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Abstract
Predictive process monitoring aims to produce early warnings of unwanted
events. We consider the use of the machine learning method extreme gradi-
ent boosting as the forecasting model in predictive monitoring. A tuning algo-
rithm is proposed as the signaling method to produce a required false alarm
rate. We demonstrate the procedure using a unique data set on mental health in
the Netherlands. The goal of this application is to support healthcare workers in
identifying the risk of amental health crisis in people diagnosedwith schizophre-
nia. The procedure we outline offers promising results and a novel approach to
predictive monitoring.
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1 INTRODUCTION

Predictive monitoring is a promising research area that focuses on forecasting potential problems during process exe-
cution before they occur.1 Applications have been developed in a wide range of domains, such as manufacturing,2–4
healthcare,5–7 networking,8 and business processes.9 Increasingly comprehensive data collection provides more process
visibility. Advances in machine learning make use of this increase in detail and frequency of data. Data-driven techniques
in this area can be used to improve process quality control by forecasting and monitoring potential process problems.
Gradient boosting is an important recent development within machine learning for regression and classification. This

technique produces an ensemble of decision trees that minimize an appropriate loss function. Such an ensemble often
produces better predictions than a single, more comprehensive model. When used for classification, as in most process
monitoring applications, the predictions are in the form of probabilities, similar to the output of regressionmodels. In this
paper, these predicted probabilities will be used in a process monitoring procedure.
An area that has a real interest in predictive monitoring for quality control is mental health.10 Nineteen percent of

adults in the United States have a mental, behavioral, or emotional disorder.11 These disorders pose a heavy burden on
the patient and affected families, the healthcare system, and healthcare expenditure. Early intervention is important for
many of the severe mental disorders and could prevent the escalation of the disease. However, it is very hard to predict
the progress of a disease and thus determine when to intervene.
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One of the most debilitating mental disorders is schizophrenia. According to the World Health Organization,12
schizophrenia is characterized by distortions in thinking, perception, emotions, language, sense of self, and behavior.
Common experiences include hallucinations and delusions. Around 0.75% of people suffer from the disease worldwide.13
Schizophrenia is one of the top 15 leading causes of disability worldwide.14 The all-cause standardized mortality rate is
around 3.7 times higher for people diagnosed with schizophrenia compared to the general adult population.15 Suicide is
much more frequent among people suffering from schizophrenia. An estimated 4.9% of people with schizophrenia die by
suicide compared to 0.013% for the general population.16
The overwhelming majority of people suffering from schizophrenia will relapse into crisis care over time, even with

access to good care.17 Relapse averages are reported between 20% and 40% per year, depending on many factors.18 In the
United States, the estimated total cost of schizophrenia was $155.7 billion in 2013.19 The healthcare costs for people diag-
nosed with schizophrenia are significantly higher than the national average, where relapse events (i.e., hospital admis-
sions) are the most expensive.20 This motivates the need for early identification of patients at high risk of having a mental
health crisis, to facilitate preventive measures, and mitigate the high costs associated with these crises.
In a systematic review, Sullivan et al.21 investigated models to predict crises and found a lack of high-quality evidence

on prediction methods. Paxton et al.22 and Amarasingham et al.23 highlighted the challenges that predictive modeling
based on Electronic Medical Records faces. According to Sullivan et al.21 the number of studies with promising results is
very limited. One of the exceptions is the study by Vigod et al.24 which used Canadian data from 2008 to 2011 to predict
30-day readmission rates for acute psychiatric units using logistic regression. The study shows moderate discriminative
capacity with an area under the receiver operating characteristic curve of 0.630.
In this study, we have access to all mental health treatment records covered by the Dutch Health Insurance Act, which

covers all specialist mental health treatment of schizophrenia for all 17 million residents of the Netherlands between 2010
and 2014. We use this data to predict readmission into crisis care for the 75,000 people diagnosed with schizophrenia
in the Netherlands. We compare the predictive power of logistic regression as used by Vigod et al.24 to a hierarchical
regression model.
Subsequently, a gradient boosting algorithm named extreme gradient boosting (abbreviated by XGBoost) is applied to

the data. Teinemaa et al.25 reviewed available predictive process monitoring techniques and concluded that XGBoost is
reasonably fast and often the most accurate technique. It can deal with class imbalance and incomplete observations,
which are often found in medical data.22 Furthermore, Zhang et al.26 used XGBoost for predictive monitoring of faults in
wind turbines.
The XGBoost predictions are then used to monitor the set of people diagnosed with schizophrenia during a monitoring

phase. We present an algorithm to determine the threshold to signal and consider the monitoring performance. The goal
of the procedure is to support healthcare workers in identifying individuals at risk in a crisis.
The article is structured as follows. In the next section, we present the mental health problem context. We describe the

predictive models we consider in this study and their performance in Section 3. In Section 4 we propose an algorithm to
determine the monitoring threshold and present the monitoring results when using the XGBoost technique. In the last
section, we provide concluding remarks and limitations.

2 PROBLEMDESCRIPTION

This section describes the setting in which this case study attempts to monitor the risk of mental health crises. First, we
give a summary of the mental healthcare system in the Netherlands. We then describe the available data, followed by the
definition of a crisis event.

2.1 The mental healthcare system

The total cost of mental healthcare in the Netherlands was estimated at 6.5 billion Euros in 2017,27 of which 416 mil-
lion Euros was directly related to schizophrenia.28 The details of the healthcare system are out of scope, but this section
describes the basics.
Similar to the US system, mental healthcare in the Netherlands is organized throughmanaged competition. In contrast

to the United States, health insurance is mandatory for all Dutch citizens and covers 99.9% of the population.29 Insurers
are required to accept all applicants and offer community rating. The deductibles are relatively low in the Netherlands
and there is risk adjustment among insurers. Coverage includes a broad set of essential health benefits, including
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out- and in-patient treatment of nearly all disorders in the Diagnostic and Statistical Manual of Mental Disorders 5,30
except select diagnoses such as adjustment disorder (since 2012). Curative healthcare expenditure is relatively high with
per capita spending of 3791 Euros in 2017 and the long-term care spending is the highest of all EU countries. The system
is comparatively effective and the Netherlands reports the lowest rate of unmet medical needs among EU countries.29

2.2 Data description

The non-public microdata used in this paper is provided by Statistics Netherlands. It consists of a wide range of de-
identified administrative data sets on all 17 million Dutch citizens. As the data is very sensitive, it is stored on secure
servers at the Statistics Netherlands and can solely be accessed on their local terminals.
A patient requires a diagnosis in order for the health insurer to reimburse the mental healthcare treatments. The diag-

nosis, together with the amount of treatment provided, constitutes the so-called diagnosis–treatment–combination (DBC
in Dutch) that determines the amount of reimbursement. As reimbursement is dependent on consistent registration, the
system results in a clear timeline of the diagnoses and activities for a patient.
Mental health data were available for the years 2010 through 2013. The data includes all registered healthcare informa-

tion, such as detailed mental health diagnoses (1.4 million) and psychological treatments (25 million). The categories of
treatments were as defined by the Dutch Healthcare Authority.31 Furthermore, individual data on employment, housing,
and personal information were available. The data included in the following concerns the subset of 75,000 people diag-
nosed with schizophrenia. The resulting selection consists of an unbalanced panel data set, with a large variation in the
number of registered treatment activities per individual.
The gathered data cannot be used directly for statistical modeling, as the sequences of diagnoses and treatments vary

widely in length, frequency, and type. Time series models thus require padding and aggregation to balance the data which
will produce sparse sequences formany of the included individuals. The decision of the level of aggregationwasmotivated
by domain experts and set at the week level. The week-level aggregation had enough details to expect predictive value in
the data while resulting in an actionable time frame for intervention.
Diagnoses and treatments were described in detailed labels. These were condensed into broader categories to avoid high

dimensionality and sparsity. The 36 resulting categories of diagnoses are tracked cumulatively. The weekly aggregations
of treatments are further aggregated into a short-, medium-, and long-term history of 4, 12, and 64 weeks, respectively.
The 4 weeks represent the past month of data, the 12 weeks represent the last quarter, and the past 64 weeks consist of the
last year plus one quarter to make sure there is overlap between separate (administrative) years. These three levels result
in 264 predictors (74 for each of the three treatment aggregation levels, 36 cumulative diagnoses, and 6 fixed variables)
for more than 15 million person-weeks. The final structure of the set of predictors, largely informed by expert input, is
illustrated in Table 1.

2.3 The definition of a crisis

A variable indicating a crisis was not readily available and had to be constructed from the raw data. This section describes
how the variable to signal a crisis event was constructed. As described previously, individuals are assigned DBCs. Some
of these DBCs are directly defined as “crisis care,” that is, treating a patient in a mental health institution due to a crisis.
In other cases, crisis care is registered to an existing, non-crisis DBC. Therefore, we define the start of a crisis event as the
first moment a crisis DBC was opened or any crisis care was given.
Furthermore, as the goal of the procedure is to support healthcare workers in identifying individuals at risk of a crisis,

the model should not focus on individuals that are already known to be in a mental health crisis. The crisis care service
in the Netherlands aims to provide a maximum of 12 weeks of crisis care. In the data, following the start of a crisis an
individual will be excluded for the following 20 weeks. This 20-week period covers the 12 weeks that a crisis can cover,
plus some additional weeks after that, where it could be argued that a patient will be on the radar of the healthcare
professional and a signaling mechanism is not needed to achieve this.
This results in a binary dependent variable on a weekly basis, where a TRUE value equals the start of the crisis in that

week and a FALSE indicating the subject is not in a crisis. This binary dependent variable is sparse with only 0.285% TRUE
values for all person-weeks.
As the long-term aggregation level (64-week aggregations) includes all diagnoses and healthcare activities from the past

64 weeks, the first week we can model is week 65 (i.e., March 2011). Figure 1 plots the aggregated number of crises per
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F IGURE 1 Number of crises per week from
March 2011 (week 65) to December 2013 (week 209)

F IGURE 2 Number of crises per
individual from March 2011 (week 65) to
December 2013 (week 209)

week. There are a lot fewer crises that start in 2013 than the other 2 years due to administrative changes and incomplete
data for that year. This is important to consider when evaluating the results.
In total there are just over 28,300 crises that start betweenMarch 2011 and December 2013. These crises are divided over

22,600 people with an average of around 0.4 crisis per person in the data. The mean number of weeks between crises (for
people with multiple crises in the data) equals 51 weeks. Figure 2 gives an overview of the number of crises per individual
that had a crisis at least once. A large majority has one crisis during the 3 years we consider. Table 2 gives an overview of
the 10 mental healthcare activities with the largest weekly mean values in the data.

2.4 The status quo

This section describes how healthcare practitioners in the Netherlands currently monitor people diagnosed with
schizophrenia. The majority of institutions work using the Flexible Assertive Community Treatment method (FACT)
described by Nugter et al.32 FACT is based on the widely used Assertive Community Treatment (ACT) method developed



6 HUBERTS et al.

TABLE 2 Descriptive statistics for the 10 most frequent mental healthcare activities from March 2011 (week 65) to December 2013 (week
209) per person-week

Activity Mean Std.Dev
Individual contact 4.81 16.92
General no-show/other 1.13 8.04
Individual activating guidance 0.66 7.23
Diagnostics 0.65 8.23
Pharmacotherapy 0.60 4.86
Individual other communication 0.31 3.82
Individual supportive guidance 0.29 4.72
Group contact 0.21 2.91
Patient system 0.17 3.34
Crisis treatment 0.16 4.23

in the United States. The method uses multidisciplinary teams, a low number of clients per team member, assertive
outreach, shared caseloads, and indefinite intensive care. FACT applies these tools in a flexible way spanning the
entire caseload.
The FACT teams meet on a weekly basis to discuss the caseload. The team will focus on clients that are on the FACT

board. The board displays the clients with the highest priority, that is, clients that are experiencing severe mental health
issues. Every week, the team members are allowed to add or remove clients from the board. If a client is added to the
board, a crisis plan is triggered and the client and their surrounding network are informed that care is being intensified.
Depending on the urgency, the client will be visited by the head practitioner within a week. A client can be added to
the board if the FACT team members detect an increase in psychiatric symptoms, behavioral problems, substance abuse,
or criminal behavior. Furthermore, care-avoiding behavior, imminent crises, (forced) admission, life events, changes in
medication, and the introduction of new clients can persuade a teammember to propose to add a client to the board. Note
that this process relies entirely on the observations of the team members.

3 PREDICTIVEMODEL

This section describes the logistic regression model (similar to Vigod et al.24), the hierarchical regression model, and the
XGBoost algorithm that are used to predict weekly probabilities of getting a crisis for people diagnosedwith schizophrenia.
Define 𝑦𝑖,𝑡 as a binary variable for individual 𝑖 = 1, … ,𝑁 and week 𝑡 = 1, … ,𝑀. If person 𝑖 has a crisis in week 𝑡, then

𝑦𝑖,𝑡 = 1, if there is no sign of crisis 𝑦𝑖,𝑡 = 0. Let 𝑝𝑖,𝑡 be the predicted probability of crisis in week 𝑡 for person 𝑖. Furthermore,
𝑥𝑖,𝑡 contains the constructed features based on the 4-, 12-, and 64-week history of individual 𝑖, as well as the individual char-
acteristics.

3.1 Regression

Using regression models for prediction has the advantage of high explainability. In contrast to many of the available
machine learning techniques, the parameters of the logistic andhierarchical regressionmodelswe discuss can offer insight
into the process dynamics.

3.1.1 Logistic regression

Logistic regression is used tomodel the probabilities of a categorical outcome variable. In this case, the categorical outcome
is binary. The model for the probability of crisis 𝑝𝑖,𝑡 = 𝑃(𝑦𝑖,𝑡 = 1|𝑥𝑖,𝑡) for individual 𝑖 in week 𝑡 with vector of predictors
𝑥𝑖,𝑡 has the form33
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F IGURE 3 Two-level structure of the case study data with individuals (𝑖 = 1, … ,𝑁) as the top level. Weeks in the data (𝑡 = 1, … ,𝑀)

belonging to individual 𝑖 are the bottom level

𝑝𝑖,𝑡 =
𝑒𝑥𝑝(𝛽0 + 𝛽′𝑥𝑖,𝑡)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽𝑇𝑥𝑖,𝑡)
, (1)

where 𝛽0 is a vector of constants and 𝛽′ is the transposed vector of parameters for the predictors 𝑥𝑖,𝑡. The model is fitted
using maximum likelihood. The estimated parameters 𝛽0, 𝛽 can be used for inference and prediction of 𝑝𝑖,𝑡+1.

3.1.2 Hierarchical regression

Hierarchical modeling is almost always an improvement over single-level regression models.34 In this case, each observa-
tion equates to one person-week. The mental healthcare activities, diagnoses, income changes, and crises leading up to a
specific week all relate to a single person. We can model this as a simple two-level hierarchy, with the weeks as the lower
level and the individual as the upper level (see Figure 3). For more details on predictive monitoring using hierarchical
regression see Huberts et al.35
Suppose we have 𝑝0 predictors on the person-week level and 𝑝1 predictors on the person level. The hierarchical model

for the log-odds ratio of the probability of a crisis for individual 𝑖 in week 𝑡 is then defined as

𝑙𝑜𝑔

(
𝑝𝑖𝑡

1 − 𝑝𝑖𝑡

)
∼ 𝑁(𝑋𝑖𝑡𝛼𝑖, 𝜎

2), for 𝑡 = 1, … ,𝑀 (Week level), (2)

where the individual level is modeled as

𝛼𝑖 ∼ 𝑁(𝛾𝑊′
𝑖
, Σ), for 𝑖 = 1, … ,𝑁 (Individual level), (3)

where𝑋𝑖𝑡 is a 1 × (𝑝0 + 1) row vector of person-week specific variables such as mental healthcare activities and diagnoses
(see Table 2); 𝛼𝑖 is a (𝑝0 + 1) × 1 vector of parameters for individual 𝑖; 𝜎2 is the variance for the person-week level; 𝛾 is a
(𝑝0 + 1) × (𝑝1 + 1) parameter matrix determined by the person 𝑖 that person-week 𝑡 is a part of;𝑊𝑖 is a 1 × (𝑝1 + 1) row
vector of person specific variables such as age andΣ is the covariancematrix for parameters 𝛼𝑖 .We estimate the parameters
using restrictedmaximum likelihood (REML) in the lme4 package in R.36 The values of the estimated parameters 𝑎𝑖, �̂�, �̂�, Σ̂
offer insight into the effects of variables 𝑋𝑖𝑡 and𝑊𝑖 and the size of the variance at the person-week level and person level.

3.2 Machine learning

A lot of progress has been made in the machine learning domain in recent years. Increased availability of data and com-
puting power extend the range of models that can be estimated. In this section, we discuss a gradient boosting framework
called XGBoost and a few alternative techniques.

3.2.1 Extreme gradient boosting

Gradient boosting is one of the most important recent developments in machine learning.33 XGBoost is an open-source
framework to apply gradient boosting in various programming languages.37 The gradient boosting decision tree algorithm
within XGBoost creates an ensemble of weak learners that minimize an appropriate loss function. Each weak learner con-
sists of a regression tree grown on the residuals. Each tree has a number of terminal nodes 𝑗 = 1, .., 𝐽𝑘 that each represents
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F IGURE 4 An example of a tree ensemble model for the risk of a mental health crisis using two trees (𝐾 = 2) and three variables. The
Therapy variable contains hours of therapy in the past 4 weeks, the Income variable the amount in Euros earned over the past 4 weeks. The
learning rate is 𝜂 = 0.3. The initial prediction equals 𝑝0 = 0.5

a terminal region 𝑅𝑘,𝑗 , containing the predictions for that specific tree. The output of a regression tree 𝑘 is multiplied by
learning rate 𝜂 and then added to the predictions of tree 𝑘 − 1.
Figure 4 gives a fictional example of two trees grown to predict the risk of having a mental health crisis. The example

uses the variables age, hours of therapy, and income in Euros over the past 4 weeks. The values in the terminal nodes are
the log-odds log( 𝑝

1−𝑝
). The final prediction equals the initial log-odds prediction plus the predictions of the regression trees

multiplied by the learning rate 𝜂. Given the example in Figure 4, the final prediction of the log-odds for a 35-year-old person
with 16 h of therapy and an income of 1500 in the past 4 weeks equals 0 − 0.3 × 2 − 0.3 × 3 = −1.5 (𝑝 ≈ 0.18). The log-
odds prediction for 25-year-old person with no therapy and no income in the past 4 weeks equals 0 − 0.3 × 1 + 0.3 × 1 = 0

(𝑝 = 0.5).
In this study, the outcome is binary thus the logistic loss function is used, given by

𝐿(𝑦𝑖,𝑡, 𝑝𝑖,𝑡) = −𝑦𝑖,𝑡𝑙𝑜𝑔(𝑝𝑖,𝑡) + (𝑦𝑖,𝑡 − 1)𝑙𝑜𝑔(1 − 𝑝𝑖,𝑡), (4)

for individual 𝑖 at time 𝑡. The algorithm is initialized by setting 𝑝𝑖,𝑡,0 = 0.5. Then amanually specified number of trees 𝑘 =

1, 2, … , 𝐾 is grown on the pseudo-residuals. The pseudo-residuals are 𝑟𝑖,𝑡,𝑘 = 𝑦𝑖,𝑡 − 𝑝𝑖,𝑡,𝑘−1, where 𝑝𝑖,𝑡,𝑘−1 are the predicted
probabilities of the previous iteration 𝑘 − 1.
For each tree 𝑘 the objective function 𝑜𝑏𝑗(𝑡, 𝑘) for log-odds output values 𝑓𝑘(𝑥𝑖,𝑡) consists of the loss function, the

pruning term and a regularization term

𝑜𝑏𝑗(𝑡, 𝑘) =

[
𝑛∑
𝑖=1

𝐿(𝑦𝑖,𝑡, 𝑓𝑘(𝑥𝑖,𝑡) + 𝑓𝑘−1(𝑥𝑖,𝑡))

]
+ 𝜒𝐽𝑘 +

1

2
𝜆𝑓2

𝑘
(𝑥𝑖,𝑡), (5)

where 𝜒 is a user specified pruning parameter and 𝜆 is a regularization parameter.
The output value at time 𝑡 for the individuals 𝑖 in terminal node 𝑗 = 1, .., 𝐽𝑘 in tree 𝑘 that minimizes 𝑜𝑏𝑗(𝑡, 𝑘) is approxi-

mated using the second-order Taylor expansion. The gradient for 𝐿(𝑦𝑖,𝑡, 𝑝𝑖,𝑡) equals 𝑔𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑝𝑖,𝑡 and the hessian equals
ℎ𝑖,𝑡 = 𝑝𝑖,𝑡(1 − 𝑝𝑖,𝑡). The output value for tree 𝑘 is then given by

𝑓(𝑥𝑖∈𝑗,𝑡,𝑘) =

∑
𝑖∈𝑗

(𝑦𝑖,𝑡 − 𝑝𝑖,𝑡,𝑘−1)∑
𝑖∈𝑗

[
𝑝𝑖,𝑡,𝑘−1(1 − 𝑝𝑖,𝑡,𝑘−1)

]
+ 𝜆

. (6)

The similarity score used to determine the splits when constructing the decision trees is found by plugging the output
value back into the second-order Taylor approximation and is given by (

∑
𝑖 (𝑦𝑖−𝑝𝑖))

2∑
𝑖 𝑝𝑖(1−𝑝𝑖)+𝜆

.

There are four parameters Θ = {𝜂, 𝜆, 𝜒, 𝐾} that need to be tuned using cross-validation. Sparsity-aware split finding in
the XGBoost framework ensures the algorithm works efficiently for the sparse data in this study. We use the implemen-
tation of xgboost in R.38
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TABLE 3 Table of the mean estimated probabilities for the three methods, aggregated by the binary crisis outcome variable

Model �̄�𝒕|𝒚=𝟎 �̄�𝒕|𝒚=𝟏 𝒓𝒕 𝑨𝑼𝑪

Logistic regression* 0.0021 0.0026 1.2260 0.6130
Hierarchical regression* 0.0021 0.0030 1.4370 0.5856
XGBoost 0.0017 0.0062 3.5440 0.6533

*Using 50% of the persons in the data due to limited memory size

3.2.2 Other machine learning methods

Several other machine learning techniques can be used in this setting. Examples include (one-class) support vector
machines (SVM), decision trees, random forest, and elastic nets. For an overview of machine learning methods in process
monitoring see Weese et al.39 We applied one-class SVM, random forest, and the elastic net methods to the same data in
this paper. Compared to the XGBoost predictions, thesemethods produced inferior results. This is the reason that we have
excluded these methods from the analysis. There are some methods, such as recurrent neural networks (see, e.g., Choi
et al.40), that require more computing power than was available at the Statistics Netherlands terminals.

3.3 Estimation

To train the models, weeks 1–175 are used. The first 64 weeks are incorporated into the features as described in Section 2.2,
thus the outcomes of weeks 65–175 are used in training. Weeks 176–209 are used to test the predictions. Due to limits
in available computing power, the regression models were trained on a random 50% of the people in the training set.
The XGBoost model was trained using both the random 50% of the people as well as the full set. The results are very
similar, but as the XGBoost model requires extensive cross-validation we use the full data set for that method in the
following. To cross-validate the parameters of the XGBoost model Θ = {𝜂, 𝜆, 𝜒, 𝐾} we use random splits (75%/25%) of the
person-weeks in the training data. A large grid of values for Θ was implemented. The model used in the following is
based on 𝜂 = 0.3, 𝜆 = 1, 𝜒 = 0.5, 𝐾 = 123. Note that the performance of the XGBoost model varies with the values of these
parameters. Extensive cross-validation is thus an important step before implementation.

3.4 Results

This section describes the results of predicting weekly crises using the logistic regression model, hierarchical model, and
the XGBoost algorithm described previously. These results are based on the predictions for the test set of weeks 176–209.
Because of the highly imbalanced nature of the outcome, we consider the mean assigned probabilities for weeks with
crises, �̄�𝑡|𝑦=1 = 1

𝑁

∑𝑁

𝑖=1
𝑝𝑖,𝑡𝐼(𝑦𝑖,𝑡 = 1), and without crises �̄�𝑡|𝑦=0 = 1

𝑁

∑𝑁

𝑖=1
𝑝𝑖,𝑡𝐼(𝑦𝑖,𝑡 = 0). The ratio of these probabilities,

𝑟𝑡 =
�̄�𝑡|𝑦=1
�̄�𝑡|𝑦=0 , is ameasure of the predictive power of amodel. Values of 𝑟𝑡 ≤ 1 indicate that, on average, the procedure assigns

the same or a lower probability to person-weeks with positive outcome values. Values 𝑟𝑡 > 1 show that, on average, the
method estimates a higher probability to person-weeks with positive outcome values. We also report the widely used area
under the receiver operating characteristic curve (𝐴𝑈𝐶) values (see Bradley41). 𝐴𝑈𝐶 values close to 0.5 indicate a total
lack of predictive power, values close to 1 represent perfect prediction.
Table 3 shows the measures of performance for the three methods using the test set. The logistic regression model does

predict a slightly higher probability for person-weeks with crises with a ratio of 1.226. The limited predictive power is
also shown by the 𝐴𝑈𝐶 value of 0.613. The hierarchical model incorporates some more of the structure in the data. The
performance in terms of the ratio of predicted probabilities seems slightly better than the logistic model with 𝑟 = 1.437.
Conversely, the 𝐴𝑈𝐶 value is lower than for the logistic regression, which indicates a limited predictive power. Lastly,
Table 3 shows the results for the XGBoost algorithm predictions on the test set. The mean ratio 𝑟 is around 3.5 and it
has the highest𝐴𝑈𝐶 score of the three, which shows there is more predictive power than for the logistic and hierarchical
regressions. On average, for person-weeks with a crisis, the XGBoost algorithm predicts a probability 3.5 times higher than
for person-weeks with no crisis. This suggests the predicted probabilities of the algorithmmight be used as a risk score to
guide mental health workers toward unstable individuals.
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4 MONITORING

The three models in the previous section predicted if a crisis is likely to occur for an individual in a given week. This
section will discuss the use of these predictions for monitoring.
Using logistic regression, a hierarchical model or the XGBoost algorithm to model the risk of a crisis will result in

weekly estimated probabilities. Monitoring these probabilities requires a probability control limit 𝐶. Once a probability
𝑝𝑖,𝑡 passes this limit, the procedure will signal and practitioners can intervene. The choice of 𝐶 will determine the number
of false/true signals. A higher value of 𝐶 will decrease the share of false signals, but also decrease the absolute number of
true signals.
In process monitoring, the performance of a monitoring procedure is often quantified using the false alarm rate (𝐹𝐴𝑅)

or the average run length (ARL) (see, e.g., Shu et al.42 and Does et al.43). The ARL equals the average time it takes for
the procedure to signal. A monitoring procedure is configured to satisfy a required ARL or FAR as determined by the
practitioner. This generally involves adjusting parameters based on distributional assumptions or simulation. Distribu-
tional assumptions are not realistic with a machine learning method such as XGBoost. Thus, in the following section, we
propose a simple tuning procedure that achieves a desired FAR for a predictive monitoring approach. This involves cross-
validating the predictions and results in a non-parametric monitoring threshold. Note that the procedure is data driven,
thus no distributional assumptions are needed.

4.1 Tuning procedure

In this section, we propose a tuning procedure to achieve a desired 𝐹𝐴𝑅. Assume a practitioner determines a 𝐹𝐴𝑅 based
on the monitoring context. In the case of predictive monitoring, a signal is produced when the predicted probability 𝑝𝑖,𝑡
exceeds the threshold 𝐶.
The 𝐹𝐴𝑅 set by the practitioner in this procedure translates to all observations during monitoring. For example, set-

ting 𝐹𝐴𝑅 = 0.01 will result in 1% of observations being false alarms. The other 99% of observations consist of true/false
negatives and true positives. A higher 𝐹𝐴𝑅 will result in a lower value of 𝐶.
The following steps determine the value of 𝐶 that produces the desired 𝐹𝐴𝑅

1. Set 𝐹𝐴𝑅, the size of the training set𝑁0 and the test set𝑁1, the number of cross-validation splits 𝑆, the cross-validation
proportion 𝑞 and initialize an empty vector �̂�.

2. Split data {𝑋, 𝑦} of size 𝑁 × 𝑘 into 𝑖 = 1, 2, … ,𝑁0 training set {𝑋0, 𝑦0} of size 𝑁0 × 𝑘 and 𝑖 = 𝑁0 + 1,𝑁0 + 2,… ,𝑁 test
set {𝑋1, 𝑦1} of size 𝑁1 × 𝑘 with 𝑁1 = 𝑁 −𝑁0.

3. Draw a random sample 𝑅 of integers 1, 2, … ,𝑁0 of size 𝑞𝑁0 and define the vector 𝑉 of size (1 − 𝑞)𝑁0 as integers
1, 2, … ,𝑁0 ∉ 𝑅.

4. Split the training set {𝑋0, 𝑦0} into {𝑋𝑅, 𝑦𝑅} using rows 𝑅 and {𝑋𝑉, 𝑦𝑉} using rows 𝑉.
5. Use {𝑋𝑅, 𝑦𝑅} to estimate model 𝐹(𝑋) and calculate 𝑝𝑉 = 𝐹(𝑋𝑉).
6. Use the grid-search algorithm below to find value 𝑐 for which 1

(1−𝑞)𝑁0

∑
𝑖∈𝑉

𝐼(𝑝𝑖,𝑉 ≥ 𝑐)𝐼(𝑦𝑖,𝑉 = 0) ≈ 𝐹𝐴𝑅, with 𝐼() the
indicator function.
(a) Set resolution 𝑟 > 2,𝑤 = 1∕𝑟, search limit 𝑤𝑙𝑖𝑚 to a small value (i.e., 10−5) and initiate grid 𝐺 = {0, 1∕𝑟, 2∕𝑟, … ,

1 − 2∕𝑟, 1 − 1∕𝑟, 1} of length 𝑟 + 1.
(b) Set 𝑐 = min(𝑔 ∈ 𝐺 ∶

1

(1−𝑞)𝑁0

∑
𝑖∈𝑉

𝐼(𝑝𝑖,𝑉 ≥ 𝑔)𝐼(𝑦𝑖,𝑉 = 0) < 𝐹𝐴𝑅).

(c) Calculate 𝐹𝐴𝑅𝑠 =
1

(1−𝑞)𝑁0

∑
𝑖∈𝑉

𝐼(𝑝𝑖,𝑉 ≥ 𝑐)𝐼(𝑦𝑖,𝑉 = 0).
(d) Update 𝑤 as 𝑤 = 2𝑤∕𝑟 and redefine grid 𝐺 = {𝑐 − 𝑟𝑤∕2, 𝑐 − 𝑟𝑤∕2 + 𝑤, 𝑐 − 𝑟𝑤∕2 + 2𝑤,… , 𝑐 − 𝑟𝑤∕2 +

(𝑟 − 1)𝑤, 𝑐 − 𝑟𝑤∕2 + 𝑟𝑤} of length 𝑟 + 1.
(e) If |𝐹𝐴𝑅 − 𝐹𝐴𝑅𝑠| > 0.01𝐹𝐴𝑅 and 𝑤 > 𝑤𝑙𝑖𝑚 go back to step (b). If |𝐹𝐴𝑅 − 𝐹𝐴𝑅𝑠| ≤ 0.01𝐹𝐴𝑅 set 𝑐 = 𝑐. If |𝐹𝐴𝑅 −

𝐹𝐴𝑅𝑠| > 0.01𝐹𝐴𝑅 and 𝑤 ≤ 𝑤𝑙𝑖𝑚 set 𝑐 = 𝑁𝐴.
7. Save value 𝑐 in vector �̂�, if the length of �̂� is smaller than 𝑆 return to step 3.
8. Set threshold value 𝐶𝑡𝑢𝑛𝑒𝑑 asmax(�̂�) for �̂� ≠ 𝑁𝐴. If all values in �̂� are𝑁𝐴 no threshold was found. Use {𝑋0, 𝑦0} to esti-

matemodel𝐹(𝑋) and calculate 𝑝1 = 𝐹(𝑋1). The expected false alarm rate𝐹𝐴𝑅 then equals𝐹𝐴𝑅 =
1

𝑁1

∑𝑁

𝑖=𝑁0+1
𝐼(𝑝1,𝑖 ≥

𝐶𝑡𝑢𝑛𝑒𝑑)𝐼(𝑦1,𝑖 = 0).
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F IGURE 5 Average probability per week grouped
for people that have a crisis in the monitoring time
frame (orange) and that do not have a crisis (blue)

TABLE 4 Precision and recall values using the XGBoost estimated probabilities and various values for threshold 𝐶

C Precision Recall
0.0001 0.0017 1.0000
0.0010 0.0023 0.7955
0.0100 0.0081 0.0517
0.1000 0.1224 0.0087
0.5000 0.5000 0.0018
0.7500 1.0000 0.0003

Note that the maximum estimated value in �̂� is set as 𝐶𝑡𝑢𝑛𝑒𝑑. Assuming the model generalizes well to new data, this
will result in an expected false alarm rate 𝐹𝐴𝑅 that is smaller than the desired 𝐹𝐴𝑅. We will demonstrate the procedure
in the following section.

4.2 Results

In this section, we monitor the probability of a crisis as predicted by the XGBoost algorithm. Threshold 𝐶 determines
when the procedure signals. As measures of performance we consider the precision and recall values. The precision is
given by

Precision(𝐶) =
𝑡𝑝(𝐶)

𝑡𝑝(𝐶) + 𝑓𝑝(𝐶)
, (7)

with 𝑡𝑝(𝐶) equal to the number of true positives for threshold 𝐶 and 𝑓𝑝(𝐶) the number of false positives for threshold 𝐶.
The recall is defined as

Recall(𝐶) =
𝑡𝑝(𝐶)

𝑡𝑝(𝐶) + 𝑓𝑛(𝐶)
, (8)

where 𝑓𝑛(𝐶) equals the number of false negatives for threshold 𝐶.44
Figure 5 shows the average estimated probability per week, grouped by the observed value of 𝑦𝑖,𝑡. On average, the proce-

dure estimates a visibly higher probability for the individuals that have a crisis for all weeks. We cannot show individual
probabilities to ensure the privacy of the persons.
Table 4 shows the precision and recall values for a wide range of values for 𝐶. The table shows perfect recall for 𝐶 =

0.0001, but the precision is very low. Perfect precision is achieved for 𝐶 = 0.75, but the recall is very low. This shows that,
although themodel does have some predictive power, a high false alarm rate is needed to detect a large portion of the crises.
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TABLE 5 Average estimated difference in probabilities per crisis/no crisis if we consider a 10-week period

Crisis within 10 weeks
Average estimated
difference in probability

No −0.000002
Yes 0.000296
Ratio −135.846300

TABLE 6 Precision and recall values using the XGBoost estimated probabilities of a crisis within 10 weeks and various values for
threshold 𝐶

C Precision Recall
1 0.0001 0.0148 1.0000000
2 0.0010 0.0183 0.8244052
3 0.0100 0.0438 0.0265457
4 0.1000 0.1603 0.0010674
5 0.5000 0.5000 0.0001685
6 0.7500 1.0000 0.0000281

4.2.1 Weeks before a crisis

The individual probability plots often show high volatility in the weeks leading up to a crisis. In this subsection, we thus
consider the average difference in estimated probability in the weeks before a crisis occurs.
Table 5 gives the average difference in estimated probabilities over 10 weeks ( 1

9

∑𝑡

𝑙=𝑡−9
(𝑝𝑖,𝑙 − 𝑝𝑖,𝑙−1) for week 𝑡 and

individual 𝑖), grouped by whether a crisis was observed at the end of those 10 weeks. This shows that, on average, the
estimated average difference in probability of a crisis in the 10 weeks leading up to crisis is 135 times higher than if no
crisis is observed after these 10 weeks.
Table 6 gives the precision and recall values for a range of𝐶 values when predicting if a crisis will occur within 10 weeks.

This shows a higher precision for low values of 𝐶 ≤ 0.1 compared to the weekly predictions (cf. Table 4).

4.2.2 Tuning the procedure

In this section, we run the procedure including the tuning algorithm for various required FARs. The desired FAR produces
a value for 𝐶 through the tuning algorithm outlined in Section 4.1. This value 𝐶𝑡𝑢𝑛𝑒𝑑 is then used to monitor the test set.
We use 𝑆 = 10 splits in the procedure and use cross-validation proportion 𝑞 = 0.75 for all values of 𝐹𝐴𝑅.
Table 7 gives the tuned values 𝐶𝑡𝑢𝑛𝑒𝑑 for a set of predetermined false alarm rates 𝐹𝐴𝑅 ∈

{0.5, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001}, as well as the precision/recall values in the test set and the actual observed
𝐹𝐴𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. The table shows that all the 𝐹𝐴𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 values are smaller than their respective 𝐹𝐴𝑅 values. In step 8 of
the procedure in Section 4.1 the maximum estimated value in �̂� is set as 𝐶𝑡𝑢𝑛𝑒𝑑. This results in 𝐹𝐴𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ≤ 𝐹𝐴𝑅 for all
𝐹𝐴𝑅 values of Table 7.

TABLE 7 𝐶𝑡𝑢𝑛𝑒𝑑-values for various predetermined values of 𝐹𝐴𝑅, as well as the precision/recall and the observed 𝐹𝐴𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑭𝑨𝑹 𝑪𝒕𝒖𝒏𝒆𝒅 𝑭𝑨𝑹𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 Precision Recall
0.50000 0.001961 0.233681 0.003285 0.451351
0.10000 0.006116 0.029413 0.006130 0.106306
0.05000 0.008648 0.014699 0.007784 0.067568
0.01000 0.017988 0.003014 0.014247 0.025526
0.00100 0.051656 0.000327 0.064516 0.013213
0.00010 0.139054 0.000060 0.180556 0.007808
0.00001 0.333604 0.000009 0.400000 0.003604
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4.3 False positives/negatives

The predictivemonitoring procedure of the previous sectionswill result in a number of false positives (i.e., a crisis is falsely
predicted) and false negatives (i.e., a crisis is not detected). Both are unwanted outcomes, with different consequences. A
false positive will result in unnecessary intervention. The responsible healthcare worker will be triggered by the procedure
to investigate the mental health state of the individual and these hours might be better spent otherwise. On the contrary,
a false negative will result in a crisis. This crisis might have been mitigated or even prevented if correctly predicted in
previous weeks. The practitioner can utilize the tuning procedure of Section 4.1 to produce an acceptable number of
false positives. Furthermore, the monitoring procedure might enable automated checkups where individuals at risk are
automatically asked to provide some input for the healthcare worker. The results of such an inquirymight warrant further
investigation or indicate a high likelihood of a false positive. In the next section we further discuss possible applications.

4.4 Recommendations

In this section, we summarize the findings of the previous sections into some recommendations for researchers and prac-
titioners in the mental healthcare domain.
In terms of feature engineering, we propose to aggregate healthcare activities, diagnoses, and personal data such as

income and job status into short-, medium-, and long-term features. A crisis should be defined based on input from the
healthcare practitioners. This will ensure that signals produced by the monitoring system are of value to the team. Sec-
tion 2.3 describes the definition of a crisis as used in this study.
As discussed in Section 3, gradient boosting method XGBoost offers a flexible approach to modeling the probability

of mental health crises. As input, the team of healthcare workers employing the monitoring system should decide on
an acceptable number of false alarms per week. This number of alarms can be achieved using the tuning procedure of
Section 4.1. The desired 𝐹𝐴𝑅 is calculated by dividing the number of acceptable false alarms by the number of clients in
a given week. This 𝐹𝐴𝑅 is the input for the algorithm of Section 4.1 which gives the appropriate threshold 𝐶𝑡𝑢𝑛𝑒𝑑. The
number of false alarms and associated 𝐹𝐴𝑅 and 𝐶𝑡𝑢𝑛𝑒𝑑 should regularly be updated.
Section 4.2 shows that both the predictions for the coming week as well as the variation in probabilities over a 10 week

period can be of value toward identifying crises. The predictivemonitoring can include both indicators,where the variation
in the past 10 weeks can be investigated to support the single week signals based on 𝐶𝑡𝑢𝑛𝑒𝑑. Interventions triggered by the
monitoring system should be recorded in the data.
For example, suppose a FACT team has 20 h per week to invest in client checkups. Each checkup takes around 12 min

to complete and the team is responsible for 1000 clients. In this case, 100 false alarms would not harm their core activities.
This suggests a desired 𝐹𝐴𝑅 = 10% and according to Table 7 a 𝐶𝑡𝑢𝑛𝑒𝑑 of 0.006116. The observed 𝐹𝐴𝑅 equals 2.94%, which
means the team will have around 30 checkups every week spending around 6 h. In expectation, around 11% of crises will
be detected by the system using these checkups. Predicting crises within the next 10 weeks can increase the percentage of
crises detected by the system. Furthermore, registering the result of a checkup will decrease the number of false alarms
and can increase the precision and recall of the monitoring system.

5 CONCLUSION AND DISCUSSION

In this study, predictivemonitoring usingXGBoost is investigated.Wedevelop a procedure that can produce earlywarnings
of problematic events and can be tuned to deliver a desired false alarm rate.
Advances in data collection and machine learning techniques can improve process quality control by forecasting and

monitoring potential process problems. XGboost is a recently developed powerful machine learning framework that
efficiently combines weak learners to minimize an appropriate loss function. The predictive monitoring procedure is
demonstrated using a real-life example on mental health in the Netherlands.
Predictive monitoring is an area of tremendous interest in mental health.10 A unique non-public data set on mental

health in the Netherlands was provided by Statistics Netherlands. We focused on predictive monitoring of mental health
crises in people diagnosed with schizophrenia. These crises are harmful, frequent, and expensive, which motivated the
need for early warnings of these events. All 75,000 people diagnosed with schizophrenia in the Netherlands were included
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in the study. The individual healthcare treatments, diagnoses, admissions, and incomes were aggregated on a weekly
interval. Subsequently, we built explanatory variables on three levels of aggregation, short (4 weeks), medium (12 weeks),
and long term (64 weeks). The final data set consisted of more than 15 million person-weeks and 264 predictors.
The data was then used to predict the probability of a crisis in a future week. We compared the performance of logistic

regression, hierarchical regression, and the XGBoost algorithm. All three methods showed predictive power, assigning a
higher probability of a crisis to individuals that end up in crisis care in the comingweek. TheXGBoost framework achieved
the highest discriminative capacity and was subsequently used in the monitoring procedure.
Predicted probabilities weremonitored using a threshold value𝐶. The procedure signals when the predicted probability

exceeds this value. Each value for 𝐶 will result in a number of true/false signals. A higher threshold will result in fewer
false positives, but it will also miss more cases of crisis in the monitoring phase. We propose a search algorithm to find a
value for 𝐶 that results in a desired false alarm rate. This algorithm uses cross-validation on the training data and delivers
good results in this case study.
We also considered the monitoring performance looking up to 10 weeks ahead. More specifically, the average estimated

difference in probabilities in the weeks leading up to a crisis was 135 times higher than for weeks that do not lead to a
crisis. This can be used by practitioners to produce early warnings of crises in people diagnosed with schizophrenia.
Mental health crises on a weekly basis are rare events, occurring in less than 0.3% of the recorded cases. The predic-

tive monitoring procedure shows promising results, although a high degree of uncertainty remains. The administrative
changes in the final year of the data made predicting crises more challenging. Further tuning of the parameters could
produce more accurate results but are out of the scope of this study. The proposed tuning algorithm provides a tool for
practitioners to configure the monitoring procedure based on the available capacity.
Some challenges in the application of the predictive monitoring procedure in mental health remain. The data wran-

gling operation is extensive. The administration of treatments anddiagnoses is complicated causing inconsistencies among
healthcare providers. The facilities to process and clean the numerous protected microdata sources are currently limited
in the Netherlands. Improving the consistency and improving the computational facilities will boost the predictive per-
formance.
A logical avenue for further research is the application of recurrent neural networks to a similar data set. This requires

more computational capacity than was available in this study. An interesting follow-up would be to compare the accu-
racy of expert opinion to the results of a predictive monitoring system as presented in this paper. Especially, studying the
changes in the accuracy of experts using the predictive monitoring system is of importance toward successful implemen-
tation. Furthermore, applying the predictive monitoring procedure to a process with a less sparse outcome is of interest.
In summary, predictive monitoring using XGBoost can produce good results in the mental health domain, as well

as other areas. It can be tuned to achieve a desired false alarm rate and is capable of handling large amounts
of (sparse) data. The tuning procedure and unique data set in this study represent a new direction in process
monitoring.
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