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ABSTRACT
Complexity manifests itself in many ways when attempting to solve different problems, and
different tools are needed to deal with the different dimensions underlying that complexity.
Not all complexity is created equal. We find that most treatments of complexity in problem
solving within both the statistical and quality literature focus narrowly on technical com-
plexity, which includes complexity of subject matter knowledge as well as complexity in the
data access and analysis of that data. The literature lacks an understanding of how political
complexity or organizational complexity interferes with good technical solutions when try-
ing to deploy a solution. Therefore, people trained in statistical problem solving are ill-
prepared for the situations they are likely to face on real projects. We propose a framework
that illustrates examples of complexity from our own experiences, and the literature. This
framework highlights the need for more holistic problem-solving approaches and a broader
view of complexity. We also propose approaches to successfully navigate complexity.
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Introduction

Organizations around the world have many problems
to solve. These problems range from simple to broad
and complex. The complexity that arises from prob-
lem solving can appear in many ways. It is crucial to
recognize these different types of complexity to be
able to correctly address them in problem solving. A
recent online article (Guy 2020) noted: “I am talking
with the data scientists, who are showing me the
clever machine learning models they developed with
more than 90% accuracy and complaining that the
business people are ignoring their models and prefer
to use their old manual process.”

To illustrate what happens when complexity is not
recognized, consider the experience of one of the
authors (Willis) earlier in their career. Fresh out of
school in a new job, he was asked to join a process
improvement team for a manufacturing plant. This
diverse, small team was composed of several capable
individuals with a high level of experience in the tools
for process improvement, including the plant leader.
As a result, there was strong leadership support and a
clear mandate to solve the problem of low yields in
the plant. Financial analysis suggested that even a
small improvement in the yield could result in signifi-
cant savings. The goal was clear, and a good team was

put together that knew how to use the tools, so suc-
cess was assured, right?

On the contrary, after a few months of work, the
team was disbanded with no demonstrable improve-
ments or financial benefits realized. Why? There were
several factors. First, the team found it difficult to get
the necessary data that would allow them to diagnose
some of the root causes for low yields. There was
yield data for different process steps but no other sys-
tems in place to easily track the measurements of the
process variables. Obtaining the right data turned out
to be much more complicated than anticipated.

Second, all the team members had roles outside the pro-
ject team and over time, priorities on other projects got in
the way of the work that the process improvement team
was able to do. Managing the requirements of multiple
projects also proved complex. Finally, there were a lot of
great improvement ideas that resulted from discussions
with those who were most experienced with the process.
However, the amount of work necessary to implement
some of these solutions was more than anticipated. Some
of the solutions needed the cooperation of multiple manu-
facturing teams to implement across the full manufacturing
process and the team was not able to deploy those solu-
tions. The organizational complexity, not anticipated ini-
tially, turned out to be a barrier to progress.
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As a second example, another author (Roger) spent
several years early in his career at the now-defunct
Scott Paper Company. For the first several years, he led
an initiative to deploy statistical process control (SPC)
and experimental design (DOE) methods across Scott’s
US paper mills. He organized a high-level, cross-func-
tional core team to plan the effort, communicated this
plan extensively with leadership at each paper mill, and
arranged for top-notch technical training of the resour-
ces who would lead the deployment at individual mills.
Further, he maintained a close network of these resour-
ces to share experiences and best practices during
deployment. Several positive case studies resulted,
which had significant financial impact. However, after
about four years, it became clear that no fundamental
change in how the paper mills were operated, nor in
their financial results, had occurred. What went wrong?

With hindsight, Roger was naïve about the com-
plexities of deploying a major initiative across an
organization. He was ignorant of the political environ-
ment at the leadership levels of Scott Paper, and how
complex some of the relationships were. For example,
the initiative was championed by a middle manager,
Roger’s boss, and other managers quickly picked up
on the fact that this initiative was more “optional”
than those being driven by senior leadership. While
they were cooperative and allowed their employees to
participate in training efforts, some had no real inten-
tion of actually utilizing these trained employees to
drive improvement. Some did not believe SPC or
DOE would produce improvement, and all were
struggling with limited resources and more initiatives
than they could handle. Something had to give. One
openly stated that providing people for training was a
means of getting their “tickets punched.” In short, the
overall failure of the effort had nothing to do with the
technical complexities of applying SPC or DOE; where
these were utilized, positive results poured in.

A more successful case study, which illustrates how
some of these issues can be successfully addressed, will
be presented below. Our goal in this paper is to high-
light different types of complexity illustrated in these
three examples. We provide a framework for under-
standing these different types of complexity. Within the
framework, we describe its elements as well as some of
the tools that can be used to address complex problems.

Complexity framework

Before we provide a framework for understanding
complexity, we start with a definition of what we mean
by complex problems. An apt description of the

different kinds of problems comes from Gawande
(2011), who described 3 major categories of problems.
Simple problems involve a known recipe that you can
follow, such as baking a cake. This would be akin to a
flowchart that tells you which statistical method you
need to use for a specific type of dataset. Complicated
problems are much more challenging, such as sending
a rocket to the moon. However, complicated problems
often can be broken down into a set of simple prob-
lems. It takes a lot of knowledge and skills, often from
many people. But once you have solved the problem
once, it is much easier to do it a second time and rep-
licate the success because the laws of physics do not
change. The process to do it can be improved over
time. This would be analogous to many process
improvement projects. Once you have figured out how
to maximize the yield for a manufacturing process, it
becomes easier to do that for other similar processes.

Conversely, complex problems are described as
analogous to raising a child. No wise parent would
claim that what works in raising one child works for
all children. Each child has a unique personality and a
different set of methods and techniques are needed.
While there are some general principles of child rais-
ing that can be useful, there is no recipe to follow.
Success with one child in no way guarantees success
in raising another child. Human behavior is much
more unpredictable than the laws of physics!

A similar description of different types of problems
was elaborated by Pidd and Woolley (1980) and
Woolley and Pidd (1981). They discern four types of
problems, ranging from straightforward and well-
structured to complex and ill-structured:

1. Checklist Problem Solving, where the goal is
unambiguous, as is the problem analysis process,
which follows a stepwise procedure.

2. Definition Problem Solving, where the problem is
framed in the template of a mathematical modeling
problem, in which a solution is derived from modeling
and optimizing relationships between variables.

3. Science Research Problem Solving, where the prob-
lem solving resembles scientific research, with
emphasis on empirical fact-finding to discover the
real problem.

4. People Problems, where the problem is highly sub-
jective and depends on personal values and per-
ceptions; negotiation and reconciliation are
important elements of problem solving.

De Mast and Lokkerbol (2012) discuss relevant
themes in the scientific literature on problem solving,
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relating them to problem solving in quality engineer-
ing and Six Sigma. They note that the field of quality
engineering has traditionally focused on problems of
medium complexity (types 2 and 3 above). Many Six
Sigma projects, for example, are examples of
Definition Problem Solving (type 2), where a problem
is framed in terms of causal relations between X and
Y variables. Once the transfer function Y¼ f(X) is
determined, the problem is solved by determining
optimal settings for the X variables that give the
desired properties of the distribution of the Y varia-
bles (“response-surface optimization”). Many Six
Sigma projects are also examples of Science Research
Problem Solving (type 3 above). Emphasis in such
projects is on the translation of the problem into one
or a few measurable CTQ variables, which are then
measured and analyzed. Based on techniques such as
the control chart and the process capability analysis,
the real problem is then established based on the col-
lected data.

De Mast and Lokkerbol (2012) note that People
Problems (type 4 above), which are the most complex,
involving subjective perceptions, incongruent interpre-
tations and conflicting goals, have traditionally not
been on the radar in the quality engineering field.

Wicked Problems is another term, similar to com-
plex problems, that was discussed in Rittel and
Webber (1973) and later by Perry (2020). Some char-
acteristics of wicked problems include the uniqueness
of the problem, solutions that vary from good to bad

from a stakeholder perspective, inability to learn by
trial and error and difficulty in formulating
the problem.

The difficulties of complex or wicked problems
imply that it would be futile to try to provide a recipe
or prescription for solving them, no matter what con-
sultants may say. Rather, general principles and
broader skillsets are needed. Adaptability and the abil-
ity to improvise depending on the nature of the com-
plex problem become critical.

Figure 1 provides a framework to illustrate the
dimensions of complexity we have most frequently
experienced in projects. As we will discuss later, these
can all be better understood through proper under-
standing of the problem context, shown in the center
of Figure 1. The five dimensions surrounding problem
context are problem definition, data access/structure/
quality, analysis methods, decision making and solu-
tion deployment. The 6th dimension, organizational
complexity, is the environment in which the five other
dimensions exist. Organizational complexity is there-
fore critical to consider since every other type of com-
plexity is impacted by the organization, including how
technical resources are organized and how they do or
do not work together.

These dimensions do not necessarily follow a linear
pattern, but may function in parallel or at different
times in a project. Our intent is not to try to categor-
ize all the dimensions of complexity, but rather to
highlight some potential areas to consider. Note that

Figure 1. Framework for complexity in problem solving.

614 R. HOERL ET AL.



complex problems can be complex due to one, some
or all of these dimensions. Outside of each dimension
in Figure 1 we have provided some symptoms or
examples of how that type of complexity appears
in projects.

Potential role of the complexity framework in
problem solving

Many authors (e.g., Robertson 2017) point to the
work of the mathematician Polya (1957) as a land-
mark in the systematic analysis of problem solving as
a discipline. Numerous authors on the topic cite his
work. One of Polya’s famous quotes is: “Trying to
solve problems, you have to observe and to imitate
what other people do when solving problems and,
finally, you learn to do problems by doing them”
(Polya 1957 p. 5). That is, learning how to solve prob-
lems requires that we study other people’s thought
processes, and imitate them.

Robertson (2017) looks at “how people solve prob-
lems” from a cognition and neuroscience point of
view, that is, from how people think and how the
brain functions. He lists four major cognitive steps in
Polya’s approach:

1. Understand: Understand the problem, to see
what is required.

2. Plan: See how the items are connected, in order
to make a plan to solve it.

3. Do: Carry out the plan.
4. Check: Look back at the solution, to review and

discuss it. Reloop if necessary.

The similarities of Polya’s steps to Deming’s “Plan
Do Check Act” process (Deming 1986) is hard
to miss.

Robertson goes on to break each of these steps into
two subcomponents, again based on cognition and
neuroscience, resulting in eight individual steps:

� Understand - Identify problem, then define prob-
lem succinctly

� Plan - Analyze data, then form overall strategy
� Do - Organize information, then allocate resources
� Check - Monitor progress, then evaluate results

We focus here on addressing complex problems.
There is, of course, also a significant body of literature
on the topic of complexity. Fuller (1985) is a classic
treatment of the issue of complexity in business proc-
esses, and how it can be systematically eliminated as a

type of process improvement. George and Wilson
(2004) build upon this foundation, noting how elimi-
nating complexity can supplement other improvement
initiatives, such as Lean Six Sigma. Complexity itself
can be considered an academic discipline, typically
focused on understanding the behavior of complex
systems, such as in biology (Mitchell 2011). The cur-
rent article does not attempt to review or develop the
theory of complex systems, nor provide guidance on
identifying and eliminating complexity from busi-
ness processes.

Significant research has been conducted on each of
the types of complexity noted in Figure 1. In our
view, however, these research efforts have too often
been conducted within individual academic “silos”,
without sufficient consideration as to how they fit
together in solving real problems. For example,
Weisbord (2012) provides significant detail on solu-
tion deployment and organizational complexity, and
even discusses complexity in data collection, but says
very little about complexity in analysis methods.
Many, perhaps most, statistics textbooks cover the
challenges of complexity in statistical analysis, but
often “assume away” complexity in data quality by
simply declaring that the data are a random sample
from the population of interest.

The intended contribution of Figure 1 is therefore
simply to integrate these different types of complexity
into a single, high-level model. The proposed usage of
this model is to facilitate more holistic thinking about
complexity, and when addressing a specific problem,
to proactively identify those types of complexity that
are most likely to cause challenges, so that the prob-
lem-solving strategy might incorporate them. Below
we explain each type of complexity at a fairly high
level and provide references for more detailed study.

We illustrate use of this framework on a problem
with order fulfillment that one of the authors (Roger)
worked on. This also comes from Scott Paper
Company, and involves the supply chain for consumer
and commercial paper products, such as paper towels,
toilet paper, and facial tissues. Some details have been
altered to protect confidentiality, and elements of dif-
ferent individual projects have been combined for
clarity. We explain the nature of the problem below
when discussing complexity in problem definition.

Complexity in problem definition

Once a problem has been identified, it usually needs
to be properly structured or rigorously defined. As
noted by Russell Ackoff, one of the “founding fathers”
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of problem solving in operations research, what we
typically see initially, unfortunately, is a “mess”
(Ackoff and Vergara 1981). It is virtually impossible
to solve a mess. Rather, we first need to convert the
mess into a formal problem. Once we have a formal
problem, we can move forward to solve it. The pro-
cess of converting a mess into a problem is what we
call problem definition or providing structure. This is
often much more complex than one might think.

A well-structured problem is generally described as
one for which the problem solver, although she does
not know the solution, at least knows how to
approach the problem. Routine problems fall in this
category, for which the objectives and constraints are
clear, and for which the problem solver can apply a
known algorithm. For unstructured problems it is
unclear how the problem should be approached, and
typically, the objectives are unclear, or it is difficult to
find a useful representation of the problem or an
effective approach (e.g., Smith 1988; and Jonassen
2000). Especially if problems have multiple stakehold-
ers, they tend to present themselves as a complex clus-
ter of interrelated and interdependent issues, involving
incongruent goals and subjective perceptions (Ho and
Sculli 1997). Operations research and management
science have produced many approaches for structur-
ing such messes (e.g., Rosenhead 1996; Mingers and
Rosenhead 2004; Shaw et al. 2004; and Eden 2004).

Consider the order fulfillment problem introduced
previously. Scott management initially saw “a mess” in
which there was too much finished product inventory
(some paper products becoming damaged while stored
in damp warehouses), too much work-in-progress
inventory, also requiring storage and an “army” of
forklift operators to move it around the factories, and
upset customers who did not know where their prom-
ised product was or why it was late or incomplete.
There were also manufacturing disruptions, dysfunc-
tional teams that did not like each other and would
not work across silos, recurring quality issues resulting
in more work-in-progress and late shipments, and
pressure from senior leadership demanding that the
situation be “fixed” ASAP, but providing no method-
ology to fix it.

The problem could have been defined as a
Checklist Problem (Pidd and Woolley’s type 1 intro-
duced above). In that case, the problem would have
been framed as a standard inventory management
problem, for which known, stepwise procedures are
available in textbooks on industrial engineering and
operations management (e.g., Hopp and Spearman
2008). The problem would have been defined as

determining optimal safety-stock levels for the fin-
ished goods, deriving the required production quota
and a suitable production schedule from there.
Forcing the problem into such a template would
remove all ambiguity and complexity. However, the
drawback is that such standard formulas make
restrictive assumptions, which may not be obvious to
the users of the models. Also, they may oversimplify
the problem, as here, and ignore relevant idiosyncra-
sies, or even solve the wrong problem altogether. The
result is what is commonly referred to as an “error of
the third kind;” obtaining the right solution to the
wrong problem.

The problem could, alternatively and less simply,
have been defined as a Definition Problem (Pidd and
Woolley’s type 2), and treated as a matter of finding
the relevant cause-and-effect relationships, Y¼ f(X).
The problem solver might have tried to capture the
goals in terms of Y variables such as the out-of-stock
rate and inventory levels, and then tried to find the
causal factors (X’s) affecting them, such as production
quota, replenishment levels and work in process
(WIP) limits. Establishing the relationships between
X’s and Y’s, they would have derived a solution strat-
egy from there.

The problem could also have been defined as a
Science Research Problem (Pidd and Woolley’s type
3). In that case, the problem solver would have
acknowledged that there are lots of opinions and per-
ceptions, but no solidly established description of the
current state of affairs or the desired end state.
Instead, the problem solver would have investigated
what the real problem seemed to be, and established
the current state and desired end state based on data
and facts.

Finally, and the most complex way, the problem
could have been defined as a People Problem (Pidd
and Woolley’s type 4). Customers, manufacturing,
sales and logistics all had their own perceptions of
facts, issues and problems. Moreover, all of these
stakeholders had partly incongruent goals, such as
minimizing the stock-out rate (customers and sales),
minimizing inventory levels to reduce carrying costs,
storage costs and obsolescence (logistics), and maxi-
mizing the utilization of production facilities and
workforce (manufacturing). Different perceptions and
misaligned goals had created tensions and animosity,
with various groups of people working against each
other rather than collaborating. Defining the issue as
a People Problem, the problem solver would have first
tried to reconcile various viewpoints and perceptions,
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and negotiate with various factions to establish a
shared goal.

The actual problem had elements of each of these
types of problems, but no textbook solution. The
organization had to define and scope the right prob-
lem, at the right level of complexity, considering the
overall order fulfillment system. Since it is typically
impossible to minimize inventory while at the same
time maximizing productivity and minimizing late
customer deliveries, what exactly would success look
like? How would it be measured? This leads to the
issue of organizational complexity, which we dis-
cuss shortly.

In this and many similar types of problems, there
is no obvious problem statement or a single, quantita-
tive objective to be maximized. Considerable work
may be required to convert this mess into a formal
problem that can be attacked, and to obtain organiza-
tional alignment across silos and with senior leader-
ship that this is, in fact, the right problem. If
organizational alignment is not obtained, then some
members of the team may become “snipers” who
actively look for ways to sabotage the team effort.

Frequent symptoms include confusion over the real
problem being addressed, and developing a common
set of objectives, without any “hidden agendas” being
present. The scientific method, and objective priori-
tization tools can help here. Domain (subject matter)
knowledge is particularly valuable with this type of
complexity. Partnerships and collaboration with sub-
ject matter experts will be crucial here to ensure that
the right problems are identified and tackled.

Complexity in data access, structure
and quality

Textbooks typically present “pristine” data sets, each
generally a “random sample” from the population of
interest. There are no missing values or outliers, and
the data presented are exactly the data needed to solve
the problem at hand. Of course, the real world works
quite differently! Experienced analysts know that ran-
dom sampling is a model, an ideal that is rarely
achieved in practice. Further, beyond worrying if the
data are right (typos, missing values, outliers, and so
on), we also have to worry about whether these are
the right data. That is, do we have data on the right
variables, collected the right way, from the right popu-
lation, in the right time frame? Rarely, if ever, will the
answer to this question be yes (Kenett and
Redman 2019).

As an old saying goes, there is no “perfect” data
set, despite textbook examples to the contrary. All real
datasets have limitations, especially relative to the
problem at hand. We argue that existing data should
be viewed as “guilty until proven innocent”, rather
than the other way around. Further, as illustrated in
the previous example in the Introduction, it may be
impossible, or perhaps prohibitively expensive, to
obtain the right data for a given problem.

Given that we will never have exactly the data we
want, how should we handle the data we do obtain?
Often the available data are from different sources,
collected in different ways, with different limitations
and biases. Many of these biases will not be known to
the analyst, who is typically not the person who pro-
duced the data. This is why documentation of a data
pedigree (Hoerl and Snee 2020) is so critical, but
unfortunately also quite rare. Uncertainty about the
quality of available data sets (right data and data are
right), and also about how to integrate or combine
the data in a logical manner, can result in consider-
able complexity. A general rule of thumb in applied
statistics, especially when analyzing massive data sets
(data science), suggests that roughly 90% of the over-
all analytics effort goes into obtaining, cleaning, veri-
fying, integrating, and reformatting data, and only
10% into formal modeling and analysis. This complex
work is rarely discussed at length in textbooks.

Incompatible data structures, such as some data
sources being structured by customer, others by time,
and others by product, are one common example.
Proper documentation of the data pedigree, data mod-
eling, and setting up proper data architectures in the
first place, can provide useful tools. Note that data
modeling is a term used in computer science and is
not the same as statistical modeling. Data modeling is
a well-developed field with different approaches for
linking and integrating different sets of data in a way
that enables more efficient analysis. Some reference
materials on data modeling and how to address this
type of complexity can be found in Simsion and Witt
(2004), Hoberman (2009) and Kimball and
Ross (2013).

When data were gathered to guide the team work-
ing on the Scott Paper order fulfillment system, issues
became immediately apparent. First of all, it turned
out that different paper mills used different formulas
for productivity; even basic measures such as “up
time” were calculated differently, for example in how
they accounted for planned shutdowns. The inventory
data turned out to be misleading, because upon closer
inspection, some of the final and work-in-progress
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inventory had been damaged while in warehouses,
reducing the actual product available. Further, cus-
tomers frequently changed their requested delivery
dates. Therefore, if a product delivery was late, it was
not clear how to calculate how late it actually was.

Tools from computer science tend to be particu-
larly useful in dealing with this type of complexity.
There is a fast-growing field in addressing complexity
of the data, with new jobs such as data architects,
data modelers and data engineers becoming more
prevalent. Individuals with experience in computer
science and information technology tend to fill these
roles and are increasingly important partners for those
doing data analysis work.

Complexity in analysis

Problem analysis is often portrayed as consisting of
two stages. Most of the focus in statistics is on model
building, where relations between variables are
described by a statistical model. Before the model-
building stage, however, the problem solver must
identify the relevant variables that are to be incorpo-
rated into the model. This variable-identification stage
is often named exploratory data analysis (De Mast
and Trip 2007). Complexity affects both stages in
problem analysis.

Model building is the primary focus of much of the
statistics profession. Journal articles cover increasingly
complex types of analyses. The underlying models in
statistical analysis can be more and more complex.
Compare a simple linear model with standard
assumptions such as independent, normally distrib-
uted errors, versus a more sophisticated generalized
nonlinear mixed model that has both fixed and ran-
dom effects, which might allow for different types of
assumptions on the errors and be computationally
challenging. The complexity may be due in part to the
complexity of the structure of the data or due to the
way the data were collected. For example, collecting
sensor data in short-term intervals creates serial cor-
relation that would need to be accounted for in the
analysis. As another example, restrictions on random-
ization create split-plot structures in the data.

More complex models often require more complex
analysis methods. For example, a hierarchical Bayesian
model with multiple levels might require a more com-
plex simulation mechanism to be able to obtain cred-
ible posterior intervals. A key issue in practice is that
the assumptions of the more complex model may not
be obvious to the analyst, who learns how to write
code to conduct the analysis but may not understand

the underlying theory. For example, more than once
in our careers journal referees have insisted on ran-
dom-effects models being applied when the factor lev-
els were not chosen at random.

We should note that there are times when statisti-
cians are guilty of proposing a more complex analysis
when a simpler one would be adequate for the prob-
lem. This is often done without careful consideration
of the assumptions underlying the more complex
model. Our advice is that statistical models should
never be more complex than can adequately be sup-
ported by the data. In our view, this is one of the
underlying causes for the “reproducibility crisis” in
science described in Baker (2016).

A solid understanding of statistical theory can help
here. However, with the rise of “data science” as a
unique, and at times competing discipline with statis-
tics, fewer analysts performing complex analyses have
solid backgrounds in statistical theory. Further, as aca-
demic statistics programs attempt to compete by add-
ing more coding and computer science to their
curricula, these theoretical foundations are not neces-
sarily covered in depth. Tools from statistics/data sci-
ence disciplines tend to be most useful in addressing
this type of complexity.

Besides model building, where the relationships
between X and Y variables are modeled, the identifica-
tion of relevant X variables may also be hampered by
complexity. Finding the causes, explanatory variables,
or simply the X variables to be incorporated into the
model may require some challenging detective work
when it is not immediately obvious what the X’s are,
and instead, the problem solver must identify what
characteristics or factors in a possibly complex system
could be causing the problem she is trying to solve. If
the space of potential problem causes is extensive,
complex or ill-defined, it is easy to get overwhelmed
by the sheer multitude of possibilities or to get bogged
down in the wrong part of the search space. To deal
with a complex search space, the literature proposes
hierarchical strategies for identifying a problem’s
cause, which try to narrow down the search by a
sequence of studies designed at eliminating whole
classes of potential causes at once. Examples include
Shainin’s Eliminate-and-Zoom-in strategy Shainin
(1993) and the Branch-and-Prune strategies discussed
in De Mast (2011, 2013).

Analysis of the available Scott order fulfillment
data was challenging due to the issues noted above,
particularly the data quality issues. Of course, the
complexity of problem definition also impacted ana-
lysis, because the specific objectives of analysis were
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not clear, or at least not agreed-upon by all parties.
Understanding the limitations in the data, the initial
analysis was quite basic.

Complexity in decision making

What is it that often makes decisions so hard to
make? A textbook example of a problem would have
a single criterion that needs to be optimized in some
way. For example, it would be a simple decision to
determine the best machine settings on manufacturing
equipment to maximize the yield. However, the prob-
lem becomes more complex when more simultaneous
criteria are added that must also be met. So it is not
enough to just maximize the yield, but we are also
trying to minimize the operating costs of the machine,
minimize the time for changeovers between runs, and
maintain an acceptable level of operator satisfaction
by allowing them to take regular breaks throughout
the day. If capital upgrades could further enhance
yield, but require additional investment, this might or
might not be warranted, depending on the financial
state of the organization. There may not be a single
“optimal” answer to a more complex decision that
needs to be made.

Anderson-Cook (2017) provided some specific
tools, such as Pareto fronts, to be able to address this
complexity in decision making. If we can rigorously
define the criteria that matter and collect the right
data, then these tools can be quite valuable.
Operations research (OR) provides another set of
decision-making tools that can be helpful, such as dis-
crete event simulation, queueing theory, and linear
and quadratic programming. OR and Business
Analytics discern several complexity classes of deci-
sion and optimization problems, such as P, NP and
NP-hard. These classes characterize whether the prob-
lem’s complexity allows an algorithm to solve it in
polynomial time (P), or to verify a potential solution
in polynomial time (NP, for nondeterministic polyno-
mial time). NP-hard is the class of problems that are
even more complex than NP (Arora and Barak 2009).

Complexity in the other elements often leads to
complexity in decision making. For example, it may
be very difficult to collect the right data. Other times,
there are available data, but they have an uncertain
pedigree, and are not the data needed to solve the
problem. Of course, organizations have a human
element. Perhaps intuition, politics, or emotions are
getting in the way of a more rational approach to
decision making.

We have also seen project teams get hung up on
trying to collect vast amounts of “perfect” data to
make the best possible decision. There is an opportun-
ity cost that comes from delaying a decision, and it is
important to recognize and quantify that cost. The
term “paralysis by analysis” comes to mind. If you
wait too long to decide whether to launch a new
product, you may lose potential sales, assuming there
are competitive options in the marketplace.
Sometimes you have to employ the GEMO (Good
Enough Move On) principle and recognize that mov-
ing forward now is the best option, despite some
uncertainty.

As noted previously, while there were textbook sol-
utions for inventory management, due to overly
restrictive assumptions and the unique nature of the
problem, these did not directly lead to consensus deci-
sions as to how to optimize order fulfillment for
Scott Paper.

Operations research, noted above, and general busi-
ness management principles are particularly relevant
disciplines here.

Complexity in solution deployment

A perfect solution, not implemented, is of zero bene-
fit. The objective is not to simply find solutions and
make decisions, but to fully deploy them in practice.
This is much easier said than done, because many
“solutions” are never implemented. The famous
Netflix competition provides an excellent example.
Netflix paid $1 million to the team that developed the
“best” model to predict customer ratings of movies,
provided it had at least a 10 percent improvement
over the Netflix model in use at the time. A team
won this competition, and the money, using an
ensemble model involving 107 individual models. This
“success” led to the creation of other modeling com-
petition platforms, such as kaggle.com.

As noted by Donoho (2017), however, the winning
solution was never actually implemented by Netflix,
because they found that the time and expense
involved in maintaining the 107 individual models
were not worth the relatively minor improvement in
accuracy. Further, the Netflix business model grad-
ually migrated from mailing DVDs to online viewing.
The data set used in the competition was no longer
the most meaningful to Netflix’ business. So, a team
won the competition and the $1 million award, but
the “solution” was never actually deployed, and there-
fore did not solve Netflix’s business problem.
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Because of all the previous forms of complexity, a
selected solution may or may not be feasible to
deploy. Further, even a very good solution can be
botched in deployment, due to complexity in imple-
mentation. So how does one manage deployment
complexity, when trying to benefit from a good solu-
tion? One option is the use of tools like a RACI
matrix to identify the key individuals or groups
responsible for different portions of a problem. The
RACI matrix identifies who:

� Has overall responsibility
� Has direct accountability
� Needs to be consulted, and
� Needs to be informed.

This tool can also be used to identify key stakehold-
ers who need to be a part of a solution to the problem.
An example can be found in Lareau (2011). Change
management efforts need to be considered to overcome
different forms of resistance. Often, resistance to
change is not intentional, it may simply be due to
ignorance or lack of understanding of what the change
means for the individual or group. While some resist-
ance to change is natural, poor communication often
results in entrenched resistance to change, and good
solutions that are never actually deployed.

Deployment was a huge issue in the order fulfillment
case. In addition to the sources of complexity noted pre-
viously, there was serious organizational mis-alignment,
resulting in lack of consensus on tangible steps to address
order fulfillment. In short, there was a tendency for each
organization to want to optimize its own function, rather
than the entire fulfillment system. For example, manufac-
turing was very reluctant to shut down, or even slow
paper machines, despite there being minimal pull from
the market for product at times. Eventual deployment of
a solution was only achieved after addressing the organ-
izational complexity issue.

Change management, rooted in psychology, is often
needed even more than statistics or computer science
here. There are several accessible business books on the
topic such as that of Kotter (2012), but beware that
recent and authoritative papers in the academic litera-
ture conclude that there is no consensus even regarding
the nature of basic change processes (Stouten, Rousseau,
and De Cremer 2018; Bamford and Daniel 2005).

Organizational complexity

The last element of complexity may be the most cru-
cial to success. Organizational complexity refers to

complexity in understanding the organization or
environment in which the problem resides. We use a
broad definition of organization ranging from compa-
nies, nonprofit groups or governmental entities. As
soon as you have multiple people working together,
you will have organizational complexity because of the
diverse perspectives and experiences that they bring to
the problem. We see organizational complexity as a
type of People Problems discussed earlier, and in Pidd
and Woolley (1980).

Some organizations are large conglomerates that
span many physical locations around the world.
Beyond many locations in different regions and coun-
tries, you may find that the supply chain spans many
different suppliers, vendors, partners and customers.
The complexity of a physical product (say a smart-
phone) can lead to a wide variety of groups both
within and outside the organization involved in some
portion of its development, manufacture, sales and
distribution. Organizational design is one approach to
organize individuals in a way to reduce complexity
and give clear roles and responsibilities, including
responsibilities for solutions to problems.

Teams that work across multiple time zones and
regions are becoming more common as remote work-
ing environments are more prevalent. This creates
challenges for teams to work together to tackle prob-
lems, and asynchronous efforts may be needed where
everyone is not in the same room at the same time.
Some examples of asynchronous efforts include
crowdsourcing or idea generation platforms that tap
into the power of the group to generate potential sol-
utions to problems. These can allow many more indi-
viduals to participate in problem solving efforts.

Teams are also becoming more prevalent as the
work gets more complex. For example, a more com-
plex data project with larger amounts of data will
require the efforts of more than one person.
Davenport (2020) describes how teams with a mix of
different skill sets are needed because the “data sci-
ence unicorn,” the superstar who can do it all, is rare,
if not nonexistent. Since more data analysis work is
being done by teams rather than individuals, organiza-
tional complexity will become even more critical than
it has been previously.

Another approach to deal with organizational com-
plexity is through the social networks of the individu-
als in the organization. Network analysis is a powerful
tool to understand the way work really gets done, out-
side of the organizational charts and chains of com-
mand. Cross and Parker (2004) and Cross and
Thomas (2009) provided a number of examples of
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how a network view of an organization can allow for
more innovation and improved performance. We
believe this tool could be more widely used to under-
stand the organizational complexity and then take
action to address it as needed. For example, organiza-
tional network analysis could be used to identify peo-
ple in the organization who are well-connected to
many other areas in the organization. These people
who serve as connectors would be important to con-
sider in driving a change. They could be crucial to the
success of a change as early adopters who help spread
change more quickly in an organization.

The academic literature on the organization of
quality improvement initiatives highlights various
organizational factors that affect successful problem
solving, such as an effective supportive infrastructure
(Anand et al. 2009), fit with the organization’s culture
(Canato, Ravasi, and Phillips 2013), experience
(Easton and Rosenzweig 2012), deployment guidelines
(Lameijer, De Mast, and Does 2017), and various con-
textual factors (Swink and Jacobs 2012).

Organizational complexity turned out to be the
greatest challenge in the order fulfillment case, and
impacted all the other elements of complexity to some
degree. The basic problem was that various constitu-
encies (silos) within the organization had different,
but unstated, objectives that related to optimizing
their own silos. For example, the salesforce focused on
making sales – by promising delivery times that man-
ufacturing could not meet – and having product
always available, without much regard for inventory.
Manufacturing focused on having consistent

production schedules to provide some sense of stabil-
ity, and logistics was concerned about the carrying
costs of excess inventory. These diverse objectives
were due in part to the silos being “cross-
incentivized,” meaning that the VP of manufacturing
was evaluated based on how much product was pro-
duced, but not on excess inventory levels. Similarly,
the VP of sales was evaluated based on sales growth,
not on unreasonable promises made to obtain those
sales, and so on.

Further, the misalignment had existed for some
time, and resulted in predictable personality conflicts
between leaders, and subsequently their organizations.
One individual in a manufacturing plant related:
“There are two rules for working with corporate. The
first rule is: never call corporate for help. The second
rule is: if corporate offers help, decline.” Cooperation
across organizational silos was clearly not encouraged.

Leadership is key when addressing organizational
complexity. Someone needs to recognize and work
through the politics. This may be by edict, or by
lower-level employees simply working together to get
past negative politics. Organizational design and
sound business management concepts tend to domin-
ate technical methods in addressing such complexity.

Addressing complexity in problem solving

To summarize the preceding sections, Table 1 shows
some of the tools and disciplines that are relevant for
addressing differing elements.

Table 1. Tools and disciplines addressing the dimensions complexity in problem solving.
Dimension Symptoms (Examples) of Complexity Tools and Methods Discipline Focus

Problem Definition Unclear problem statements, project
scoping challenges, determining
the right question to answer,
unsure which problem to solve

Scientific Method, Exploratory Data
Analysis, Costs/Benefits Analysis,
Prioritization Tools, Problem
Structuring

Domain Knowledge, Operations
Research, Management Science

Data Access, Structure and Quality Inconsistent data definitions,
incompatible data systems,
inordinate time preparing and
cleaning data

Data Architecture, Data Modeling,
Data Pedigree

Computer Science, Information
Technology, Data Science

Analysis Methods Incorrect or misleading analysis
results, uncertainty in what
method to use, software
limitations for analysis

Statistical Theory and Models, Ad-
hoc Analysis

Statistics, Data Science

Decision Making Revisiting same decisions, going
with intuition, disagreements on
decision to take, delays in
decision making

Operations Research, Pareto Fronts,
Decision Engineering

Business Management,
Operations Research

Solution Deployment Not realizing full impact of process
improvement, confusion on new
ways of working, too many ways
of working, no metrics to
track progress

Change Strategy Project Management,
Change Management

Organizational Complexity Ineffective teams, no clarity on roles
and responsibilities, lack of vision
or priorities, politics

Leadership, Team Management,
Organizational Strategy

Business Management,
Organizational Design
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Because there is a vast literature and multiple disci-
plines that address different areas, it should be clear
that there are no “seven easy steps to addressing com-
plexity”. Further, books or consultants who suggest
there are should be avoided. As we have seen, there
are several dimensions of complexity, and in most
complex problems there is more than one dimension.
Organizational complexity, for example, is almost
always present, if one is looking for it. Therefore,
what follows should not be viewed as “seven easy
steps,” but rather some principles to guide teams as
they struggle with complexity. The major principles
include the following:

1. Identify and acknowledge complexity, not only in
analysis, but in each of the areas noted in
Figure 1.

2. Take time to understand the context of com-
plex problems.

3. Take holistic approaches that combine data, ana-
lytics, subject-matter knowledge, organizational
psychology, and so on.

4. Work toward deployment of sustainable solutions.

It may seem obvious, but identifying and acknowl-
edging complexity is the first step. Just as it is impos-
sible to help alcoholics who are in denial of their
alcoholism, it is impossible to deal with complexity
that is ignored or denied. For example, many business
leaders will not readily admit, at least in public, that
politics are at work in their organizations. But of
course, they are.

We are not suggesting that problem-solving teams
“overthink” simple problems, or waste time looking
for complexity that is not there. If a machine is leak-
ing oil, fix the leak. Do not take time to evaluate the
organizational complexity. Therefore, the ability to
utilize triage, and evaluate problems as being relatively
straight forward, medium sized, or complex, is helpful.
Problems differ in their complexity, and utilizing a
complex strategy when a simple one will suffice is a
poor use of resources.

One of the authors (Willis) recalls a conversation
in which a Six Sigma project was being scoped. The
Black Belt drafting the project charter was having a
difficult time completing the different sections that
were part of a document template. After a lengthy
conversation, it was apparent that the solution was
already well-known and understood and that it simply
needed to be implemented. No exploration of root
causes or problem-solving tools was needed. In this
situation, the Black Belt was told that everything had

to be a Six Sigma project and the solution was being
forced into a methodology. It was not working very
well. The adage is true “if you only have a hammer,
everything looks like a nail”. We should always use
the right approaches (complex or simple) for
the problem.

For complex problems, teams should carefully con-
sider each of the potential dimensions of complexity
in Table 1. Of course, this table does not provide an
exhaustive list; these are simply the most commonly
occurring dimensions of complexity in our experience.

2. Understand the context

One dimension of complexity that we have not dis-
cussed is understanding the context of the problem.
This is because we feel that taking time to understand
the context of complex problems can be part of the
solution, not part of the problem. That is, by recog-
nizing that complex problems are there for a reason
(or reasons), and that previous attempts to solve them
have failed for a reason (or reasons), we put ourselves
in a much better position to properly diagnose, ana-
lyze, and eventually attack the problem. This approach
is consistent with the saying: “For every complex
problem, there is a simple solution. And it is wrong.”

Consider the COVID-19 pandemic, which is the
prevailing global medical challenge at the time of this
writing. At first glance, the problem may be seen as
purely epidemiological; for example, finding vaccines
to prevent COVID. However, upon closer examin-
ation, there are other complexities in the context of
this pandemic. For example, the specific ways in
which COVID is transmitted are not yet fully under-
stood. Treatment of COVID patients has improved
considerably, but the best ways to treat those infected
are still debated.

Looking at vaccine trials, the data from some of
these trials have been seriously compromised (Lawton
2020). Poor understanding of data pedigree has led to
poor models (Cropley 2020). Beyond data and model-
ing, there is a concern relative to maintaining a
healthy economy during COVID. So, it is not clear if
the real problem is simply to address COVID, or do
so while keeping job loss and economic impact at
“reasonable” levels. Who would decide what are rea-
sonable levels? It is complex!

Further, there is a strong human element in com-
bating COVID. Some people are willing to follow gov-
ernmental guidelines, such as wearing masks and
avoiding large gatherings, but many people are not
willing to do so. Further, federal, state, and local
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guidelines are not always consistent. The US Supreme
Court has entered the fray, for example by overturn-
ing some executive actions, including restrictions on
gatherings at houses of worship by Governor Cuomo
of New York (Mckinley and Stack 2020). So COVID
has an important legal context as well that must
be understood.

Even if the current vaccines being rolled out ultim-
ately prove safe and effective, that in itself will not
“solve” COVID, because there are too many people
who are unwilling to take vaccines in general, and
COVID vaccines in particular (“anti-vaxxers”). So, the
ultimate deployment of a “solution” will be quite a
challenge. Finding a successful path forward will
require a deep understanding of the full context of the
COVID pandemic, which is quite different in different
parts of the US, not to mention the world. Therefore,
a holistic approach is needed, rather than focusing
narrowly on developing vaccines.

3. Proper understanding of context leads to a more
holistic approach

We argue that if the problem context is well-under-
stood, this leads naturally to more holistic approaches,
rather than purely technical approaches. In business,
this leads to planning for all the complexities noted in
Figure 1, in addition to the technical complexity. In
the case of COVID, it would mean an integrated plan
that takes into account the legal issues, the political
issues, and the social issues, in addition to the tech-
nical epidemiological and public health problems.

How does one take a holistic approach? This is eas-
ier said than done. Typically, it requires development
of an overall strategy, due to the complexity and the
multi-faceted nature of the problem. Unfortunately,
“strategy” is not a word typically found in the indices
of statistics texts, or those of other technical disci-
plines. Some exceptions include Nelson (2018), as well

as Hoerl and Snee (2020). Of course, Polya’s model,
mentioned previously, refers to “making a plan,” while
Robertson’s extension of Polya’s model specifically
says to “form an overall strategy.” So, the need to
develop an overall strategy has been known for deca-
des, but strategy is not often discussed in published
case studies.

One organization that has thought deeply about
developing overall strategies for solving complex prob-
lems is the International Statistical Engineering
Association (ISEA, isea-change.org). This organization
is focused on studying how to engineer solutions to
large, complex, unstructured problems. The overall
approach to attacking such problems is given in the
Statistical Engineering Handbook, Chapter 1, which is
available on the members-only section of the website
given above (membership is free). This is reproduced
below as Figure 2.

There are many problem-solving methodologies in
the literature, perhaps the most well-known of which
is the Define, Measure, Analyze, Improve, Control
(DMAIC) process from Six Sigma. There are several
uniquenesses of the statistical engineering approach
shown in Figure 2 that are noteworthy:

� Formal statistical or other technical tools are not
applied until the fifth phase. The first four phases
involve getting a good handle on the problem, its
context, and how it should be attacked.

� There is a full phase focused on nothing but
understanding the problem context.

� There is a full phase focused on developing an
overall strategy to attack the problem, based on an
understanding of the full context of the problem.

� There are numerous feedback loops, illustrating
that this is not typically a linear process in prac-
tice, but that problems often require movement
back and forth between stages. Relooping is specif-
ically mentioned in Polya’s (1957) original work.

Figure 2. Phases of statistical engineering.
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In the strategy phase, the team considers the full
context of the problem, including all sources of com-
plexity, and develops an overall approach, or strategy,
for attacking the problem. This will typically require
multiple tool sets, and often multiple disciplines. As
noted previously, organizational psychology and sub-
ject matter knowledge will typically be heav-
ily involved.

We argue that the approach shown in Figure 2 is
not required for small problems, or even for most
medium-sized problems. In our view, Six Sigma is an
excellent approach to most of the medium-sized prob-
lems we have experienced in our careers. For large,
complex, unstructured problems, however, a more
holistic approach, with feedback loops, such as that
shown in Figure 2, is needed. This is fully consistent
with existing cognition and neuroscience, as explained
by Robertson (2017).

4. Deploy sustainable solutions

As discussed previously, the Netflix competition is
a prime example of a very complex technical solution
that was never deployed. There are many others, such
as the “epic failure” of the Google Flu Trend Model
(Lazer and Kennedy 2015), which was deployed ini-
tially, but ultimately failed. This model, developed by
Google, could predict outbreaks of the flu faster and
more accurately than the Centers for Disease Control.
Google Flu Trends was an early “poster child” for the
power of big data. Unfortunately, as the users of
Google evolved, and people’s usage of Google changed
over time, the model became more and more inaccur-
ate, until Google “quietly euthanized the program.”

Recently, Tom Davenport, who along with D.J.
Patil wrote the original article in the Harvard Business
Review (Davenport and Patil 2012) that popularized
the term “data scientist,” ran into the same issue. In
his case, the specific concern was over roles and
responsibilities for effective model deployment
(Davenport, personal communication). He wrote in
an article submitted for publication that data scientists
should focus less of their effort on model building,
and more effort on deployment of their models. A
journal reviewer disagreed, arguing that the data sci-
entist’s job ends when the model is developed.
Frustrated, Davenport appealed to the journal editor,
who promptly agreed with the reviewer!
Unfortunately, much of the data science community
remains narrowly focused on model-building, viewing
actual deployment of models or analyses to achieve
sustainable results as outside their scope. The result is

“… data scientists who are showing me the clever
machine learning models they developed with more
than 90% accuracy and complaining that the business
people are ignoring their models and prefer to use
their old manual process,” discussed in the
introduction.

The key point is that when the complexities noted
previously are not taken into account, “solutions” that
do not solve the real problem are often developed.
They may be very good solutions for the stated prob-
lem, such as in the Netflix case, but not for the real
business problem, with all its complexity. Therefore,
deployment is not achieved by simply “pulling a
switch,” but through careful planning that takes all
sources of complexity into account, including the
human element. This generally requires a well-
thought-out holistic strategy, as illustrated in Figure 2.

Success in the order fulfillment case was eventually
achieved by applying these general principles at a new
“greenfield” facility built by Scott. The new facility
provided an opportunity to create new systems and
structures to overcome the issues outlined above. For
example, once complexity was acknowledged, a leader
of the overall business process was named. This indi-
vidual had responsibility for sales, manufacturing, and
logistics for the product produced at the mill, helping
to address the organization misalignment. Obviously,
this individual saw the benefit of optimizing the over-
all business process, rather than individual “silos,” and
the organization carefully studied the overall order
fulfillment system, developing a much better under-
standing of the context of the problem.

It therefore became much easier to obtain consen-
sus on a succinct problem definition, which recog-
nized the need not only for a technical, data-based
solution, but also a solution that addressed the needs
of the individuals and organizations involved. Of
course, this was easier said than done, and required a
lot of iteration between the different complexity ele-
ments, including acquisition of newer and better data,
leading to more sophisticated analyses. Eventually, a
good, although admittedly not optimal solution was
agreed upon and successfully deployed across the
organization, producing significantly enhanced results.
This process was similar to a Lean Manufacturing
approach, in that it was more of a “pull” than
“push” system.

Conclusion and takeaways

We have described a framework for understanding
different types of complexity as well as some

624 R. HOERL ET AL.



principles to consider to address the complexity.
There are no simple, prescriptive solutions for com-
plex problems This complexity framework gives a
broader view that encompasses statistical and other
analysis approaches. As we have provided this frame-
work and examples, we hope to encourage a more
holistic approach to problem solving. However, a hol-
istic approach may not be adequate without a recogni-
tion of the different types of complexity that impede
various problem-solving approaches. For all the fail-
ures we have experienced because of not understand-
ing the complexity, we have also seen successes
because we took a more holistic view. From those suc-
cesses, we are optimistic that complex problems can
be effectively addressed.
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