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A B S T R A C T   

Parameter estimation is an important topic in Statistical Process Monitoring, as inaccurate estimates may lead to 
undesirable control chart performance. Updating the control chart limits during the monitoring period reduces 
estimation uncertainty. However, when out-of-control situations remain undetected, using the corresponding 
samples to update the parameter estimates can deteriorate the control chart performance in terms of in-control 
and out-of-control run lengths. For this reason, updating parameter estimates should only occur when there is 
sufficient evidence of an in-control process state. In this article, we study the performance of a cautious updating 
scheme for the Shewhart, Cumulative Sum, and Exponentially Weighted Moving Average control charts. We 
propose simple rules for updating parameters that improve the out-of-control performance of the control charts. 
We show the added value of using these updating rules in practice through a case study using data from a truck 
manufacturer.   

1. Introduction 

Control charts are used to monitor quality indicators in industry and 
services. A wide range of charts has been developed. The Shewhart, 
Cumulative Sum (CUSUM) and Exponentially Weighted Moving 
Average (EWMA) control charts, introduced by Shewhart (1926), Page 
(1954) and Roberts (1959), respectively, are the most commonly used 
charts in practice. These three charts were developed to detect changes 
in the underlying process, often called assignable or special cause vari-
ation. The Shewhart chart is simple to interpret and implement and is 
capable of quickly detecting large shifts in the mean of the process 
quality indicator. The CUSUM and EWMA charts are more difficult to 
interpret, as both incorporate previous observations in their plotting 
statistic. These two charts are generally better at detecting small shifts 
(see Vera do Carmo et al. (2004) for a comparison). 

All three mentioned charts have parameters that need to be esti-
mated in practice. This causes uncertainty in the charts’ performance. 
The effects of this uncertainty have been widely researched in recent 
years and solutions have been proposed to deal with this uncertainty. 
Jensen et al. (2006) and Psarakis et al. (2014) conducted literature re-
views on this parameter estimation in control charts and identified di-
rections for future research. Recently, several researchers have proposed 
adjusted control chart designs based on guaranteed in-control perfor-
mance (see, e.g. Gandy and Kvaløy, 2013, Saleh et al. (2015, 2016) 
Goedhart et al. (2017a, 2017b), Zwetsloot and Ajadi (2019), Diko et al. 

(2019)). One of the directions that can further improve conditional 
control chart performance concerns re-estimating the control limits of a 
control chart. A few studies have been published on this topic, among 
which Huberts et al. (2019), investigating the effects of updating the 
control limits in various scenarios and Capizzi and Masarotto (2020), 
proposing a delayed updating procedure for the Shewhart, CUSUM, and 
EWMA charts. This article builds upon this work as Huberts et al. (2019) 
show that updating can improve performance in certain settings and the 
proposed delayed updating by Capizzi and Masarotto (2020) is a 
promising approach. 

In this article, we evaluate and extend the approach of Capizzi and 
Masarotto (2020). Depending on the practitioner’s needs important 
choices have to be made concerning if and when to update. These 
choices depend on the type of control chart, the sizes of mean deviations 
deemed important, and the desired false alarm rate. We will therefore 
investigate the performance of the updating procedure for different 
control charts, deviations and desired false alarm rates. Based on this, 
we will extend the approach of Capizzi and Masarotto (2020) to improve 
performance across a wide range of settings. 

The article is structured as follows. In the next section, we provide 
the designs of the Shewhart, CUSUM, and EWMA charts. This is followed 
by an explanation of the procedure proposed by Capizzi and Masarotto 
(2020) in Section 3. In the subsequent section, we analyze the perfor-
mance of this procedure in various settings. Subsequently, the adjust-
ments to the procedure are motivated in Section 5 and a practical 
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example is given in Section 6. In the last section, we provide some 
concluding remarks. 

2. Control Chart Designs 

In this section, we outline the Shewhart, CUSUM, and EWMA control 
chart designs. Let xi denote the observation at time i. Assume that in 
Phase I an in-control sample of m observations is available. Phase I runs 
from i = − m+1 to i = 0. Further, we assume that the Phase I samples are 
independently and identically N(μ, σ2) distributed and that the obser-
vations in Phase II are independently and identically N(μ+δσ, σ2)

distributed. Note that Phase II starts at i = 1. 
In practice, for each of the three control charts μ and σ are unknown 

and need to be estimated. There are a range of estimators that can be 
used, the choice of which is outside of the scope of this study (see, e.g., Li 
et al. (2019), Testik et al. (2020), Montgomery (2013) for more details 
on this). We use the same estimators for each chart in this study. The 
parameter μ is estimated by 

xi =
1

m + i

∑i

r=− m+1
xr , (1)  

Further, σ is estimated by 

si =

(
1

m + i − 1
∑i

r=− m+1
(xr − xi)

2

)1/2

. (2)  

The following subsections outline the Shewhart, CUSUM, and EWMA 
control chart designs, based on a Phase I in-control sample of size m. 

2.1. Shewhart Control Chart 

The estimated Shewhart control limits are given by 

ÛCL = x0 + Lss0,

L̂CL = x0 − Lss0,
(3)  

where x0 is given by (1) and s0 by (2), while Ls is some positive constant 
for the Shewhart control chart which we elaborate on in Section 2.4. The 
Shewhart control chart signals if xi is larger than ÛCL or smaller than 
L̂CL. 

2.2. CUSUM Control Chart 

The two-sided cumulative sum (CUSUM) control chart uses the cu-
mulative sum of observations to monitor the process. The upper and 
lower statistics are calculated by 

C+
i = max

(

0,C+
i− 1 +

xi − x0

s0
− k
)

(4)  

C−
i = min

(

0,C−
i− 1 +

xi − x0

s0
+ k
)

, (5)  

with the chart parameter k⩾0 and C+
0 = C−

0 = 0. This CUSUM chart 
signals if either C−

i < − Lc or C+
i > Lc, where the critical value Lc is a 

positive constant for the CUSUM control chart defined in Section 2.4. 

2.3. EWMA Control Chart 

The EWMA control chart weighs observations over time. The EWMA 
statistic is defined as 

Zi = λxi +(1 − λ)Zi− 1 (6)  

where 0 < λ ≤ 1 and Z0 equals the mean estimate x0. For λ = 1 the 
EWMA control chart is equal to the Shewhart control chart. The EWMA 

control limits for monitoring the process at time i = m + 1,m + 2,…are 

ÛCLi = x0 +Les0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ

2 − λ

[

1 − (1 − λ)2i
]√

(7)  

L̂CLi = x0 − Les0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ

2 − λ

[

1 − (1 − λ)2i
]√

(8)  

where λ and Le determine the in-control performance. When Zi falls 
above (below) ÛCLi (L̂CLi) the process is considered out-of-control. 

2.4. Critical Value L 

The performance of the three control charts depends heavily on the 
choice of the critical value L (Ls for the Shewhart, Lc for the CUSUM, and 
Le for the EWMA control chart). Classical control chart design would 
suggest using a value of L that delivers the desired in-control ARL for 
known parameters. In recent years the focus has shifted towards using a 
value for L that guarantees a certain probability that the in-control ARL 
will be at least the desired ARL value, as proposed by Gandy and Kvaløy 
(2013) and others (see for example, Jones and Steiner (2012), Saleh 
et al. (2015, 2016), Goedhart et al. (2017a, 2017b)). In that setting, the 
value L is determined such that Prob(ARLic > ARL0) = 1 − β, where ARL0 
is the desired average run length and β is the accepted (small) proba-
bility that the average run length will be shorter than ARL0. The value of 
L, given ARL0 and β, can be determined using analytical or numerical/ 
Monte Carlo procedures. 

3. Updating the Control Chart Limits 

The control chart designs as described in the previous section assume 
a fixed Phase I sample for monitoring. In many cases, in-control Phase II 
data could be used to re-estimate Eqs. (1) and (2) and update the control 
limits. Updating the estimates of the mean and standard deviation could 
occur after every new observation as with self-starting control charts 
(Hawkins (1987) and Quesenberry (1991)). 

Huberts et al. (2019) recently explored a variety of scenarios and 
concluded that updating is often a good choice but the type of chart and 
size of shift (δ) are important. Furthermore, the outcome depends on the 
ability of practitioners to retrospectively identify out-of-control samples. 
A potential hazard of an updating scheme is that small shifts may not 
directly be detected, in which case the corresponding out-of-control 
observations would be used in the updated in-control parameter esti-
mates. An approach to counter this is to use a delay in updating, as is 
done by Capizzi and Masarotto (2020). The effect of updating the con-
trol limits on the control chart performance depends heavily on pa-
rameters m, δ, ARL0, the type of chart, and the choices made by 
practitioners related to the data and the moment of updating. 

The approach of Capizzi and Masarotto (2020) is to update Eqs. (1) 
and (2) using a delay. Monitoring begins at time i = 1. The main concept 
is that at some time i > 0, if it is reasonable to assume the process is in 
control the newly collected samples together with the initial m Phase I 
observations can be used to determine updated values of Eqs. (1) and 
(2). This reduces the parameter estimation uncertainty. The time at 
which an update occurs could be fixed beforehand or determined using 
the collected samples. Capizzi and Masarotto (2020) propose a solution 
for the latter option, using the following inequality 

∑i

j=i− di+1

(
xj − xi− di

si− di

)2

< Adi − B, (9)  

where di counts the number of samples from the last update, d1 = 1,A 
and B are parameters that need to be set by the practitioner. As long as 
this inequality does not hold, di (the updating delay) is increased by one 
(i.e. di+1 = di + 1). Thus, the right-hand side of the inequality increases 
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by A every i as long as there is no update. Capizzi and Masarotto (2020) 
propose using the values A = 1.5 and B = 50. As we will show in the 
following section, this procedure can result in a deterioration of out-of- 
control chart performance. Improvements can be made to the settings, 
which we will propose in Section 5. 

3.1. Unconditional Expectation 

The unconditional expectation of an individual term in the sum on 
the left-hand side of Inequality (9) can be shown to be (cf. Appendix A) 

E

[(
xj − xi− di

si− di

)2
]

=

(
m − 1
m − 3

)(

1 + δ2 +
1
m

)

(10)  

for m > 3. This shows that, in expectation, the left-hand side of 
Inequality (9) increases faster with larger values of δ thus confirming 
that the procedure is less likely to update when a mean shift has 
occurred. For example, given an in-control process with δ = 0 and m =

50, the expectation equals 1.0634. Therefore, in expectation, for values 
A < 1.0634 the left-hand side of Inequality (9) increases faster than the 
right-hand side, preventing updates. For δ = 0.5,m = 50 the expectation 
in Eq. (10) equals 1.324. Then for A = 1.5 as considered by Capizzi and 
Masarotto (2020), in expectation, the right-hand side of Inequality (9) 
grows more quickly than the left-hand side. The setting for B does not 
affect the growth rate but does determine the delay. A larger value of B 
means that the right-hand side of Inequality (9) starts at a lower negative 
value, leading to larger updating delays. The settings for A and B are 
very important for the chart performance, as we demonstrate in the 
following sections. 

3.2. Conditional Expectation 

We will now consider the conditional expectation of the sum on the 
left-hand side of Inequality (9). We only consider the time until the first 
update, such that di = i until the update is done, so that xi− di = x0 and 
si− di = s0, and such that Inequality (9) becomes 

∑i

j=1

(
xj − x0

s0

)2

< Ai − B. (11)  

In Appendix B we show that the expectation of the left-hand side of 
Inequality (11), conditional on x0 and s0, is equal to 

E

[
∑i

j=1

(
xj − x0

s0

)2

|x0, s0

]

= i
(

1 +
(μ − x0

σ + δ
)2
)

σ2

s2
0
. (12)  

Next, we replace the sum in the left-hand side of Inequality (11) by its 
expectation, so that we obtain the following inequality 

i
(

1 +
(μ − x0

σ + δ
)2
)

σ2

s2
0
< Ai − B (13)  

We use this inequality to provide an estimate of the expected time to the 
first update (ETFU). Since B should be a positive number in this method, 

note that this inequality will never be true if 
(

1 +
( μ− x0

σ + δ
)2
)

σ2

s2
0
⩾A. If 

(
1 +

( μ− x0
σ + δ

)2
)

σ2

s2
0
< A, then we can solve the inequality for i and find 

that 

i⩾
B

A −
(

1 +
( μ− x0

σ + δ
)2
)

σ2

s2
0

(14)  

Thus, our estimate of ETFU, conditional on x0 and s0, is equal to 

ETFU|x0, s0 =

⎡

⎢
⎢
⎢
⎢
⎢

B

A −
(

1 +
( μ− x0

σ + δ
)2
)

σ2

s2
0

⎤

⎥
⎥
⎥
⎥
⎥

(15)  

where ⌈.⌉ represents the ceiling function. The ETFU shows that B and A 
are important, as well as the shift size δ and the parameter estimation 
error. Although the ETFU itself is an approximation, it provides some 
useful insight into the essence of the problem at hand. For example, 
given δ = 0.5, x0 = μ, s2

0 = σ2,A = 1.5,and B = 50, the expected first 
update will occur at ETFU = 200. For the Shewhart chart with ARL0 =

500 the unconditional ARL for δ = 0.5 equals 202. This means that, in 
expectation, this Shewhart chart will update the parameter estimates 
with out-of-control observations before it is able to signal them. 

Fig. 1. Percentage of control charts with a first update before a signal for ARL0 = 370.  
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3.3. The Updating Parameters 

To analyze the impact of A,B, and δ on the time to update and on the 
ARL performance we use a Monte Carlo simulation because analytical 
expressions for the three control charts are unfeasible. We do this by 
determining the probability that a control chart will update the 
parameter estimates before it produces an out-of-control signal. We 
perform a simulation for the Shewhart chart, but the same principle 
applies to the EWMA and CUSUM charts. We apply the following pro-
cedure for ARL0 = 200,370 and 500: 

For j = 1,2,…,6,000:  

1. Simulate a N(0, 1) Phase I sample XI
j of size m = 50 and calculate x0,j 

and s0,j, which are the Phase I estimates according to Eqs. (1) and (2), 
respectively, for sample XI

j .  
2. Initiate the Shewhart control charts using x0,j and s0,j for all nine 

combinations of A ∈ {1,1.25,1.5},B ∈ {50,100,200},m = 50 and 
the CautiousLearning R-package of Capizzi and Masarotto (2020)  

3. Simulate N(δ, 1) distributed Phase II samples XII
δj of size 1, 000,000 

for a wide range of δ (0.0,0.25,0.5,…,2.0) and calculate the first 
update FUδj and first signal FSδj given x0,j and s0,j.  

4. If j < 6, 000 increment j by 1 and go back to step 1  
5. Calculate the percentage of charts that have a first update before first 

signal as 
∑6,000

j=1
I(FUδj<FSδj)

6,000 where I(FUδj < FSδj) = 1 when FUδj < FSδj 

and I(FUδj < FSδj) = 0 if FUδj⩾FSδj. 

The results of the simulation procedure for ARL0 = 370 and various 
combinations of δ,A and B are shown in Fig. 1. For ARL0 = 200 the 
percentages of charts that update before signaling are slightly lower and 
for ARL0 = 500 slightly higher. 

Fig. 1 shows that for values of δ smaller than 1.5, the charts often 
update using out-of-control observations. For example, given ARL0 =

370,A = 1.5,B = 50 and δ = 0.5 the percentage of Shewhart charts that 
update before signalling is larger than 60%. This means that there is a 
substantial risk of using out-of-control observations to update in-control 
parameter estimates, which may negatively affect control chart 

performance, as we show in the next section. 

4. Performance 

The previous section has shown that there is a large likelihood of 
updating control limits using out-of-control samples. The effects on 
chart performance in terms of in-control and out-of-control average run 
lengths are studied in this section. 

We perform a Monte Carlo simulation to assess the effects of the 
updating parameters (A, B) and the shift size (δ) on the control chart 
performance. For the Shewhart, EWMA, and CUSUM charts we set 
ARL0 = 370, where we consider k = 1 (CUSUM) and λ = 0.2 (EWMA) as 
in Capizzi and Masarotto (2020) for comparison purposes. We have also 
analyzed k = 0.5, λ = 0.5,ARL0 = 200 and ARL0 = 500 for which the 
results were very similar. See Hawkins and Wu (2014) for a comparison 
of the Shewhart, EMWA and CUSUM charts with various design 
parameters. 

We let δ vary from 0 to 2 in steps of 0.25,A from 1 to 2 in steps of 0.5,
B from 50 to 200 in steps of 50 and include the reference without- 
updating ARL values (A = 0, B = 0). For each combination of δ, A, 
and B we simulate 6,000 Shewhart, EWMA, and CUSUM charts using 
the CautiousLearning R-package (Capizzi and Masarotto (2020)) and 
calculate the ARL as the average of the run lengths of these 6, 000 charts. 
Note that the charts are configured to achieve 
Prob(ARLic > ARL0) = 1 − β as described in Section 2.4, therefore the 
realized ARL values with δ = 0 will not be equal to the ARL0 values, and 
may differ across control chart types. For δ > 0 the ARL values are a 
measure of the detection power of the control chart, as also used in 
Capizzi and Masarotto (2020). 

The results for m = 50 are reported in Table 1. Since the control 
charts are designed to provide a guaranteed in-control (δ = 0) perfor-
mance when parameters are estimated, we focus on the out-of-control 
(δ > 0) performance here. Note that in the out-of-control situation 
smaller ARL values are preferred. Therefore, for each out-of-control 
column in Table 1, smaller ARL values are indicated with darker 
shading. The lowest value is printed in bold. 

We can evaluate the performance of the different combinations of A 
and B in the various scenarios. A first observation is that the values 

Table 1 
Average run lengths (ARL) for 6,000 simulated control charts and m = 50 in-control Phase I samples.  
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chosen by Capizzi and Masarotto (2020), A = 1.5 and B = 50, are sub- 
optimal for all cases. The Shewhart chart performs best for larger values 
of A regardless of δ. It appears that updating the parameter estimates is 
very important for the Shewhart control chart performance in this 

situation. For the EWMA and CUSUM charts the optimal parameters do 
not show a clear pattern, but for small values of δ = (0.25,0.5) it is best 
to update quickly using a larger value for A and a smaller value for B. For 
larger values of δ, better results are achieved for smaller values of A and 

Fig. 2. Histograms of 10 million simulated Shewhart control limits based on m = 50 (dark grey) and updated control limits using an additional 115 contaminated 
observations (light grey). 

Table 2 
Average run lengths (ARL) for 6,000 simulated control charts and m = 250 in-control Phase I samples.  
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larger values of B. 
We conclude that updating the parameter estimates using contami-

nated samples can have a positive effect on performance. This surprising 
finding is due to the large parameter estimation uncertainty when m =

50. To illustrate this, we calculate the unconditional expected time to 
first update using Eq. (15). We then compare the estimated upper con-
trol limit values using only the m samples of Phase I to the estimated 
upper control limit when using m+ETFUδ,m samples. The latter updates 
the control limits using contaminated Phase II data. 

We simulated control limits based on two scenarios. The first sce-
nario is a Phase I sample consisting of m = 50 in-control observations 
from a standard normal distribution. For the second scenario, we 
consider Phase II observations with a small shift of δ = 0.25. The ex-
pected time to the first update for δ = 0.25 and m = 50 equals 
ETFUδ=0.25,m=50 = 115 samples. Because of this, we consider estimated 
control limits based on 165 observations of which 50 have mean 0 and 
115 have mean 0.25 in the second scenario (all with unit variance). The 
results are displayed in Fig. 2. The control limits for the first scenario are 
displayed in dark grey, and the control limits for the second scenario are 
displayed in light grey. 

The distribution of the updated control limits in light grey is more 
narrow due to updating the parameter estimates. A small bias has been 
introduced, as Phase II samples with mean deviation δ = 0.25 have been 
included in the parameter estimates. However, the updated limits are on 
average still more accurate than the original Phase I control limits. The 
reduction in parameter uncertainty outweighs the small bias that is 
introduced. This is because the value of Ls (cf. Section 2.4) required to 
guarantee a minimum in-control performance will be smaller when 
more observations are available. In particular, for the non-updated 
limits we have Ls = 3.61 for m = 50, while for the updated limits we 
have Ls = 3.26 when using estimates based on 165 observations (cf. the 
CautiousLearning R-package by Capizzi and Masarotto (2020)). As a 
consequence, even though a positive bias is introduced in the estimate of 
the mean, the estimated control limits will move closer towards x in this 
situation. 

We have repeated the Monte Carlo simulation of Table 1 for larger 
Phase I sample sizes m = (250, 500). The results for m = 250 are re-
ported in Table 2, and for m = 500 in Table 3. Consider Table 2 with m =

250. Compared to Table 1, the parameter estimation error is smaller. 
For the smallest δ = 0.25, the Shewhart chart should still update quickly 
using parameters A = 2 and B = 50. For values of δ > 0.5 this is not the 
case, as setting A = 1 and B = 200 provides better results here. The 
EWMA and CUSUM charts show a similar pattern for small values of A. 
The CUSUM does require a lower value of B for small δ. Table 3 shows 
the results when m = 500. In this case the Phase I sample size is larger 
still and hence parameter estimation is more accurate. Table 3 clearly 
shows that A = 1 or A = 1.25 generally performs well. This means 
updating very slowly or not at all. For the Shewhart chart with δ = 0.75 
the best performing chart is the non-updating chart A = 0,B = 0. Note 
that for large shifts (δ = 1.5,2), for almost all charts and all m, setting 
A = 2 and B = 50 achieves the optimal ARL. 

5. Improvements 

In this section, we discuss the optimal settings when (cautiously) 
updating the Shewhart, EWMA, and CUSUM charts. As shown in the 
previous section these settings depend on the number of Phase I samples 
m, the desired in-control average run length (ARL0), and the mean shift 
δ. 

The first general result is that the EWMA chart given the chosen 
parameter settings yields the smallest out-of-control ARL values for all 
combinations of δ and m. The second general finding is that for large 
Phase I sample sizes (i.e. m⩾500), updating the limits often has negative 
effects on the control chart performance. This is in line with the rec-
ommendations in the literature that at least m = 300 samples are needed 
to sufficiently reduce variability in control chart performance (Ques-
enberry (1993)). Thus, when a sufficient number of observations 
(m⩾500) are available, we recommend using the EWMA chart for δ⩽1 
and not updating the Phase I parameter estimates. 

The optimal choice of A and B depends on the value of δ that is 
important to the practitioner, as well as the number of available in- 

Table 3 
Average run lengths (ARL) for 6,000 simulated control charts and m = 500 in-control Phase I samples.  

L.C.E. Huberts et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 169 (2022) 108185

7

control Phase I samples m. Tables 1–3 give guidance on choosing the 
optimal values of A and B. To be able to use these results in an algorithm 
or software package, we have translated the findings from these tables 
into a few very simple rules of thumb. These rules were determined 
using the set of equations that follow from Tables 1–3 and will result in 
values for A and B that are close to optimal.  

1. For large numbers of Phase I samples (m⩾500) consider if updating is 
still necessary.  

2. For detecting moderate to large shifts (δ > 1) set A = 2,B = 50.  
3. For detecting small shifts (δ⩽1) use the following rules. For the 

Shewhart chart set A and B as 

A = max
(⌈

2 −
1
2
|δ| −

m − 50
250

⌉

, 0
)

(16)  

B = (m+ 50)|δ|. (17)  

For the EWMA and CUSUM charts set A and B as 

A = max
(⌈

2 −
4
3
|δ| −

m − 50
250

⌉

, 0
)

(18)  

B = 2(m+ 50)|δ|. (19)   

These rules will result in the use of the values of A and B that deliver 
good out-of-control performance and less unnecessary updating when a 
large number of Phase I samples are available. Note that these rules 
apply to the specific settings investigated in this paper and do not 
(necessarily) generalize to other control chart settings. 

5.1. Signal behavior 

The main motivation for updating control chart limits during 
monitoring (Phase II) is a lack of sufficient reliable Phase I data when 
monitoring is required. Thus any updating monitoring scheme should 
consider signal behavior. Capizzi and Masarotto (2020) advise to re-run 
Phase I methods on all data collected so far, and re-estimating the pa-
rameters with the remaining representative observations. Huberts et al. 
(2019) presented examples of scenarios where updating and continued 
use of the chart after a signal is beneficial. If the practitioner can 
retrospectively identify out-of-control samples and remove them from 
the data, the chart can safely be updated even after signals. In situations 
where this is not possible and there is no way to distinguish a false alarm 
from a correct out-of-control signal, updating is often inadvisable. This 
does depend on the values of δ,m, and the chart that is used (Huberts 
et al. (2019)). 

Fig. 3. Torque measurements in Newton-meter used to fasten bolts in truck engines.  

Fig. 4. The Shewhart control chart during monitoring in Phase II, updating the limits (A = 1.5,B = 50).  
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6. Case Study 

In this section, we demonstrate the (cautious) updating procedure 
using data of the torque of Torque-to-Yield bolts at PACCAR, a global 
manufacturer of medium- and heavy-duty trucks (see also Goedhart 
et al. (2016) and Goedhart et al. (2020)). This example considers the 
bolts as fasteners at engines, and the applied torque on them. The 
measurements are performed by a process engineer for process moni-
toring. The bolts are tightened using a very specific procedure, during 
which the torque is measured at several moments (in Newton-meters). It 
is of major importance to monitor these torque values, and substantial 
changes in these values can indicate that the wrenches need to be 
recalibrated. For example, the performance of the used wrenches can 
deteriorate over time, which can result in fasteners being too tight or too 
loose. It is thus of major importance to detect such out-of-control 
situations. 

To illustrate the use of the updating procedures, we use a data set of 
340 observations. The first m = 102 observations (in 6 batches of 17 
measurements per engine) are used to determine the Phase I estimates. 
The set of 238 remaining observations (in 14 batches of 17 measure-
ments per engine) are monitored in Phase II. An overview of the 340 
observations is given in Fig. 3. Note that a shift appears shortly after 
measurement 200, as multiple measurements greatly exceed the 
maximum values detected in the first 200 observations. We set the 
desired ARL = 200 and minimum important deviation δ = 0.2. 

The resulting Shewhart control chart using updating parameters A =

1.5 and B = 50, in line with Capizzi and Masarotto (2020), is depicted in 
Fig. 4. As described in the previous section, these settings are quite 
conservative which results in no updates during the 238 observations in 
Phase II. As can be observed, using these settings leads to an out-of- 
control signal at the 255th observation. 

The Shewhart control chart using the updating rules of Section 5 is 
presented in Fig. 5. For m = 102,ARL = 200 and δ = 0.2 these rules 
result in updating values A = 2 and B = 30.4, which trigger multiple 
updates of the control limits. In this case, this also results in earlier 
detection of the out-of-control situation (i.e. more than two batches 
earlier than the 220th observation). 

7. Conclusion 

In this paper, we investigated the cautious parameter updating 

approach of Capizzi and Masarotto (2020). Parameter estimation is an 
issue when determining control limits for the Shewhart, EWMA, and 
CUSUM control charts, and can have a substantial impact on the control 
chart performance. One approach to dealing with the estimation error is 
to update the parameter estimates during Phase II. 

We evaluated the cautious updating approach of Capizzi and 
Masarotto (2020) and propose adjustments to their procedure. An 
approximation of the expected time to the first parameter update shows 
that choosing the appropriate updating parameters is important to 
prevent incorporating contaminated samples in the parameter esti-
mates. We have shown that the average run lengths are a result of the 
mean deviation δ, the number of Phase I samples m, and the updating 
parameters A and B. To ensure optimal Phase II performance, formulas 
were developed for A and B given the available Phase I data and the 
value of δ that is important to the practitioner. Using these formulas 
delivers promising control chart performance. 

In a case study using data from a multinational truck manufacturer, 
we demonstrated the added value of updating the control limits for 
torque measurements. The updating procedure works especially well 
when using Eqs. (16)–(19) as rules for updating according to Inequality 
(9). 

Updating control chart limits is a logical step towards reducing 
parameter estimation uncertainty. However, updating using contami-
nated samples can cause the estimates to spiral out of control. The 
methods described in this paper greatly reduce the probability of 
updating using contaminated samples, while still benefitting from the 
improved estimation accuracy when possible. 
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Fig. 5. The Shewhart control chart during monitoring in Phase II, updating the limits using the rules of thumb in Section 5 (A = 2,B = 30.4).  
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Appendix A 

A.1. Expectation - Unconditional 

In this section, we consider the unconditional expectation of Inequality (9). For the left-hand side of Inequality (9), it is possible to determine the 
expectation of an individual term in the sum. First, note that 

xj ∼ N
(
μ + δσ, σ2),

xi− di ∼ N
(
μ, σ2/m

)
,

(
m − 1

)
s2

i− di

σ ∼ χ2
m− 1.

Since xj and xi− di are independent, we also know that xj − xi− di ∼ N
(
δσ, σ2(1 + 1/m)

)
. Denote Y =

xj − xi− di
si− di

. We can then rewrite this into 

Y =
xj − xi− di

si− di

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/m

√
(
xj − xi− di − δσ

)/(
σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/m

√ )
+ δσ

/(
σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/m

√ )

si− di/σ

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/m

√ Z + δ
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 1/m
√

̅̅̅̅̅̅̅̅
V/ν

√

(20)  

where Z =
xj − xi− di − δσ
σ
̅̅̅̅̅̅̅̅̅̅̅
1+1/m

√ is a standard normal variable, and V =
(m− 1)s2

i− di
σ2 is a chi-squared variable with ν = m − 1 degrees of freedom. Next, note that 

T =
Z + δ

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/m

√

̅̅̅̅̅̅̅̅
V/ν

√

follows a noncentral t-distribution with ν = m − 1 degrees of freedom and noncentrality parameter γ = δ/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + 1/m

√
. Consequently, F = T2 follows a 

noncentral F-distribution with ν1 = 1 numerator degrees of freedom, ν2 = ν = m − 1 denominator degrees of freedom, and noncentrality parameter 
λ = γ2 = δ2(1 + 1/m). 

To get back to (9), for m > 3 the expectation of an individual term in the sum on the left-hand side of the inequality can be calculated to be 

E

[(
xj − xi− di

si− di

)2
]

= E

[

Y2

]

=

(

1 +
1
m

)

E

[

F

]

=

(

1 +
1
m

)
(
m − 1

)(
1 + δ2 m

m + 1

)

m − 3

=

(
m − 1
m − 3

)(

1 + δ2 +
1
m

)

.

(21)  

A.2. B. Expectation of Sum - Conditional 

Consider the conditional expectation of the sum on the left-hand side of Inequality (9). We only consider the time until the first update, such that 
di = i until the update is done, so that xi− di = x0 and si− di = s0, and such that Inequality (9) becomes 

∑i

j=1

(
xj − x0

s0

)2

< Ai − B. (22)  

Consider Yj =
xj − x0

s0
. Conditional on x0 and s0, we know that 

Yj|x0, s0 ∼ N
(

μ − x0

s0
+ δ

σ
s0
,
σ2

s2
0

)

,

or equivalently 

s0

σ Yj|x0, s0 ∼ N
(μ − x0

σ + δ, 1
)
.

We then rewrite the left-hand side of Inequality (22) into 
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∑i

j=1

(
xj − x0

s0

)2

=
∑i

j=1
Y2

j

=
σ2

s2
0
Ci

(23) 

where Ci =
∑i

j=1

( s0
σ Yj
)2. Note that Ci|x0, s0 follows a noncentral chi-square distribution with i degrees of freedom and noncentrality parameter 

i
( μ− x0

σ + δ
)2. From this, we calculate the expectation of the left-hand side of Inequality (11), conditional on x0 and s0, to be 

= E
[

σ2

s2
0
Ci|x0, s0

]

= i
(

1 +
(μ − x0

σ + δ
)2
)

σ2

s2
0

(24)  
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