a batch
of s clients after each mean service time.
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If SCV equals 1, these patterns disappear (see Figure 3),
possibly as a result ofmemorylessness of the exponential
service times that are used to model the service times:
aside from the number of clients in the system at each
arrival, no additional information is revealed about
how far along each service time is. In the case of a SCV

greater than 1, a mixture of exponential service times is
used, which contains even greater variability than the
exponential case, and so as in Figure 4, the dome-
shaped pattern stands out.

Focusing on the session end, fluctuating interarrival
times are apparent in a bullwhip pattern for low SCV

values. In particular, analogous to the start-up, these
patterns are stronger for lower SCV cases, and evidently,

the effect disappears for SCV ≥ 1. The explanation for
this behavior is that unused capacity on other servers is
penalized as idle time, so the optimization tries to syn-
chronize the servers’ end times at the expense of reduc-
ing waiting times. Waiting time becomes less important
toward the end of the session, as there will be fewer cli-
ents who would be affected by a tight schedule.

5.2. Session End Revisited
One can opt to include session overtime in the
framework, which is computed by Equation (19). In
Figure 5 we report the optimized interarrival times
that result from an objective function that is com-
posed of only waiting time and overtime. Here, we

Figure 1. Patterns of Interarrival Times for SCV � 0.25 and cI � 1

Note. From top to bottom, the number of servers increases from one to four with (left) 12 clients and (right) 24 clients to be scheduled.

Figure 2. Patterns of Interarrival Times for SCV � 0.5 and cI � 1

Note. From top to bottom, the number of servers increases from one to four (see the legend in Figure 1) with (left) 12 clients and (right) 24 clients
to be scheduled.
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choose cO � 1:5—1.5 times the value chosen for cI in
Figure 2—which is typical, as argued in Cayirli et al.
(2012). In Figure 5 we added to the optimal solutions
the solutions from Figure 2, which incorporated idle
time instead of overtime. Remarkably, for any number
of servers, a comparison of the shape of the curves
reveals that including overtime has a similar impact as
idle time, which echoes the conclusions of Klassen and
Yoogalingam (2014) for the single-server case.

Another salient feature of a multiserver appoint-
ment schedule is that servers can finish earlier when

there is insufficient work left—that is, there are
fewer clients in the process and in the appointment
schedule than there are servers. For example, in Fig-
ure 6(b) servers 2 and 3 can finish earlier. By allow-
ing this early leave, the idle time of servers waiting
until the last client has finished service can be re-
duced; this time is indicated by the diagonal lines.
So far, this feature is not incorporated in the objec-
tive function, as it would cause unsynchronized
endings to not be penalized and thus lead to unnec-
essary underutilization of a session. Naturally, in

Figure 3. Patterns of Interarrival Times for SCV � 1 and cI � 1

Note. From top to bottom, the number of servers increases from one to four (see the legend in Figure 1) with (left) 12 clients and (right) 24 clients
to be scheduled.

Figure 4. Patterns of Interarrival Times for SCV � 4 and cI � 1

Note. From top to bottom, the number of servers increases from one to four (see the legend in Figure 1) with (left) 12 clients and (right) 24 clients
to be scheduled.
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a system of single-server appointment schedules, a
server leaves when there is no client left, as seen in
the system in Figure 6(a). So in order to have a
balanced comparison (also in terms of idle times) be-
tween a system of single-server systems and a multi-
server setting, a correction for early leave of servers
is necessary.

After optimizing over the objective function in Dis-
play (20), the additional gain of allowing early leave
of servers can be computed. Obviously, a server can
only finish if it is certain that the server will not be re-
quired in the future. So if there are ξ servers busy
(ξ ∈ {1, 2, : : : , s}) and one finishes, it can be released if
and only if there are exactly ξ− 1 clients remaining to
be served—that is, those currently in service plus the
ones still scheduled. To highlight the subtlety, note
that the third server in Figure 6(b) can only leave af-
ter the 10th client has left and no sooner, which is

after the ex with dots. At that time, there is one client
yet to start and one still in service.

The expected finish time of a server in a pooled sys-
tem (numbered in reverse order of leaving) can be
computed by constructing elements of a cumulative
distribution function. The ℓ th server (ℓ ∈ {1, : : : ,ξ})
can finish in a time t ∈ [0,xn−ℓ+j+1) after the (n− ℓ+ j)
th arrival for j ∈ {1, : : : ,ℓ} with xn+1 :�∞, so there are
ℓ− j clients yet to arrive, if there are fewer than j cli-
ents in service. This leads to

FEℓ,j(t) � 1− ∑n−ℓ+j
i�j

p(n−ℓ+j)i (t)1:

Recall that p(n−ℓ+j)i describes the phases after the ar-
rival of the (n− ℓ+ j) th client for which i clients re-
main in the system; see Equation (7). The expected

Figure 5. Patterns of Interarrival Times for SCV � 0.25 and cO � 1:5 (cI � 0)

Notes. From top to bottom, the number of servers increases from one to four (see the legend in Figure 1) with (left) 12 clients and (right) 24 clients
to be scheduled. The new patterns are represented by the fully opaque marks, in contrast to the original patterns from Figure 1 in which cI�1
(cO�0), which are represented by semitransparent marks.

Figure 6. AVisualization of Two Appointment Systems That Serve 12 Clients on Three Servers

(a) (b)

Notes. Singly operating servers, each with the same schedule (a) and in parallel (b). Exes, idle time; diagonal lines, the gainwon by allowing early
leave. Service times are denoted by Bi and the session end time by T.
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finish time of server ℓ and server-specific overtime
can be computed accordingly via the numerical inte-
gration of

EEℓ �
∑ℓ
j�1

∫ xn−ℓ+j+1

0
(t+ tn−ℓ+j)dFEℓ,j(t),

EOℓ �
∑ℓ
j�1

∫ xn−ℓ+j+1

0
max {t+ tn−ℓ+j −T,0} dFEℓ,j(t): (21)

The session end metrics defined in Equations (18) and
(19) relate accordingly: EI(s) ≡ sEE1 −∑n

i�1EBi and
EO(s) ≡ sEO1. Because servers leave when no longer
needed, the expected idle times throughout the sched-
ule are computed by

∑n
i�s+1

EIi �
∑s
ℓ�1

EEℓ −
∑n
i�1

EBi: (22)

This revisitation of the session end extends Equa-
tion (3) to the multiserver setting, allowing a compari-
son with equivalent systems of single servers (i.e., to
study the impact of pooling).

5.3. Benefits of Pooling
Besides studying the structure of the optimal solu-
tions, we are also interested in a comparison of perfor-
mance between having server-dedicated appointment
schedules versus a pooled multiserver appointment
schedule. As reported for call centers (e.g., Van Dijk
and Van der Sluis 2008), we anticipate that the pooling
of resources will be highly beneficial.

To understand the merits of pooling, we compare
the performance of our multiserver appointment
schedules to those in which an equivalent system of
single-server schedules are employed. In order to
have a balanced comparison, we compute the ex-
pected overtimes per server and idle times throughout

the session by using Equations (21) and (22) after the
optimization as to examine how an individual server
benefits from being in a pooled system. Varying the
number of clients in multiples of 12, divisible by 2, 3,
or 4 (servers), we report the expected performance in
Table 2.

The performance improvement is striking, and sig-
nificant reductions in each performance dimension
appear, up to about 55% when four servers are
pooled. Note that in some cases the sum of overtimes
and idle times is the same, which naturally occurs
when the last client is scheduled after the targeted ses-
sion end time:

∑n−s
i�1 x̄s+i � tn > T.

In appointment scheduling, the servers’ time is
often considered to be more valuable than that of
clients—for example, in healthcare, where waiting
time is valued considerably less than idle time (Robin-
son and Chen 2011). Therefore we experiment here
with settings in which the cost parameter cI takes a
high value in Objective (20). Besides depicting the
baseline schedule of Figure 1, where cI � 1, the opti-
mal schedules are shown in Figure 7 for cI � 5, in ac-
cordance with the middle setting of Cayirli et al.
(2012), and cI � 20 as an extreme case, albeit in line
with the observations of Robinson and Chen (2011).
Besides moving the dome-shaped pattern down (i.e.,
tightening the schedule), placing a lower value on
waiting time damps the distinctive start and end pat-
terns of a multiserver schedule.

Considering the gains achieved by pooling in Table 3
in the case of cI � 5, we observe that the improvements
on the servers’ account lag behind in the smaller instan-
ces. This effect is due to the imbalanced effort that is
now put on reducing idling, and consequently over-
time, resulting in tight schedules in the corresponding
system of s single servers. Contrariwise, the expected
waiting times decrease greatly; see Table 2. For n � 48,

Table 2. Comparison of Single Server and Pooled Server System Performance for SCV � 0.5 and cI � 1

n � 12 n � 24 n � 48

Expected costs in an optimized system of s single servers (a)

s
∑

EIi
∑

EWi
∑

EOℓ

∑
EIi

∑
EWi

∑
EOℓ

∑
EIi

∑
EWi

∑
EOℓ

2 3.4118 3.4602 3.4118 8.9153 7.2742 8.9153 20.2858 14.6852 20.2858
3 2.6000 3.1740 2.7369 7.8055 7.1316 7.8055 19.0337 14.6337 19.0337
4 1.9706 2.8264 2.5451 6.8236 6.9204 6.8236 17.8307 14.5483 17.8307

Expected costs in an optimized system of s pooled servers (b)

2 2.4315 2.3272 2.4415 6.2922 4.8752 6.2922 14.2322 9.8381 14.2322
3 1.5421 1.6861 1.8252 4.5390 3.7538 4.5393 10.9165 7.6884 10.9165
4 1.0314 1.2768 1.7097 3.4807 3.0745 3.5521 8.8986 6.4358 8.8986

Performance gains (a− b=a) (%)

2 28.73 32.74 28.44 29.42 32.98 29.42 29.84 33.01 29.84
3 40.69 46.88 33.31 41.85 47.36 41.84 42.65 47.46 42.65
4 47.66 54.83 32.82 48.99 55.57 47.94 50.09 55.76 50.09

Notes. SCV is set to 0.5 and cI�1, that is, idle and waiting time are valued equally importantly. Overtimes are computed after optimization with
the aforementioned settings using T � n=s:
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moving away from dominating transient effects, we
conclude that the performance improvement for idle
and overtime mimics those reported earlier. This is
backed by our analysis in Section 6 wherein the perfor-
mance improvement in the long run turns out to be a
factor of

��
s

√
.

5.4. No-Shows
No-shows are recognized as an important environ-
mental factor to be accounted for in appointment
schedules (e.g., Ho and Lau 1992 and Cayirli and Ve-
ral 2003) and are also studied in detail for multiserver
systems in Zacharias and Pinedo (2017). To accommo-
date for the impact of no-shows, which occur with

probability q, in our framework, we only have to
adapt the initial probability vectors. With probability
(1− q) we have a client whose service time is approxi-
mated by a phase-type distribution and with probabil-
ity q a client who does not show-up at all.

Define α
q
s,j � (α⊗⋯ ⊗α)(1− q)jq(s−j) s

j

( )
, where the

Kronecker product is applied exactly j times. Now the
start vector reads as α

q
s � (αq

s,s,α
q
s,s−1, : : : ,α

q
s,1), and

when a subsequent client should arrive, the lines in
Equation (15) that define the recursion are replaced by

α
q
s+i � (1− q) f p(s+i−1)(xs+i),α

( )( )
+ q 0ks ,p(s+i−1)(xs+i)

( )
,

(23)

Figure 7. Impact of the Cost Parameter on the Optimal Appointment Schedule

Note. Extending the setting of Figure 1 (n�24 and SCV�0.25), optimal appointment schedules when pooling two (left) or four (right) servers while
varying cI in the objective function of Display (20).

Table 3. Comparison of Single Server and Pooled Server System Performance for SCV � 0.5 and cI � 5

n � 12 n � 24 n � 48

Expected costs in an optimized system of s single servers (a)

s
∑

EIi
∑

EWi
∑

EOℓ

∑
EIi

∑
EWi

∑
EOℓ

∑
EIi

∑
EWi

∑
EOℓ

2 0.7593 9.1779 1.5273 2.6319 21.3441 2.8663 7.3178 44.2482 7.3178
3 0.4742 7.6170 1.7530 1.9720 19.9379 2.8714 6.1683 43.7249 6.2061
4 0.3085 6.2159 1.9732 1.5185 18.3558 3.0546 5.2639 42.6882 5.7325

Expected costs in an optimized system of s pooled servers (b)

2 0.5876 6.3901 1.1895 1.9504 14.7088 2.1586 5.2899 30.3613 5.2899
3 0.3306 4.3396 1.2471 1.2623 11.1103 1.8984 3.7485 24.1044 3.8288
4 0.2042 3.0992 1.3759 0.8922 8.8466 1.8916 2.8589 20.2124 3.2533

Performance gains (a− b=a) (%)

2 22.62 30.38 22.12 25.89 31.09 24.69 27.71 31.38 27.71
3 30.29 43.03 28.86 35.99 44.28 33.89 39.23 44.87 38.31
4 33.81 50.14 30.27 41.25 51.80 38.07 45.69 52.65 43.25

Notes. Idle time is valued as five times more important than waiting. Overtimes are computed after optimization with the aforementioned
settings using T � n=s:
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using the f (·,α) function as also defined in Equation
(15). Analyzing Equation (23) shows that with proba-
bility (1− q), the (s+ i) th client is added to the system,
either in service or in the queue, and with probability
q, the system remains unchanged, as the client did not
show up. Using the earlier transition matrices, the
possible transitions remain unchanged. We conclude
that PH(αq

s+i,Ss+i) describes the system after the (s+ i)
th client’s arrival on which we apply the developed
machinery; Equation (22) should be adapted accord-
ingly to account for no-shows by subtracting (1−
q)∑n

i�1EBi instead.
On top of the baseline setting of Figure 1, we imple-

mented no-shows to occur with probabilities 10%,
20%, and 40% in Figure 8 for different numbers of

servers and cost parameters. The no-show levels cho-
sen cover the range reported in Cayirli et al. (2012).
Because of the occurrence of no-shows, a scheduled
client effectively brings in less work, so we observe
that the dome is pushed downward by approximately
the fraction with which no-shows occur. This happens
irrespectively of the weight chosen for idle time in the
objective function, cI.

More interesting, with no-shows we see that at the
beginning the optimization counteracts the possibility
of server idling; the first interarrival(s) decrease and
even become 0, which means starting a session with
more clients scheduled than the number of servers
s. This overbooking will typically be followed by a rel-
atively high interarrival time, as several panels in

Figure 8. Impact of No-Shows on the Optimal Appointment Schedule

(a) (b)

(c) (d)

Note. Extending the setting of Figure 1 (n � 24 and SCV � 0.25), varying no-show probabilities q for different numbers of pooled servers s and cost
parameters cI
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Figure 8 clearly show. In single-server equivalents, an
overbooking to the first slot only occurs at a no-show
probability of 40%, after which the dome-shaped pattern
commences. Overbooking is more persistent whenmore
servers are pooled, as for multiple servers it hedges
against the possibility of idling without costing more in
terms of waiting time, because the queue is serviced by
more than one server.

At the end of the schedules in Figure 8, we see that
no-shows dampen the idiosyncratic fluctuations. Com-
paring the top with the bottom panels, we observe that
the schedule has tightened, and overbooking has oc-
curred onmore occasions andwith greater severity. This
is the result of valuing idle time more importantly in the
objective function. Still, we see that also in these cases a
relatively long interarrival time follows, demonstrating
that the effect of no-shows cannot be dismissed.

6. Multiserver Appointment Scheduling
in Steady-State Settings

As noted in Cayirli and Veral (2003), steady state is
never reached in a real clinical session with a small
number of clients. However, as seen in the various fig-
ures that depict the optimal transient schedule, the
middlemost values converge quickly to a stationary
plateau. Therefore the steady-state counterparts of
these systems provide relevant insight for the tran-
sient setting and are appropriate for the majority of
clients. Indeed, studying the clinic in steady state has
lead to a fruitful stream of research (Lindley 1952,
Jansson 1966, Swisher et al. 2001, Kuiper et al. 2017).

The reason why the plateau of each dome converges
to the corresponding optimal steady-state interarrival
time is intuitive, because transient effects found at the
start and end of a session favour service providers.
Therefore waiting time is valued less in a transient
setting. In steady state these transient effects are ne-
glected, as the session has run forever, so that the ex-
tent of waiting time propagates to possibly all clients,
which results in the optimal stationary interarrival
time bounding the plateau of the dome from above.

In a stationary analysis, the transient effects at the
start and toward the end of the session are neglected.
As a result, the objective function reduces to an ele-
gant combination of idle time, which can be expressed
as excessive capacity, sx−EB, versus clients’ waiting
times, EW. Let x be the steady-state interarrival time;
then, without loss of generality, given cW ≡ 1, we find

arg min
x

cIEI(x) + cW EW(x) � arg min
x

cI sx+ES(x),
(24)

with S(x) as the sojourn-time distribution that obviously
depends on the stationary interarrival time x. Given the
fact that we minimize an objective function with cI <∞,

the utilization will never reach a fully loaded system so
that the existence of a steady-state solution is guaranteed
(Kiefer and Wolfowitz 1955, Whitt 1982). In the follow-
ing sections we propose twomethods that provide solu-
tions in this limiting regime.

6.1. Phase-Type Approach
The transition matrix that is obtained in Section 5 can
be used to compute the equilibrium distribution, π, by
considering the system’s embedded Markov chain.
Consider the system slightly before a new client’s ar-
rival: the system jumps to a state with an additional
client; then after x amount of time, the system should
have returned to its equilibrium distribution. The full
system contains an infinite number of states, but be-
cause the probability of having n clients in the system
goes rapidly to 0 as n grows large, we cut off the num-
ber of clients to be allowed in the system at n; in our
experiments, n � 40 has worked well. This allows the
computation of the steady-state distribution for a
given x by solving

π(n)
0 � f π(n),α

( )
Pn,where

Pn � exp (Sn+1x), 1− exp (Sn+1x)1[ ]
,

withπ(n)
0 :� π(n),π(n)

0

( )
and thusπ(n) having similar states

as p(n)(x) of Equation (12), so that the function f (·,α) as
defined in Equation (15) can be applied. The transition
matrix extended with the transitions to the empty state
can subsequently be used to obtain the steady-state
probabilities for each of the states in the vector πn by
solving the aforementioned system, cutting off the tran-
sitions to states with n + 1 clients and imposing the nor-
malization equationπ(n)

0 1 � 1:
This nonsingular system for the steady state can

solved by exploiting, for example, MATLAB’s built-in
routines to compute the matrix exponential and solve
the system of linear equations. Then πn can be used as
the initial probability vector αn, and the transition ma-
trix is just Sn, so that the performance metrics of Sec-
tion 4.2 can be computed and filled into the objective
function of (24). Optimization over x provides us with
the optimal stationary interarrival time x̄pt:

In Figure 9, where an equal cost ratio is chosen (cI� 1),
we observe a decreasing pattern in the expected idle and
waiting times when the number of servers increases. As
can be seen, the marginal decreases in idle and waiting
times are less for higher values of s, which is in line with
the theoretical result for waiting times in G/G/s queues
derived in Weber (1980). Furthermore, we see that the
performance gain achieved by pooling is greater when
the SCV is larger; SCV varies from 0.5 (reflecting healthcare
environments) to 1 (exponential service times).
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In the next section we make an interesting connec-
tion with appointment scheduling studied in a heavy-
traffic regime and compare the stationary solutions
obtained by the phase-type approach with those ob-
tained under heavy traffic for which elegant expres-
sions are derived.

6.2. Robust Schedules
The goal in many appointment scheduling problems
is to reduce the waiting time while keeping utilization
at a high level, so that no capacity is wasted. Conse-
quently, the idle time should be low so that the load
of the system is close to 1. This observation warrants
consideration of the problem in a heavy-traffic regime.
In our cases, this entails a steady-state interarrival time
x only slightly larger than the mean service time di-
vided by the number of servers (i.e., EB=s).

In fact, when s increases, our steady-state results us-
ing the method outlined in the preceding converge to
the results obtained in the heavy-traffic regime. Be-
cause the variability accrued is spread over multiple
servers, expected waiting and idle times will be lower
than in an equivalent system of single servers. Conse-
quently, higher utilizations are achieved; the interarrival
times are much closer to the service rate. Moreover, as
for the single-server case, as idle time is evaluated as
being more important, interarrival times tend to the ser-
vice rate; see also our numerical results in the previous
section. So it should generally hold that in these two
scenarios, a heavy-traffic approximation will provide an
accurate approximation.

Using the steady-state result for the G/G/s under a
heavy-traffic regime (see, e.g., theorem 2 in Köllerström
(1974) or section 5 inWhitt (1983)), we have

2s(sx − EB)
scv

W(x) ~ Exp(1), when x ↓ EB=s:

Specifically, because themeans are normalized, we can
rewrite the optimization problem of (24) for given cI,
which is easily solved using straightforward calculus:

x̄ht � 1
s
1 +

�����
scv
2cIs

√( )
� arg min

x∈(EB=s,∞)
cI(sx − 1) + scv

2s(sx − 1) :

Furthermore, because the second derivative in x is
positive, a global optimum is guaranteed. We observe
that the margin to account for randomness on top of
the average service rate is a multiplication of 1=

��
s

√
,

which tends to 0 as s increases.
Studying the optimal solution as a function of the

interarrival times, we observe in Figure 10 that for cI
values greater than 1, given that SCV is not too large,
the heavy-traffic solutions and the solutions ob-
tained by the phase-type approximation are nearly
the same. In fact, the graphs depicted in Figure 11
show that for low SCV values—say, SCV < 1—heavy-
traffic solutions provide accurate approximations
even when cI equals 1.

In addition, the corresponding expected idle and
waiting times provide insight into the patterns ob-
served in Figure 9 and are explicitly given by

EIht �
������
scv
2s cI

√
and EWht �

��������
scv cI
2s

√
: (25)

Figure 9. Stationary Expected Idle andWaiting Times

Note. Expected idle andwaiting times corresponding to the optimal stationary solutions for s ∈ {1,… , 8} using the embedded Markov chain from
the phase-type approach; cI � 1 and SCV is set to 0.5 or 1.
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For a decision maker, these expressions reveal how
the operational benefits of pooling can be concen-
trated on either one of the performance dimensions. If
utilization is the primary concern, idle times can even
be reduced by a factor of s, keeping waiting times the
same, by multiplying cI with s when servers are
pooled. Conversely, when waiting times are of para-
mount importance, cI should be divided by s.

Note that the setup discussed here is robust against
misspecification of the distribution and only depends
on the first two moments. Moreover, the waiting times

in heavy traffic coincide with the conjectured upper
bound on the waiting times for multiserver queues
(Daley 1997), equating the heavy-traffic results to those
obtained while minimizing the objective function un-
der theworst-case distribution (cf. Mak et al. (2015)).

7. Conclusion and Discussion
In this work, the intensively studied single-server ap-
pointment schedule problem is extended to a multi-
server setting. The multiserver setting introducesmany

Figure 10. Impact of the Cost Parameter on the Optimal Stationary Solution

Notes. SCV � 0.5, and the cost ratio varies from 5:1 to 1:10. Solutions computed using the phase-type approach x̄pt or the heavy-traffic approxima-
tion x̄ht.

Figure 11. Impact of the SCV on the Optimal Stationary Solution

Notes. c1I � 1 and the SCV ranges from 0 to 4. Solutions computed using the phase-type approach x̄pt or the heavy-traffic approximation x̄ht.
The solutions are differentiated according to the same legend as in Figure 10.
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obstacles to tracking and convexity that are not present
when only one server is considered. As a result, this
case is not studied in an analytical manner in the litera-
ture, although it features in many service systems. We
offer a computational approach to the multiserver set-
ting, relying on the tractability of phase-type distribu-
tions, which is employed to gain insight in the optimal
solution inmultiserver appointment schedules.

The impact of deviating from the class of phase-type
distributions in the transient setting would be a logical
avenue for further research. Furthermore, it remains
open whether in each instance a global optimum is
found. By the fact that our optimizations converged to
the same solution when varying start vectors—and
that, in corresponding heavy-traffic regimes, convexity
can be shown—we have strong reason to believe that
the problems considered are convex. Of course, this re-
mains a challenging line of research for queueing theo-
rists. Finally, confining the solutions over discrete
points in time might be an extension that might be of
particular value to practice; such a model is studied for
a single server in Zacharias and Yunes (2020).

A well-known result of single-server appointment
scheduling is the dome-shaped pattern. Contrasting
with the multiserver setting, there are some discrepan-
cies that arise at the start and the end of a session for
cases in which SCV is below 1—typical in many service
systems such as in healthcare (Cayirli and Veral 2003).
These patterns arise as a result of multiple servers
starting synchronously, each serving one client. The
apparent pattern is characterized by a damped bull-
whip, which converges in the middle to a steady-state
plateau as the randomness in the service times gradu-
ally suppresses these effects. At the end of the session,
the optimization tries to achieve a synchronous ending
of the servers, which culminates in a similar but re-
versed pattern in the optimal interarrival times.

These patterns gradually decrease when SCV tends
to 1; if SCV equals 1 (or is higher), the exponential dis-
tribution (or a mixture) is used for which a dome-
shaped pattern appears for multiple servers as well.
The inclusion of overtime has the same impact as in-
corporating idle time in the optimization. If idle time
is valued more importantly, pooled appointment
schedules are tightened, and the atypical start and
end patterns of sessions are damped. Experiments
further reveal that including no-shows lowers the pla-
teau by the fraction in which they occur, and the strik-
ing multiserver patterns at the end are damped. At
the start of the session, no-shows result in overbook-
ing, which, in the case of low SCV values, is followed
by an extremely large interarrival time. This idiosyn-
cratic initialization behavior persists even for higher
cost parameters.

In addition, a relevant selection of cases provides
practitioners insight into the decisions and trade-offs

that arise. In detail, the performance gains of pooled
appointment systems versus equivalent systems of sin-
gly operating servers are analyzed in a framework that
incorporates service-time variation. Focusing on the
waiting times, the analysis shows that the expected
waiting times are reduced by about 31% when two
servers are pooled and by an astounding 53% for four
servers. Similar double-digit reductions are reported
for expected idle time and overtime. For example, in
healthcare, the comparison unravels the implicit cost
of continuity of care.

The optimal stationary schedule is also studied,
which approximates the dome-shaped plateau arising
in the transient setting. Notice that with more servers,
the variation in the system is reduced, and thus a
heavy-traffic regime becomes an appropriate model-
ing framework. The optimal solution in this regime
has an algebraic expression. Moreover, this regime
elucidates that the expected idle or waiting times
decrease by a factor of

��
s

√
when s servers are pooled.

Finally, it is likely that the heavy-traffic solution coin-
cides with the conjectured upper bound (Daley 1997)
on the expected waiting time in a multiserver setting
and is thus robust. As such, this study provides a
comprehensive account of the multiserver appoint-
ment scheduling problem, which was as yet unac-
counted for in the field.
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