Computers & Industrial Engineering 169 (2022) 108185

ELSEVIER

Contents lists available at ScienceDirect
Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Computers &
Industrial
Engineering

t.)

Check for

Improved control chart performance using cautious parameter learning ol

Leo C.E. Huberts , Rob Goedhart, Ronald J.M.M. Does

Department of Business Analytics, University of Amsterdam, Plantage Muidergracht 12, 1018TV Amsterdam, the Netherlands

ARTICLE INFO ABSTRACT

Keywords:

Estimation Effects

Statistical Process Monitoring
Shewhart

CUSUM

EWMA

Parameter estimation is an important topic in Statistical Process Monitoring, as inaccurate estimates may lead to
undesirable control chart performance. Updating the control chart limits during the monitoring period reduces
estimation uncertainty. However, when out-of-control situations remain undetected, using the corresponding
samples to update the parameter estimates can deteriorate the control chart performance in terms of in-control
and out-of-control run lengths. For this reason, updating parameter estimates should only occur when there is

sufficient evidence of an in-control process state. In this article, we study the performance of a cautious updating
scheme for the Shewhart, Cumulative Sum, and Exponentially Weighted Moving Average control charts. We
propose simple rules for updating parameters that improve the out-of-control performance of the control charts.
We show the added value of using these updating rules in practice through a case study using data from a truck

manufacturer.

1. Introduction

Control charts are used to monitor quality indicators in industry and
services. A wide range of charts has been developed. The Shewhart,
Cumulative Sum (CUSUM) and Exponentially Weighted Moving
Average (EWMA) control charts, introduced by Shewhart (1926), Page
(1954) and Roberts (1959), respectively, are the most commonly used
charts in practice. These three charts were developed to detect changes
in the underlying process, often called assignable or special cause vari-
ation. The Shewhart chart is simple to interpret and implement and is
capable of quickly detecting large shifts in the mean of the process
quality indicator. The CUSUM and EWMA charts are more difficult to
interpret, as both incorporate previous observations in their plotting
statistic. These two charts are generally better at detecting small shifts
(see Vera do Carmo et al. (2004) for a comparison).

All three mentioned charts have parameters that need to be esti-
mated in practice. This causes uncertainty in the charts’ performance.
The effects of this uncertainty have been widely researched in recent
years and solutions have been proposed to deal with this uncertainty.
Jensen et al. (2006) and Psarakis et al. (2014) conducted literature re-
views on this parameter estimation in control charts and identified di-
rections for future research. Recently, several researchers have proposed
adjusted control chart designs based on guaranteed in-control perfor-
mance (see, e.g. Gandy and Kvalgy, 2013, Saleh et al. (2015, 2016)
Goedhart et al. (2017a, 2017b), Zwetsloot and Ajadi (2019), Diko et al.
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(2019)). One of the directions that can further improve conditional
control chart performance concerns re-estimating the control limits of a
control chart. A few studies have been published on this topic, among
which Huberts et al. (2019), investigating the effects of updating the
control limits in various scenarios and Capizzi and Masarotto (2020),
proposing a delayed updating procedure for the Shewhart, CUSUM, and
EWMA charts. This article builds upon this work as Huberts et al. (2019)
show that updating can improve performance in certain settings and the
proposed delayed updating by Capizzi and Masarotto (2020) is a
promising approach.

In this article, we evaluate and extend the approach of Capizzi and
Masarotto (2020). Depending on the practitioner’s needs important
choices have to be made concerning if and when to update. These
choices depend on the type of control chart, the sizes of mean deviations
deemed important, and the desired false alarm rate. We will therefore
investigate the performance of the updating procedure for different
control charts, deviations and desired false alarm rates. Based on this,
we will extend the approach of Capizzi and Masarotto (2020) to improve
performance across a wide range of settings.

The article is structured as follows. In the next section, we provide
the designs of the Shewhart, CUSUM, and EWMA charts. This is followed
by an explanation of the procedure proposed by Capizzi and Masarotto
(2020) in Section 3. In the subsequent section, we analyze the perfor-
mance of this procedure in various settings. Subsequently, the adjust-
ments to the procedure are motivated in Section 5 and a practical
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example is given in Section 6. In the last section, we provide some
concluding remarks.

2. Control Chart Designs

In this section, we outline the Shewhart, CUSUM, and EWMA control
chart designs. Let x; denote the observation at time i. Assume that in
Phase I an in-control sample of m observations is available. Phase I runs
fromi=—-m+1toi = 0. Further, we assume that the Phase I samples are
independently and identically N(u,0?) distributed and that the obser-
vations in Phase II are independently and identically N(u+dc,0?)
distributed. Note that Phase II starts ati = 1.

In practice, for each of the three control charts 4 and ¢ are unknown
and need to be estimated. There are a range of estimators that can be
used, the choice of which is outside of the scope of this study (see, e.g., Li
et al. (2019), Testik et al. (2020), Montgomery (2013) for more details
on this). We use the same estimators for each chart in this study. The
parameter y is estimated by

1 i
X = - 1
M= E *r) @

r=—m+1

Further, o is estimated by

) 1/2
1 : 5
R E % ) 2
K (m +i—1 ~, (e =%) ) @

The following subsections outline the Shewhart, CUSUM, and EWMA
control chart designs, based on a Phase I in-control sample of size m.

2.1. Shewhart Control Chart

The estimated Shewhart control limits are given by

UCL =Xy + Lyso, 3)
LCL = X0 — LSS()7

where X, is given by (1) and so by (2), while L is some positive constant
for the Shewhart control chart which we elaborate on in Section 2.4. The

Shewhart control chart signals if x; is larger than UCL or smaller than
ICL.
2.2. CUSUM Control Chart

The two-sided cumulative sum (CUSUM) control chart uses the cu-
mulative sum of observations to monitor the process. The upper and

lower statistics are calculated by

cr = max(o,c,tl ﬁﬂfk) )
So

c;:min<o,c,.:1+x"7x°+k), (5)

So

with the chart parameter k>0 and Cg = C, = 0. This CUSUM chart
signals if either C; < —Lc or C; > L, where the critical value L. is a
positive constant for the CUSUM control chart defined in Section 2.4.

2.3. EWMA Control Chart

The EWMA control chart weighs observations over time. The EWMA
statistic is defined as
Zi = Jxi+(1-2)Z;_, (6)

where 0 < 4 <1 and Z; equals the mean estimate X;. For 1 = 1 the
EWMA control chart is equal to the Shewhart control chart. The EWMA

Computers & Industrial Engineering 169 (2022) 108185

control limits for monitoring the process at timei =m + 1,m + 2,...are

_ 2 ;

UCL; = Xy + L.so m[l - (1- 1)2'} 7

LCL; =% — L, b (1= 2% (8)
i = Xo eSO 21

where 1 and L, determine the in-control performance. When Z; falls
above (below) lﬁi (L/C\Li) the process is considered out-of-control.

2.4. Critical Value L

The performance of the three control charts depends heavily on the
choice of the critical value L (L, for the Shewhart, L. for the CUSUM, and
L, for the EWMA control chart). Classical control chart design would
suggest using a value of L that delivers the desired in-control ARL for
known parameters. In recent years the focus has shifted towards using a
value for L that guarantees a certain probability that the in-control ARL
will be at least the desired ARL value, as proposed by Gandy and Kvalgy
(2013) and others (see for example, Jones and Steiner (2012), Saleh
et al. (2015, 2016), Goedhart et al. (2017a, 2017b)). In that setting, the
value L is determined such that Prob(ARL;. > ARLy) =1 —f, where ARL,
is the desired average run length and g is the accepted (small) proba-
bility that the average run length will be shorter than ARLg. The value of
L, given ARL, and f3, can be determined using analytical or numerical/
Monte Carlo procedures.

3. Updating the Control Chart Limits

The control chart designs as described in the previous section assume
a fixed Phase I sample for monitoring. In many cases, in-control Phase II
data could be used to re-estimate Eqgs. (1) and (2) and update the control
limits. Updating the estimates of the mean and standard deviation could
occur after every new observation as with self-starting control charts
(Hawkins (1987) and Quesenberry (1991)).

Huberts et al. (2019) recently explored a variety of scenarios and
concluded that updating is often a good choice but the type of chart and
size of shift (5) are important. Furthermore, the outcome depends on the
ability of practitioners to retrospectively identify out-of-control samples.
A potential hazard of an updating scheme is that small shifts may not
directly be detected, in which case the corresponding out-of-control
observations would be used in the updated in-control parameter esti-
mates. An approach to counter this is to use a delay in updating, as is
done by Capizzi and Masarotto (2020). The effect of updating the con-
trol limits on the control chart performance depends heavily on pa-
rameters m, 5, ARLy, the type of chart, and the choices made by
practitioners related to the data and the moment of updating.

The approach of Capizzi and Masarotto (2020) is to update Egs. (1)
and (2) using a delay. Monitoring begins at time i = 1. The main concept
is that at some time i > O, if it is reasonable to assume the process is in
control the newly collected samples together with the initial m Phase I
observations can be used to determine updated values of Egs. (1) and
(2). This reduces the parameter estimation uncertainty. The time at
which an update occurs could be fixed beforehand or determined using
the collected samples. Capizzi and Masarotto (2020) propose a solution
for the latter option, using the following inequality

i — 2
3 <m> < Ad; — B, )

i1 Si—d;

where d; counts the number of samples from the last update, d; = 1,A
and B are parameters that need to be set by the practitioner. As long as
this inequality does not hold, d; (the updating delay) is increased by one
(i.e. di;1 =d; + 1). Thus, the right-hand side of the inequality increases
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Fig. 1. Percentage of control charts with a first update before a signal for ARL, = 370.

by A every i as long as there is no update. Capizzi and Masarotto (2020)
propose using the values A = 1.5 and B = 50. As we will show in the
following section, this procedure can result in a deterioration of out-of-
control chart performance. Improvements can be made to the settings,
which we will propose in Section 5.

3.1. Unconditional Expectation

The unconditional expectation of an individual term in the sum on
the left-hand side of Inequality (9) can be shown to be (cf. Appendix A)

Xj — Xi—q, : m—1 , 1
= 146 +—
Si—d; m—73 m

for m > 3. This shows that, in expectation, the left-hand side of
Inequality (9) increases faster with larger values of § thus confirming
that the procedure is less likely to update when a mean shift has
occurred. For example, given an in-control process with § =0 and m =
50, the expectation equals 1.0634. Therefore, in expectation, for values
A < 1.0634 the left-hand side of Inequality (9) increases faster than the
right-hand side, preventing updates. For § = 0.5,m = 50 the expectation
in Eq. (10) equals 1.324. Then for A = 1.5 as considered by Capizzi and
Masarotto (2020), in expectation, the right-hand side of Inequality (9)
grows more quickly than the left-hand side. The setting for B does not
affect the growth rate but does determine the delay. A larger value of B
means that the right-hand side of Inequality (9) starts at a lower negative
value, leading to larger updating delays. The settings for A and B are
very important for the chart performance, as we demonstrate in the
following sections.

E

(10)

3.2. Conditional Expectation

We will now consider the conditional expectation of the sum on the
left-hand side of Inequality (9). We only consider the time until the first
update, such that d; = i until the update is done, so that X;_4, = Xo and
Si_d4, = So, and such that Inequality (9) becomes

i — 2
§;<ﬁ4fg < Ai-B
S0

=1

(1D

In Appendix B we show that the expectation of the left-hand side of
Inequality (11), conditional on X, and sy, is equal to

i —\2 - 2
Xi—Xo\ _ . " —Xo 2\ o
E{Z ( ’ S0 ) |XU7SO:| l(l ( I 5) ) 53"

(12)

J=1

Next, we replace the sum in the left-hand side of Inequality (11) by its
expectation, so that we obtain the following inequality

X 2 2
i(1+<u+5) ) 2 <Ai-B
c s

We use this inequality to provide an estimate of the expected time to the
first update (ETFU). Since B should be a positive number in this method,

13

note that this inequality will never be true if (1 + (""T§0 + 6)2 ) ‘s’—sz. If
0

(1 + (R4 5)2 ) % < A, then we can solve the inequality for i and find
0

that
B

i> . a4

A= (1040’ 3

0
Thus, our estimate of ETFU, conditional on X, and sy, is equal to
_ B

ETFU|%, so = 15)

A7(1+(@+5)2> 2
0

where [.] represents the ceiling function. The ETFU shows that B and A
are important, as well as the shift size § and the parameter estimation
error. Although the ETFU itself is an approximation, it provides some
useful insight into the essence of the problem at hand. For example,
given § = 0.5,Xg = p,s2 = 62,A = 1.5,and B = 50, the expected first
update will occur at ETFU = 200. For the Shewhart chart with ARLy =
500 the unconditional ARL for § = 0.5 equals 202. This means that, in
expectation, this Shewhart chart will update the parameter estimates
with out-of-control observations before it is able to signal them.
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Table 1
Average run lengths (ARL) for 6,000 simulated control charts and m = 50 in-control Phase I samples.
m 50
4 0 0.25 0.5 0.75 1 1.5 2 0 025 0.5 075 1 1.5 210 0.25 0.5 0.75 1 1.5 2
A B Shewhart EWMA CUSUM
0 0 7388 6321 3242 1178 527 103 28 | 9528 4018 535 78 25 8 5| 12572 6878 1341 205 43 9 5
1 50 | 1255 1197 1160 827 458 98 31 | 1420 858 276 73 24 8 5| 1431 1020 457 139 39 9 5
100 | 1417 1358 1197 828 480 103 26 | 1598 996 295 |69 24 8 511623 1136 478 (137 39 9 5
200 | 1692 1633 1387 863 451 110 29 | 2017 1145 308 71 24 8 512000 1366 528 (136 38 9 5
1.25 50 | 726 698 654 553 394 101 28 | 781 583 278 88 26 8 5 | 802 680 405 148 42 9 5
100 | 835 793 736 622 409 100 27 | 888 633 273 76 24 8 5 | 884 730 401 139 39 9 5
200 | 981 968 856 672 437 105 29 | 1060 735 271 76 25 8 5 | 1081 853 425 [135 39 9 5
1.5 50 | 686 659 594 469 320 106 28 | 677 565 296 97 25 8 5 | 729 651 437 186 50 9 5
100 | 726 704 625 491 338 103 27 | 740 577 293 82 25 8 5| 796 645 436 158 43 9 5
200 | 798 782 662 536 347 101 27 | 856 658 264 76 24 8 5 | 887 759 411 150 [ 38 9 5
2 50 | 585 | 569 548 466 300 7O 20| 561 [487 269 102 23 7 5| 591 551 417 213 68 |8 4
100 | 615 611 557 458 289 77 21 | 634 511 273 81 23 8 5 | 657 588 396 180 49 '8 4
200 | 690 676 589 464 284 87 25 | 713 574 268 71 22 8 5| 753 650 406 155 40 9 5

3.3. The Updating Parameters

To analyze the impact of A,B, and § on the time to update and on the
ARL performance we use a Monte Carlo simulation because analytical
expressions for the three control charts are unfeasible. We do this by
determining the probability that a control chart will update the
parameter estimates before it produces an out-of-control signal. We
perform a simulation for the Shewhart chart, but the same principle
applies to the EWMA and CUSUM charts. We apply the following pro-
cedure for ARLy = 200, 370 and 500:

Forj =1,2,...,6,000:

1. Simulate a N(0, 1) Phase I sample X]’ of size m = 50 and calculate x;
and soj, which are the Phase I estimates according to Egs. (1) and (2),
respectively, for sample X]I .

. Initiate the Shewhart control charts using xp; and so; for all nine
combinations of A € {1,1.25,1.5},B € {50,100,200},m = 50 and
the CautiousLearning R-package of Capizzi and Masarotto (2020)

. Simulate N(5,1) distributed Phase IT samples X}, of size 1,000,000

for a wide range of § (0.0,0.25,0.5,...,2.0) and calculate the first
update FUy; and first signal FSs given Xo; and so;.
. If j < 6,000 increment j by 1 and go back to step 1

5. Calculate the percentage of charts that have a first update before first
90 1 (FU 5 <FSy
signal as % where I(FUs < FSs5) =1 when FUy < FSy

and I(FU,;J‘ < FS(;j) =0if FU§j>FS§j.

The results of the simulation procedure for ARLy = 370 and various
combinations of §,A and B are shown in Fig. 1. For ARLy; = 200 the
percentages of charts that update before signaling are slightly lower and
for ARLy = 500 slightly higher.

Fig. 1 shows that for values of § smaller than 1.5, the charts often
update using out-of-control observations. For example, given ARLy =
370,A =1.5,B = 50 and 6 = 0.5 the percentage of Shewhart charts that
update before signalling is larger than 60%. This means that there is a
substantial risk of using out-of-control observations to update in-control
parameter estimates, which may negatively affect control chart

performance, as we show in the next section.
4. Performance

The previous section has shown that there is a large likelihood of
updating control limits using out-of-control samples. The effects on
chart performance in terms of in-control and out-of-control average run
lengths are studied in this section.

We perform a Monte Carlo simulation to assess the effects of the
updating parameters (A, B) and the shift size (5) on the control chart
performance. For the Shewhart, EWMA, and CUSUM charts we set
ARLy = 370, where we consider k = 1 (CUSUM) and 1 = 0.2 (EWMA) as
in Capizzi and Masarotto (2020) for comparison purposes. We have also
analyzed k = 0.5,4 = 0.5,ARLy = 200 and ARLy = 500 for which the
results were very similar. See Hawkins and Wu (2014) for a comparison
of the Shewhart, EMWA and CUSUM charts with various design
parameters.

We let § vary from O to 2 in steps of 0.25, A from 1 to 2 in steps of 0.5,
B from 50 to 200 in steps of 50 and include the reference without-
updating ARL values (A = 0, B = 0). For each combination of §, A,
and B we simulate 6,000 Shewhart, EWMA, and CUSUM charts using
the CautiousLearning R-package (Capizzi and Masarotto (2020)) and
calculate the ARL as the average of the run lengths of these 6, 000 charts.
Note that  the charts  are configured  to achieve
Prob(ARL;. > ARLy) =1 —p as described in Section 2.4, therefore the
realized ARL values with 5§ = 0 will not be equal to the ARL, values, and
may differ across control chart types. For 5 > 0 the ARL values are a
measure of the detection power of the control chart, as also used in
Capizzi and Masarotto (2020).

The results for m = 50 are reported in Table 1. Since the control
charts are designed to provide a guaranteed in-control (5§ = 0) perfor-
mance when parameters are estimated, we focus on the out-of-control
(6 > 0) performance here. Note that in the out-of-control situation
smaller ARL values are preferred. Therefore, for each out-of-control
column in Table 1, smaller ARL values are indicated with darker
shading. The lowest value is printed in bold.

We can evaluate the performance of the different combinations of A
and B in the various scenarios. A first observation is that the values
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Fig. 2. Histograms of 10 million simulated Shewhart control limits based on m = 50 (dark grey) and updated control limits using an additional 115 contaminated

observations (light grey).

chosen by Capizzi and Masarotto (2020), A = 1.5 and B = 50, are sub-
optimal for all cases. The Shewhart chart performs best for larger values
of A regardless of §. It appears that updating the parameter estimates is
very important for the Shewhart control chart performance in this

Table 2

situation. For the EWMA and CUSUM charts the optimal parameters do
not show a clear pattern, but for small values of § = (0.25,0.5) it is best
to update quickly using a larger value for A and a smaller value for B. For
larger values of 8, better results are achieved for smaller values of A and

Average run lengths (ARL) for 6,000 simulated control charts and m = 250 in-control Phase I samples.

m | 250

4 0 025 05 075 1 1.5 2 10 0.25

05 075 1 1.5 2|0 025 05 075 1 15 2

A B Shewhart EWMA CUSUM

0 0 895 636 330 163 84 25 9 |821 252 58 23 12 6 4| 957 428 41 18 6 4

1 50 | 659 541 . 163 81 24 9 |624 60 22 12 6 4| 668 126 40 18 6 4
100 | 715 572 331 162 84 25 9 | 675 252 22 12 6 4| 740 401 41 17 6 4
200 | 779 603 - 81 25 9 |717 58 22 12 6 4|78 430 123 40 18 6 4

1.25 50 | 569 516 358 170 84 25 9 | 538 266
100 | 582 526 339 166 81 24 9 | 569 255
200 | 649 547 327 163 84 26 10| 619 251
1.5 50 | 533 508 389 190 82 24 9 |507 277
100 | 566 519 371 170 . 24 9 | 538 274
200 | 590 531 338 163 84 24 9 | 568 250

2 50 528.453 317 128 9 | 488 288

100 | 547 1503 420 262 98 24 500 273

200 | 554 510 390 205 82 24 9 |539 271

58

71

62

59

22 126 4583 415 142 42 17 6 4
22 12 6 4602 403 132 40 18 6 4
22 126 4659 . 122 41 17 6 4
21 12 6 4 |537 436 176 44 17 6 4
22 12 6 4 |572 420 146 40 . 6 4

22 12 6 4 599.132 40 17 6 4

41526 429 208 54 17 6 4

21 541 418 180 46 17

12 6 4 |563 418 158 .17 4
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Table 3
Average run lengths (ARL) for 6,000 simulated control charts and m = 500 in-control Phase I samples.
m | 500
o 0 025 05 075 1 1.5 210 025 05 075 1 1.5 210 025 05 075 1 1.5 2
A B Shewhart EWMA CUSUM
0 0 627 474 247 117 65 20 8 | 572 183 47 19 11 6 41640 322 97 35 15 6 4
1 50 | 572 449 254 130 65 21 8| 542 180 49 20 11 6 41578 313 102 35 16 6 3
100 | 581 483 252 123 66 20 8 |543 181 47 20 11 6 41594 310 96 35 16 6 4
200 | 604 469 244 125 64 21 8 | 570 [179 46 20 11 6 41628 314 95 36 15 6 4
1.25 50 | 523 467 273 124 65 21 8| 497 202 47 19 11 6 41525 346 110 | 34 16 ' 6 4
100 | 516 444 261 126 66 21 8| 518 193 49 20 11 6 41540 326 101 36 16 6 4
200 | 559 459 250 127 64 21 8 |528 187 47 19 11 6 1| 556 323 99 35 16 6 4
1.5 50 | 501 459 326 145 65 20 8 |489 218 48 19 11 6 41513 353 121 35 16 6 4
100 | 510 468 306 125 |63 21 8 |492 202 47 19 11 6 41531 350 112 35 15 6 4
200 | 534 446 262 125 66 20 8 | 512 194 146 19 11 6 41540 323 100 35 16 6 4
2 50 | 498 461 354 220 84 20 8472 218 51 19 11 6 4| 504 359 136 37 16 6 3
100 | 502 464 345 186 73 20 8 | 473 213 48 20 11 6 4 |507 350 123 36 15 6 4
200 | 520 452 320 146 65 20 8 | 483 197 47 20 11 6 41516 345 113 34 16 6 4

larger values of B.

We conclude that updating the parameter estimates using contami-
nated samples can have a positive effect on performance. This surprising
finding is due to the large parameter estimation uncertainty when m =
50. To illustrate this, we calculate the unconditional expected time to
first update using Eq. (15). We then compare the estimated upper con-
trol limit values using only the m samples of Phase I to the estimated
upper control limit when using m +ETFUj;,, samples. The latter updates
the control limits using contaminated Phase II data.

We simulated control limits based on two scenarios. The first sce-
nario is a Phase I sample consisting of m = 50 in-control observations
from a standard normal distribution. For the second scenario, we
consider Phase II observations with a small shift of § = 0.25. The ex-
pected time to the first update for § =0.25 and m =50 equals
ETFU;s-0.25m—50 = 115 samples. Because of this, we consider estimated
control limits based on 165 observations of which 50 have mean 0 and
115 have mean 0.25 in the second scenario (all with unit variance). The
results are displayed in Fig. 2. The control limits for the first scenario are
displayed in dark grey, and the control limits for the second scenario are
displayed in light grey.

The distribution of the updated control limits in light grey is more
narrow due to updating the parameter estimates. A small bias has been
introduced, as Phase II samples with mean deviation § = 0.25 have been
included in the parameter estimates. However, the updated limits are on
average still more accurate than the original Phase I control limits. The
reduction in parameter uncertainty outweighs the small bias that is
introduced. This is because the value of Ls (cf. Section 2.4) required to
guarantee a minimum in-control performance will be smaller when
more observations are available. In particular, for the non-updated
limits we have Ly = 3.61 for m = 50, while for the updated limits we
have L; = 3.26 when using estimates based on 165 observations (cf. the
CautiousLearning R-package by Capizzi and Masarotto (2020)). As a
consequence, even though a positive bias is introduced in the estimate of
the mean, the estimated control limits will move closer towards X in this
situation.

We have repeated the Monte Carlo simulation of Table 1 for larger
Phase I sample sizes m = (250, 500). The results for m = 250 are re-
ported in Table 2, and for m = 500 in Table 3. Consider Table 2 withm =
250. Compared to Table 1, the parameter estimation error is smaller.
For the smallest § = 0.25, the Shewhart chart should still update quickly
using parameters A = 2 and B = 50. For values of § > 0.5 this is not the
case, as setting A =1 and B = 200 provides better results here. The
EWMA and CUSUM charts show a similar pattern for small values of A.
The CUSUM does require a lower value of B for small §. Table 3 shows
the results when m = 500. In this case the Phase I sample size is larger
still and hence parameter estimation is more accurate. Table 3 clearly
shows that A=1 or A =1.25 generally performs well. This means
updating very slowly or not at all. For the Shewhart chart with § = 0.75
the best performing chart is the non-updating chart A = 0,B = 0. Note
that for large shifts (6 = 1.5,2), for almost all charts and all m, setting
A =2 and B = 50 achieves the optimal ARL.

5. Improvements

In this section, we discuss the optimal settings when (cautiously)
updating the Shewhart, EWMA, and CUSUM charts. As shown in the
previous section these settings depend on the number of Phase I samples
m, the desired in-control average run length (ARLj), and the mean shift
d.

The first general result is that the EWMA chart given the chosen
parameter settings yields the smallest out-of-control ARL values for all
combinations of § and m. The second general finding is that for large
Phase I sample sizes (i.e. m>500), updating the limits often has negative
effects on the control chart performance. This is in line with the rec-
ommendations in the literature that at least m = 300 samples are needed
to sufficiently reduce variability in control chart performance (Ques-
enberry (1993)). Thus, when a sufficient number of observations
(m>500) are available, we recommend using the EWMA chart for §<1
and not updating the Phase I parameter estimates.

The optimal choice of A and B depends on the value of § that is
important to the practitioner, as well as the number of available in-
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Fig. 3. Torque measurements in Newton-meter used to fasten bolts in truck engines.

control Phase I samples m. Tables 1-3 give guidance on choosing the

optimal values of A and B. To be able to use these results in an algorithm

or software package, we have translated the findings from these tables These rules will result in the use of the values of A and B that deliver

into a few very simple rules of thumb. These rules were determined good out-of-control performance and less unnecessary updating when a

using the set of equations that follow from Tables 1-3 and will result in large number of Phase I samples are available. Note that these rules

values for A and B that are close to optimal. apply to the specific settings investigated in this paper and do not

(necessarily) generalize to other control chart settings.

1. For large numbers of Phase I samples (m:>500) consider if updating is
still necessary.

2. For detecting moderate to large shifts (5§ > 1) set A = 2,B = 50.

3. For detecting small shifts (§<1) use the following rules. For the
Shewhart chart set A and B as

5.1. Signal behavior

The main motivation for updating control chart limits during
monitoring (Phase II) is a lack of sufficient reliable Phase I data when
1 m—50 monitoring is required. Thus any updating monitoring scheme should

A= max< {2 - 5'5‘ ~ 7250 —‘ 0) (16) consider signal behavior. Capizzi and Masarotto (2020) advise to re-run
Phase I methods on all data collected so far, and re-estimating the pa-

B = (m+50)|5]. a7 rameters with the remaining representative observations. Huberts et al.
(2019) presented examples of scenarios where updating and continued
For the EWMA and CUSUM charts set A and B as use of the chart after a signal is beneficial. If the practitioner can
retrospectively identify out-of-control samples and remove them from

4 m— 50 . . .
A =max| |2— §|5 | — 750 ,0 (18) the data, the chart can safely be updated even after signals. In situations

where this is not possible and there is no way to distinguish a false alarm
from a correct out-of-control signal, updating is often inadvisable. This

B =2(m+50)|6|. 19 .
(m 19| a9 does depend on the values of §,m, and the chart that is used (Huberts
et al. (2019)).
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Fig. 4. The Shewhart control chart during monitoring in Phase II, updating the limits (A = 1.5,B = 50).
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Fig. 5. The Shewhart control chart during monitoring in Phase II, updating the limits using the rules of thumb in Section 5 (A = 2,B = 30.4).

6. Case Study

In this section, we demonstrate the (cautious) updating procedure
using data of the torque of Torque-to-Yield bolts at PACCAR, a global
manufacturer of medium- and heavy-duty trucks (see also Goedhart
et al. (2016) and Goedhart et al. (2020)). This example considers the
bolts as fasteners at engines, and the applied torque on them. The
measurements are performed by a process engineer for process moni-
toring. The bolts are tightened using a very specific procedure, during
which the torque is measured at several moments (in Newton-meters). It
is of major importance to monitor these torque values, and substantial
changes in these values can indicate that the wrenches need to be
recalibrated. For example, the performance of the used wrenches can
deteriorate over time, which can result in fasteners being too tight or too
loose. It is thus of major importance to detect such out-of-control
situations.

To illustrate the use of the updating procedures, we use a data set of
340 observations. The first m = 102 observations (in 6 batches of 17
measurements per engine) are used to determine the Phase I estimates.
The set of 238 remaining observations (in 14 batches of 17 measure-
ments per engine) are monitored in Phase II. An overview of the 340
observations is given in Fig. 3. Note that a shift appears shortly after
measurement 200, as multiple measurements greatly exceed the
maximum values detected in the first 200 observations. We set the
desired ARL = 200 and minimum important deviation § = 0.2.

The resulting Shewhart control chart using updating parameters A =
1.5and B = 50, in line with Capizzi and Masarotto (2020), is depicted in
Fig. 4. As described in the previous section, these settings are quite
conservative which results in no updates during the 238 observations in
Phase II. As can be observed, using these settings leads to an out-of-
control signal at the 255th observation.

The Shewhart control chart using the updating rules of Section 5 is
presented in Fig. 5. For m = 102,ARL = 200 and & = 0.2 these rules
result in updating values A = 2 and B = 30.4, which trigger multiple
updates of the control limits. In this case, this also results in earlier
detection of the out-of-control situation (i.e. more than two batches
earlier than the 220th observation).

7. Conclusion

In this paper, we investigated the cautious parameter updating

approach of Capizzi and Masarotto (2020). Parameter estimation is an
issue when determining control limits for the Shewhart, EWMA, and
CUSUM control charts, and can have a substantial impact on the control
chart performance. One approach to dealing with the estimation error is
to update the parameter estimates during Phase II.

We evaluated the cautious updating approach of Capizzi and
Masarotto (2020) and propose adjustments to their procedure. An
approximation of the expected time to the first parameter update shows
that choosing the appropriate updating parameters is important to
prevent incorporating contaminated samples in the parameter esti-
mates. We have shown that the average run lengths are a result of the
mean deviation §, the number of Phase I samples m, and the updating
parameters A and B. To ensure optimal Phase II performance, formulas
were developed for A and B given the available Phase I data and the
value of § that is important to the practitioner. Using these formulas
delivers promising control chart performance.

In a case study using data from a multinational truck manufacturer,
we demonstrated the added value of updating the control limits for
torque measurements. The updating procedure works especially well
when using Egs. (16)—(19) as rules for updating according to Inequality
(9).

Updating control chart limits is a logical step towards reducing
parameter estimation uncertainty. However, updating using contami-
nated samples can cause the estimates to spiral out of control. The
methods described in this paper greatly reduce the probability of
updating using contaminated samples, while still benefitting from the
improved estimation accuracy when possible.
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Appendix A

A.1. Expectation - Unconditional

In this section, we consider the unconditional expectation of Inequality (9). For the left-hand side of Inequality (9), it is possible to determine the
expectation of an individual term in the sum. First, note that

x;~N(u+60,6%),
Xi—d; ™~ N(ﬂvo-z/m)v

(m - l)sl{dl

2
~ Y-
- m—1

Since x; and X;_q, are independent, we also know that x; —X;_q ~ N(56,6%(1 + 1/m)). Denote ¥ = 2% We can then rewrite this into
J i P J i Sid:

Y = Xj — Xi—q,
Si—d;

_ i T (xj —Xi—a; — 56)/(0\/TZ> +56/(6\/m) 20)

Z+6/x/1+1/m
VV/v

=+/1+1/m

—Xi_q,—00 . . (m-1)s2 ;. . . .
where Z = % is a standard normal variable, and V = — U is a chi-squared variable with v = m —1 degrees of freedom. Next, note that
o m

Z+5/\/1+1/m
e

follows a noncentral t-distribution with v = m —1 degrees of freedom and noncentrality parameter y = 6/1/1 + 1/m. Consequently, F = T? follows a
noncentral F-distribution with v; = 1 numerator degrees of freedom, v = v = m —1 denominator degrees of freedom, and noncentrality parameter
2 =y? =81 +1/m).

To get back to (9), for m > 3 the expectation of an individual term in the sum on the left-hand side of the inequality can be calculated to be

_ 2
E[(M) = E|Y?| = <1+1>E F
Si—d; m
~1(1 §2L
(e at1) ey
m m—3

() ()

A.2. B. Expectation of Sum - Conditional

Consider the conditional expectation of the sum on the left-hand side of Inequality (9). We only consider the time until the first update, such that
d; = i until the update is done, so that X;_4, = Xo and s;_q, = So, and such that Inequality (9) becomes

i — 2
5 <M> < Ai—B. (22)
So

J=1

Xj—Xo
So

= 2
_ U — X c o

Y;[Xo, 50 ~ N(—' +0—— ),
5o 50" 83

Consider Y; = . Conditional on X, and sy, we know that

or equivalently

H—Xo
c

SEOYJ"X(),SONN< +(3,1)

We then rewrite the left-hand side of Inequality (22) into
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i (x =%\’ d
Z J 0 _ § :YZ
. J
j=1 So =

0_2

=%
So

(23)

where C; = L, (2Y; ?. Note that Ci[Xo,so follows a noncentral chi-square distribution with i degrees of freedom and noncentrality parameter
j=1\¢"J

l(‘% + 6)2. From this, we calculate the expectation of the left-hand side of Inequality (11), conditional on X, and s, to be

2
E |:O-—2C, |XO7 So:|
S

0
A2\ & (24)
—i(1+ (P "40) ) %
o S0
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