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ABSTRACT
Appointment scheduling is generally applied in outpatient clinics and other healthcare
services. The challenge in scheduling is to find a strategy for dealing with variability
and unpredictability in service duration and patient arrivals. The consequences of an
ineffective strategy include long waiting times for patients and idle time for the health-
care provider. In turn, these have implications for the perceived quality, cost-efficiency,
and capacity of healthcare services. The generation of optimal schedules is a noto-
riously intractable problem, and earlier attempts at designing effective strategies for
appointment scheduling were based on approximation, simulation, or simplification.
We propose a novel strategy for scheduling that exploits three tactical ideas to make the
problem manageable. We compare the proposed strategy to other approaches, and show
that it matches or outperforms competing methods in terms of flexibility, ease of use,
and speed. More importantly, it outperforms competing approaches nearly uniformly in
approaching the desired balance between waiting and idle times as specified in a chosen
objective function. Therefore, the strategy is a good basis for further enrichments.
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1 INTRODUCTION

Most healthcare services are nonprofit in nature and exist to
serve their communities. The rising expenditures for health-
care, however, have created general awareness that their per-
formance should be evaluated in terms of the delivered care
relative to the expenses incurred (Porter, 2010). This in turn
has drawn attention to the performance of the operating
and management practices involved. Two highly influential
reports of the Institute of Medicine (IOM, 2001, 2006) have
urged the use of operational management methods and infor-
mation technologies to improve the quality and efficiency in
healthcare, and healthcare applications of operations man-
agement theory and techniques have become a thriving
field.

One of the central challenges in healthcare-operations
management is to match capacity and demand under variabil-
ity and unpredictability. With some exceptions such as emer-
gent demand, healthcare services generally apply appoint-
ment scheduling to synchronize patient visits with the avail-
ability of specialists, facilities, and resources. Primary and
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specialty care in outpatient clinics are often scheduled, as
well as inpatient care such as elective surgeries; see, for
example, May et al. (2000) and Denton and Gupta (2003).
On the one hand, appointments should be set up such that
excessive waiting times for patients are avoided, as these
are an important determinant of the perceived service qual-
ity and satisfaction (Anderson et al., 2007; Huang, 1994). On
the other hand, the scheduling approach should maximize the
utilization of specialists, staff, and facilities by avoiding idle
time, that is, time lost waiting for patients. Utilization is an
important factor in the unit-costs of delivered care, and in
addition, it essentially determines the total capacity of the ser-
vice in question (and thus affects admission times and avail-
ability of care). Appointment scheduling, therefore, directly
impacts the perceived quality, cost-efficiency, and capacity of
a substantial part of healthcare services.

A key difficulty in scheduling is to deal effectively with
uncertainty and variability. Variability in the service times
is typically substantial in specialty care and surgery, and
scheduling in healthcare is often confronted with random no-
shows, cancelations, walk-ins, and emergencies (Çayirli &
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Veral, 2003; Çayirli et al., 2006; Deceuninck et al., 2018;
Gupta & Denton, 2008; Zacharias & Pinedo, 2014).

This article presents a systematic framework for setting
up appointment schedules in healthcare applications. Our
approach has been designed to be flexible, in that it is able
to incorporate a wide range of sources of variability (includ-
ing no-shows and walk-ins) and can deal with operational
restrictions (e.g., that time slots should be multiples of 5
min). Second, the framework is robust. In many studies it
is assumed that the service–time distribution is fully known,
whereas in practice often limited information is available.
Our approach requires only the first two moments, and turns
out to perform highly accurately. We refer to, for example,
Begen et al. (2012) and Mak et al. (2015) for other approaches
relying on limited distributional information. Third, we offer
our approach in a form that is computationally fast and easy
to use for the general public: it has been implemented in a
webtool that generates schedules instantaneously.

In its full form, the scheduling problem is to determine
optimal appointed arrival times for all n patients in a session,
which is an optimization in n − 1 dimensions. In this general
form, the problem was found to be analytically intractable.
Many approaches have been proposed to make the problem
tractable; see Ahmadi-Javid et al. (2017) for an extensive
overview of these attempts. Early work has simplified the
problem to the form where appointed arrivals are equidistant
with slot lengths equal to the mean service time. The first slot
is then overbooked by one or more patients (Bailey, 1952;
Welch & Bailey, 1952). In these simple heuristics, variability
can only be accounted for by scheduling more patients per
slot. Charnetski (1984), Hassin and Mendel (2008), and oth-
ers have studied a simplification where the appointed arrival
times are still equidistant, but the number of patients per slot
is limited to one, and it is the (constant) length of the slots
that is the parameter that is optimized.

Recent literature has considered the problem in its full-
fledged form, where appointed arrivals are not necessarily
equidistant, and have attempted to make the problem tractable
by applying approximations or simulations, such as Wang
(1997), Robinson and Chen (2003), Kaandorp and Koole
(2007), De Vuyst et al. (2014), Çayirli et al. (2012), and
Kuiper et al. (2015). Across a wide variety of settings, they
found that optimal schedules turn out not to have equidistant
appointment times. But the optimal interarrival times typi-
cally have the shape of a dome: shorter slots in the beginning
and toward the end of a session, and longer in the middle.

We propose a novel strategy for scheduling that exploits
three tactical ideas to make the problem manageable. First,
we develop a method to determine the expected waiting and
idle times analytically by approximating the service time’s
distributions by phase-type distributions. This approxima-
tion is both accurate and analytically convenient. Second,
we extend the approach to incorporate no-shows and walk-
ins. Our approach for incorporating no-shows and walk-ins
is general: it can be used to augment alternative schedul-
ing strategies as well. And third, we offer an algorithm
that generates near-optimal schedules instantaneously from

a grid of precalculated schedules. We compare our strategy
to other approaches, and show that it matches or outper-
forms competing methods in terms of flexibility and ease of
use (it can be applied in a wide range of scenarios), robust-
ness (its performance is not very sensitive to critical model
assumptions), and speed (it does not require lengthy simula-
tion procedures). More importantly, it outperforms competing
approaches nearly uniformly in approaching the desired bal-
ance between waiting and idle times as specified in a chosen
objective function.

An important idea driving our approach is to approxi-
mate the distribution of service times by phase-type distribu-
tions. This type of approximation offers important advantages
for our purpose. First, phase-type distributions are computa-
tionally convenient, because they are mixtures and/or con-
volutions of exponential distributions, and as a result, the
computation of expected idle and waiting times becomes
analytically tractable. Second, any positive distribution can
be approximated with arbitrary accuracy by a phase-type
approximation. And third, it turns out that for finding an
appropriate phase-type distribution, we need to estimate only
the first two moments of the service–time distribution. There-
fore, phase-type approximations are an attractive way for
making the scheduling problem tractable, as they are accu-
rate and convenient. In the next section, we start by defining
the problem carefully, and placing it in accepted theory in
operations management.

2 THEORY AND PROBLEM
DEFINITION

In this section, we define the problem in mathematical terms
and state the problem to be solved. Furthermore, we con-
tribute a rigorous proof of the convexity of the objective func-
tion under consideration.

2.1 Preliminaries

Figure 1 illustrates the setting of the problem, with a session
consisting of n slots with lengths x1,… , xn−1, from which the

patients’ scheduled arrival times ti :=
∑i−1

j=1 xj follow, with the
convention of an empty sum being zero. The realized service
times are indicated by the widths of the solid rectangles, and
the waiting times by the widths of the dark-gray rectangles.
The total expected waiting and idle times in the session are
determined by the schedule (x1,… , xn−1) and by the compo-
nents of process variability and their stochastic properties. In
the first place, we have the distribution FB (assuming i.i.d.
for now) of the service times Bi, with mean 𝜇 = 𝔼Bi and with
squared coefficient of variation 𝜚 (the ratio of the variance of
Bi and its squared mean). In addition, we have a per-patient
probability q ∈ [0, 1) of a no-show, and a per-slot probability
v that an unscheduled patient arrives (a walk-in).

In correspondence with Figure 1, we define by Wi the net
waiting time of the i-th patient, that is, the time in between
her scheduled arrival and the moment she receives service,
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F I G U R E 1 The setting of the problem, in which n slots with lengths x1,… , xn−1 determine the appointment schedule. This in turn should be optimized
such that it minimizes the objective function

where we set W1 = 0. As a consequence earliness is on the
patient’s account. Define Ii as the server idle time prior to the
i-th patient’s arrival, with I1 = 0. It is a standard result that,
by virtue of the Lindley recursion, the Ii can be determined
recursively:

Ii = max{xi−1 − Wi−1 − Bi−1, 0}.

Likewise,

Wi = max{Wi−1 + Bi−1 − xi−1, 0}. (1)

Evidently, we cannot have that both Wi and Ii are strictly pos-
itive. This observation leads to the following identities, where
Si = Wi + Bi denotes the sojourn time of the i-th patient:

Ii + Wi = | Si−1 − xi−1 | and W2
i + I2

i = (Si−1 − xi−1)2.

The makespan or session end time (SET), defined as the
epoch T that patient n has been fully served, can be written in

two alternative ways, noting that
∑n−1

i=1 xi = tn,

T :=
n∑

i=1

Bi +
n∑

i=1

Ii =
n−1∑
i=1

xi + Sn. (2)

2.2 Objective function and convexity

In our approach the schedules are generated so as to opti-
mize a specific objective function. We now argue that suit-
able objective functions for appointment schedules in health-
care are a weighted average of idle time for the servers and

waiting time for patients. Designing an appointment sched-
ule is an instance of the more general problem of dealing
with process variability; see Hopp and Spearman (2008).
A sensible first step in dealing with variability and uncer-
tainty is to try to reduce them. Some outpatient clinics, for
instance, bring down no-shows and last-minute cancelations
by employing reminders and/or sanctions (Barron, 1980). A
second step is to counterbalance variability by flexibility.
Healthcare providers sometimes handle peak loads by stretch-
ing their working day or shrinking lunch time. Oppositely,
they may put unanticipated idle time to effective use by catch-
ing up on administrative work or other pending tasks.

After variability has been reduced or counterbalanced as
far as possible, the variability buffering law (Hopp & Spear-
man, 2008) predicts that the remaining variability will be
absorbed by a combination of three buffers. In the first place,
the provider may build up in advance an inventory of finished
“products” as a buffer to absorb peaks in demand. This is
rarely an option, however, for the type of services that we con-
sider. Products in our setting are treatments and diagnoses,
and production cannot start until patient and doctor come
together. This leaves us with two other types of buffering:

∙ a queue of patients waiting to get served and
∙ an excess of unutilized capacity of the healthcare provider

(which implies idle time).

As a consequence, a schedule’s performance degradation due
to variability is a combination of waiting time for patients
and idle time for servers, which act as communicating ves-
sels. Given the stochastic characteristics of service times
and patient arrivals (including no-shows and walk-ins), and
weighting the relative importance of idle and waiting times
by 𝜔 ∈ (0, 1), this performance degradation is expressed by



4 A FLEXIBLE AND OPTIMAL APPROACH

F I G U R E 2 The efficient frontier showing the trade-off in terms of idle and waiting times when 10 patients are scheduled optimally, given 𝜔, with 𝜔
ranging from 0.05 to 0.95. Here exponential service times are assumed. In gray the iso-performance lines are drawn for 𝜔 = 0.75 (dashed) and for 𝜔 = 0.25
(dotted)

the objective function

ℱ[x1,… , xn−1] = 𝜔
n∑

i=1

𝔼Ii + (1 − 𝜔)
n∑

i=1

𝔼Wi. (3)

For a given weight 𝜔, the optimal schedule is the sequence
x̄1,… , x̄n−1 that minimizes ℱ[x1,… , xn−1]. Define Ī(𝜔) =∑n

i=1 𝔼Ii and W̄(𝜔) =
∑n

i=1 𝔼Wi as the mean total idle and
waiting time of the optimal schedule x̄1,… , x̄n−1 for the
weight 𝜔. Generally, when 𝜔 approaches 1 (i.e., the situa-
tion in which the value of the objective function is essen-
tially determined by the idle times only), W̄(𝜔) explodes; cf.
the utilization law of Hopp and Spearman (2008). On the
other hand, when 𝜔 approaches 0, the contribution of the
mean total idle time experienced by the server, that is, Ī(𝜔),
increases sharply.

The curves in Figure 2, consisting of combinations
(Ī(𝜔), W̄(𝜔)) for 𝜔 ∈ (0, 1), are named the efficient frontier in
the management literature. All feasible schedules correspond
to combinations on or above this curve. The efficient fron-
tier conceptualizes that some differences between the perfor-
mance of schedules are due to the trade-off between Ī(𝜔) and
W̄(𝜔) and other differences are due to suboptimality. The first
is expressed by 𝜔 and corresponds to a position on the curve.
The latter are represented by the iso-performance lines (the
dashed or dotted lines in Figure 2). Schedules that lie on such

a line result in equivalent trade-offs that have the same value
in terms of the objective function and therefore the line’s
angle is determined by the 𝜔 of choice. The given objec-
tive function thus breaks down the performance of schedules
into a trade-off component (which ultimately is a strategic
decision) and an optimality component (which is a matter of
superiority of one schedule compared to another). The effi-
cient frontier itself can be moved in the direction of the lower
left corner by reducing the variability in the process.

Interestingly, the optimization problem in Equation (3) can
be rewritten in terms of only (expected) waiting times:

(x̄1,… , x̄n−1) = arg min
x1,…,xn−1

ℱ[x1,… , xn−1],

= arg min
x1,…,xn−1

(
𝔼Wn +

n−1∑
i=1

(1 − 𝜔)𝔼Wi + 𝜔
n−1∑
i=1

xi

)
,

(4)

as can be seen as follows. From Equation (2), by comparing
the makespan up to patient i with that up to patient i − 1, we
obtain

Bi + Ii=

(
i−1∑
j=1

xj + Si

)
−

(
i−2∑
j=1

xj + Si−1

)
= xi−1 + Si−Si−1.
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This directly leads to

Ii = xi−1 + Wi − Wi−1 − Bi−1. (5)

Relation (4) now follows by taking expectations in (5) and by
noting that a number of terms (in a telescopic series) vanish.
The 𝔼Bi terms can be dropped from the resulting expression
for the objective function, as these constants do not affect the
optimal interarrival times x̄1,… , x̄n−1.

Because we aim to minimize the objective function in (4),
it is important to know whether the function is convex in its
arguments x1,… , xn−1. Convexity of the optimization prob-
lem has attracted substantial attention in the past (Hassin &
Mendel, 2008). For a specific objective function (different
from ours), convexity has been proven in Wang (1993). We
present the following result.

Theorem 1. ℱ[x1,… , xn−1] is convex in x ≡ (x1,… , xn−1),
and consequently, there is a unique minimum on ℝn−1

+ .

Proof. Define by Wi(x) the waiting time of the i-th patient
if the vector of interarrival times is given by x. For a given i
define

Zj =
i∑

k=i−j+1

Bk, yj(x) =
i∑

k=i−j+1

xk.

The following distributional equality can be obtained after
repeated iteration of Equation (1):

Wi(x)
d
= max

j∈{0,1,…,i−1}

{
Zj − yj(x)

}
. (6)

Here we have followed the convention that empty sums are
defined equal to 0; this correctly yields that W1 = 0, that is,
the first patient does not have to wait.

Now using this equality and the fact that yj is linear in each
of the interarrival times xk, we have with 𝜈 ∈ [0, 1] given and
x1, x2 ∈ ℝn−1

+ that

𝔼
[
Wi(𝜈x1 + (1 − 𝜈)x2)

]
= 𝔼

[
max

j∈{0,…,i−1}

{
Zj − yj(𝜈x1 + (1 − 𝜈)x2)

}]

= 𝔼

[
max

j∈{0,…,i−1}

{
𝜈(Zj − yj(x1)) + (1 − 𝜈)(Zj − yj(x2))

}]

⩽ 𝔼

[
max

j∈{0,…,i−1}

{
𝜈(Zj − yj(x1))

}]

+ 𝔼

[
max

j∈{0,…,i−1}

{
(1 − 𝜈)(Zj − yj(x2))

}]
,

which equals 𝜈 𝔼[Wi(x1)] + (1 − 𝜈)𝔼[Wi(x2)]. This directly
implies that 𝔼[Wi(x)] is convex. Because of Equation (4), the

objective function is a linear combination of expected waiting
times (with positive weights), minus a function that is linear
in x, and therefore convex as well. As a consequence, there is
a unique minimum on ℝn−1

+ . □

A weighted linear objective function is the standard and
unchallenged option in the scheduling literature. For possible
future consideration in research, we raise the possibility of
weighted-quadratic objective functions:

ℱ(q)[x1,… , xn−1] = 𝜔
n∑

i=1

𝔼I2
i + (1 − 𝜔)

n∑
i=1

𝔼W2
i .

The potential of such nonlinear objective functions is that
they could capture nonlinear utility loss of waiting or idle
time, as anticipated, for example, in the finding of Ahmadi-
Javid et al. (2017) that a patient’s perception of waiting
time is likely to be nonlinear. In this article, we focus on
the weighted-linear objective function, but the weighted-
quadratic, and also mixed versions (linear-quadratic or
quadratic-linear) are readily incorporated in our approach.
These alternatives are available in the online webtool imple-
mentation of our approach.

In the next section, we elaborate on our approach to com-
pute these schedules. The first idea is to approximate FB
by mixtures of phase-type distributions, with correct 𝜇 and
𝜚, which allow an analytical computation of

∑n
i=1 𝔼Ii and∑n

i=1 𝔼Wi. Next, we show how the approach can be extended
to incorporate no-shows and walk-ins. The approach is rela-
tively fast, but to arrive at a procedure that computes sched-
ules instantaneously, our last tactical idea is to create a set of
precalculated schedules for a grid of values of 𝜔, 𝜚, and n, and
to determine schedules from there by means of interpolation.
In Section 5 we will systematically compare the effectiveness
of our approach with competing methods.

3 PROPOSED APPROACH

This section presents our approach, based on an approxi-
mation of FB by phase-type distributions. Thereupon, we
demonstrate how no-shows and walk-ins can be incorporated,
and how session overtime can be integrated in the objective
function. Finally, we discuss how the approach can be imple-
mented by using our webtool.

3.1 Phase-type approximation

Unfortunately, no analytical procedures are available to deter-
mine, for generally distributed service times, the distributions
of the idle times Ii, and the waiting times Wi. We remedy this
by approximating the actual service times by their so-called
phase-type counterparts. This approach uses the well-known
fact that phase-type distributions are capable of approximat-
ing any positive distribution with arbitrary accuracy; see, for
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example, Asmussen et al. (1996). The resulting queueing sys-
tem allows (semi)explicit computation of the objective func-
tion, as pointed out in, for example, Kuiper et al. (2015).

We characterize the service–time distributions by fitting a
phase-type distribution with the correct first two moments;
the values of these moments can be chosen in line with,
for instance, the findings of Çayirli and Veral (2003). This
choice is motivated by the fact that it is cumbersome to
estimate higher moments, and moreover, we anticipate that
those higher moments have only modest impact on the per-
formance of an appointment schedule (Kuiper et al., 2017).

In line with the literature on scheduling, we represent the
first two moments by (i) the mean 𝜇 and (ii) the squared coef-
ficient of variation (𝜚), a unitless quantity that is defined as
the ratio of the variance and the square of the mean. We fol-
low the standard procedure, advocated in Tijms (1986) and
also used in Kuiper et al. (2015), to approximate the service
time by a mixture of two Erlang random variables if it has a
𝜚 smaller than 1, and by a hyperexponential random variable
if it has a 𝜚 larger than 1. The case of 𝜚 = 1 corresponds to
exponential service times (as was used in Figure 2). In more
detail, the approximation is constructed as follows.

∙ In case 𝜚 is smaller than 1, the service–time distribution is
approximated by a mixture of Erlang distributions: it is an
Erlang distribution with K − 1 phases and mean (K − 1)∕𝜆
with probability p ∈ [0, 1), and an Erlang distribution with
K phases and mean K∕𝜆 with probability 1 − p. This mix-
ture of Erlang random variables has mean (K − p)∕𝜆 and
variance (K − p)∕𝜆2. As a consequence, its squared coeffi-
cient of variation is 1∕(K − p), which due to p ∈ [0, 1) lies
in the interval [1∕K, 1∕(K − 1)), for K ∈ {2, 3,…}. As a
result, we can identify unique K, 𝜆, and p such that our
mixture of Erlangs has the desired mean 𝜇 and squared
coefficient of variation 𝜚. For instance, if 𝜇 = 1 and 𝜚 =

0.4, we have to pick K = 3 (as 0.4 ∈ (s
1

3
, 1∕2]), p = 0.5 (so

that 𝜚 = 0.4 = 1∕(3 − p)), and 𝜆 = 2.5 (so that the mean
service time is (3 − 0.5)∕𝜆 = 1).

∙ In the other situation, in which 𝜚 is larger than 1, the ser-
vice time is approximated by a hyperexponential random
variable, which is constructed as an exponential random
variable with mean 𝜆−1

1 with probability p ∈ [0, 1], and an
exponential random variable with mean 𝜆−1

2 with proba-
bility 1 − p. By imposing balanced means, 𝜆1 = 2p𝜆 and
𝜆2 = 2(1 − p)𝜆 for some 𝜆 > 0, one reduces the number of
free parameters from three to two, so that for each 𝜇 and 𝜚,
a unique hyperexponential distribution can be determined.
In detail, the mean and variance of the hyperexponen-
tial random variable are given by p∕𝜆1 + (1 − p)∕𝜆2 and
p∕𝜆2

1 + (1 − p)∕𝜆2
2, respectively, so that the corresponding

squared coefficient of variation equals

p𝜆2
2 + (1 − p)𝜆2

1

p2𝜆2 + 2p(1 − p)𝜆1𝜆2 + (1 − p)2𝜆2
1

,

which under balanced means reduces to

1
4p(1 − p)

.

Notice that p(1 − p) ∈ [0, 1∕4] for p ∈ [0, 1], so that the
squared coefficient of variation can attain any value larger
than 1. We again illustrate the procedure to select the
parameters by an example. Suppose that 𝜇 = 1 and 𝜚 =
1.125. Then we have to pick p = 1∕3 to make sure that
the squared coefficient of variation has the right value, and
𝜆 = 1 to make sure the mean has the right value.

As mentioned above, the appeal of using phase-type dis-
tributions lies in the fact that they produce accurate fits even
with a relatively small number of parameters. In various spe-
cific contexts, extensive experiments have been performed to
assess the performance of the phase-type approximation. In
Asmussen et al. (1996) and also in more recent papers, in-
depth numerical studies confirm the good fit for practically
relevant distributions such as lognormal and Weibull. This is
in line with our own experiments, reported later in this article,
in which we work with lognormally distributed service times.

For the sake of completeness, we include in the appendix
(supplementary file) the procedure for evaluating the objec-
tive functions introduced earlier for the case that the service–
time distributions are of phase type; for more detail on how
to use this type of procedures, we refer to Wang (1997) and
Kuiper et al. (2015).

3.2 Employing a precalculated grid

The minimization of the objective function, applying the
algorithm thus outlined, can be performed using standard
software (such as MATLAB). Normally the algorithm arrives at
the optimal solution within a minute, but there are instances
which require longer computation times (up to 15 min for a
single problem instance). The numerical minimization is typ-
ically slower when

∙ n is larger than, say, 30, in which case the vector over which
the optimization is performed is of (relatively) high dimen-
sionality;

∙ 𝜚 is relatively small. Consider, for instance, the case that
𝜚 ∈ (0.2, 0.25] and n = 25. Then potentially five exponen-
tial phases enter the system with each arrival, such that the
state space of the sojourn time of the n-th patient is 125-
dimensional.

To avoid these long computation times for practitioners,
our third tactical idea is to exploit a set of precalculated
schedules for a grid of values of 𝜚 ∈ [0.1, 1.5] (step size
0.1), 𝜔 ∈ [0.05, 0.99] (step size 0.05), and n = 2,… , 35. Then
cubic Hermite spline interpolation is used to find a suitable
schedule for values of (𝜚,𝜔) that are not on the grid. This
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interpolation relies on the values and derivatives of two neigh-
boring points in the following way.

First consider the situation of a real-valued grid (si)
I
i=0

such that s0 < s1 < … < sI at which we have the precom-
puted schedules (xi)

I
i=0. Define the Hermite basis func-

tions h00(⋅), h10(⋅), h01(⋅), and h11(⋅) by h00(y) = 2y3 − 3y2 +
1, h10(y) = y3 − 2y2 + y, h01(y) = −2y3 + 3y2, and h11(y) =
y3 − y2. Then the interpolation for an s ∈ [si, si+1] is

x(s) = h00(y)xi + h10(y)(si+1 − si)mi

+ h01(y)xi+1 + h11(y)(si+1 − si)mi+1,

with y := (s − si)∕(si+1 − si) and mi the tangent in xi. This
tangent can be approximated by using the grid of precom-
puted schedules again:

mi =
xi − xi−1

si − si−1
and mi+1 =

xi+2 − xi+1

si+2 − si+1
. (7)

In our case the grid is two-dimensional; recall that we use
the interpolation to obtain schedules for pairs (𝜚,𝜔). Observe
however that the above procedure can be extended to multiple
dimensions by applying the approach in a nested manner.

The precalculated schedules are stored in and
exploited by a tool that can be accessed via http:
//www.appointmentscheduling.info. An extensive valida-
tion, by checking middle points in between the grid, revealed
that the discrepancy with the optimal schedule is negligible
(well below 1%, but typically 0.05% or less).

3.3 No-shows and walk-ins

We now point out how no-shows and walk-ins can be dealt
with in a generic way, beginning with the former. We assume
a per-patient probability q ∈ [0, 1) of a no-show. We apply the
developed machinery, but with adjusted service times B̄i = Bi
with probability 1 − q, and B̄i = 0 with probability q. We
have 𝔼B̄i = 𝜇(1 − q), and the squared coefficient of variation
becomes

𝜚̄(q) =
(1 − q)𝔼B2 − (1 − q)2𝜇2

(1 − q)2𝜇2

=
(1 − q) 𝜚 + (1 − q)q

(1 − q)2
=

𝜚 + q

1 − q
. (8)

Although 𝜚 is typically smaller than 1 in healthcare, the
adjusted 𝜚̄ can be larger than 1. For this reason, when using
the phase-type approximations , the situation that 𝜚 > 1,
where service times are approximated by a hyperexponential
variable, is relevant.

Next, we incorporate walk-ins, where in addition to the
patients scheduled, also unscheduled patients arrive during
the session. Let v ∈ [0, 1] be the probability that an unsched-

uled patient is added to an appointment slot. The revised ser-
vice time B̃i is therefore equal to:

(i) two i.i.d. copies of the service time Bi with probability
(1 − q)v (no no-show and a walk-in),

(ii) equal to one service time Bi with probability (1 −
q)(1 − v) + qv (either no no-show and no walk-in, or a
no-show and a walk-in),

(iii) equal to 0 with probability q(1 − v) (a no-show and no
walk-in).

As a consequence, the expected service time becomes

𝔼B̃i = 2(1 − q)v𝜇 + ((1 − q)(1 − v) + qv)𝜇 = (1 − q + v)𝜇.

Along the same lines, the second moment becomes, with B′

an independent copy of B,

𝔼B̃2
i = (1 − q)v𝔼

[
(B + B′)2

]
+ ((1 − q)(1 − v) + qv)𝔼B2

= (1 − q)v
(
2𝔼B2 + 2𝜇2

)
+ ((1 − q)(1 − v) + qv)𝔼B2,

so that

𝕍arB̃i = (1 − q)v
(
2𝔼B2 + 2𝜇2

)
+ ((1 − q)(1 − v) + qv)𝔼B2 − (1 − q + v)2𝜇2

= (1 − q + v)𝔼B2 − (v2 + (1 − q)2)𝜇2.

The squared coefficient of variation thus becomes

𝜚̃(q, v) =
(1 − q + v)𝔼B2 − (v2 + (1 − q)2)𝜇2

(1 − q + v)2𝜇2

=
(1 − q + v) 𝜚 + q(1 − q) + v(1 − v)

(1 − q + v)2
.

Indeed, the case v = 0 is equivalent to the situation with no-
shows only. This method can generally be applied to accom-
modate no-shows and walk-ins into methods that compute
schedules, and in fact, we use this approach in Section 5 to
augment methods already presented in the literature (Bailey,
1952; Hassin & Mendel, 2008; Mak et al., 2015; Robinson &
Chen, 2003).

Figure 3 demonstrates the effects of no-shows and walk-
ins on the optimal schedule. The graph shows the slot lengths
x̄i for patient i = 1,… , n − 1 (with n = 20) in the optimal
schedule in four scenarios. For all four scenarios, the optimal
slot lengths follow the dome shape, with shorter slot lengths
in the beginning and end of the schedule, and longer in the
middle. The scenarios are defined by combinations of v and
q, where q = 0.0 or q = 0.4 and v = 0.0 or v = 0.4. These
ranges demarcate the values found in practice (Çayirli et al.,
2012). In all scenarios, 𝜚 = 0.5 (variation in service times)
and 𝜔 = 5∕6 (weight for idle versus waiting time).

http://www.appointmentscheduling.info
http://www.appointmentscheduling.info
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F I G U R E 3 Various environments by varying the no-show rate q and walk-in rate v are considered for ℱ with 𝜚 = 0.5, 𝜔 = 5∕6, and n = 20. The mean
of the service times is normalized to 1

TA B L E 1 A consideration of various scenarios to study the impact of environmental parameters on our approach and key metrics of the resulting
schedule

Environment Rev. parameters Session metrics Performance

Scenario 𝝔 q v 𝔼B̃ 𝝔 𝔼N 𝔼T
∑

𝔼Ii
∑

𝔼Wi

I 0.5 0.0 0.0 1.0 0.50 20 22.84 2.84 18.38

II 0.5 0.4 0.0 0.6 1.50 12 14.50 2.50 20.04

III 0.5 0.0 0.4 1.4 0.48 28 31.92 3.92 25.13

IV 0.5 0.4 0.4 1.0 0.98 20 23.78 3.78 26.46

The obvious effects of q = 0.4 (40% no-shows as in Sce-
nario II) are that the expected number 𝔼N of patients seen in
the session is smaller than in Scenario I, and that the allot-
ted slot times per patient are shorter, thus accommodating
the expected percentage of no-shows. Table 1 shows that the
expectation 𝔼B̃ of the adjusted service times B̃i is 0.6 instead
of 1.0, so scheduling in the face of 40% no-shows is simi-
lar to scheduling with zero percent no-shows and 40% shorter
expected service times. This is shown in Figure 3 as graph II
is much lower than graph I. Analogously, graph III is much
higher than graph I, illustrating that walk-ins are accommo-
dated in the optimal schedule by making slot lengths longer.

Graph IV is the scenario of q = 0.4 no-shows and v = 0.4
walk-ins. The expected session length 𝔼T and the expected
number of patients served are similar to those of Scenario I,
as the expected no-shows and walk-ins cancel each other out.
The variability in Scenario IV, however, is much larger than
in Scenario I, which is reflected in 𝜚̃ = 0.98 as opposed to
𝜚 = 0.50. This, in turn, results in a more pronounced dome

shape for the optimal schedule. This insight holds in general:
larger variability in patient arrivals or service times (larger 𝜚̃)
results in the dome shape to be more pronounced. The right-
most two columns in Table 1 demonstrate the effects of larger
variability due to walk-ins and no-shows on the performance
of a schedule. Scenario IV serves the same expected num-
ber of patients as Scenario I, but with larger expected idle
time for the service provider (3.78 instead of 2.84) and much
larger expected waiting times for patients (26.46 instead of
18.38). The reason that the expected waiting time is much
more affected by variability than the expected idle time is the
chosen value 𝜔 = 5∕6, which makes idle time the overriding
consideration in optimizing the schedule.

Figure 3 illustrates a session of size n = 20 scheduled
patients, and the observed behavior is the same for other ses-
sion sizes. For increasing n, the middle part of the dome shape
rises up to an upper bound x̄∞. This upper bound is the opti-
mal slot-length in a steady-state model, where a session has
an infinite number of patients (n → ∞). In that situation the
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F I G U R E 4 Density plot with contours of the 𝜚̃ as a function of q and v, 𝜚 is set to 0.5. The dashed line demarcates two regions, below walk-ins
aggravate the variation, conversely above an increase in v reduces the coefficient of variation

optimal slot lengths x̄∞ are the same for every slot, and there-
fore, the profile of interarrival times over a session is flat
instead of a dome shape (Kuiper et al., 2017). For sessions
of finite size, the dome shapes are below this upper bound,
and for increasing session size n, the middle part of the dome
flattens out as optimal slot lengths in the middle of the session
approach the upper bound.

As an aside, intuitively one could have expected that the
occurrence of no-shows and walk-ins should always increase
the relative variability in the process, but this does not turn
out to be the case. For example, comparing Scenario IV to
II in Table 1, one sees that a 0.4 walk-in rate reduces 𝜚̃.
Figure 4 shows 𝜚̃ for a range of values for q and v, taking

𝜚 =
𝕍arB

𝔼B2
= 0.5. Increasing the probability q of a no-show

always increases 𝜚̃, implying that the variability increases,
and as a consequence, the interarrival times in the optimal
schedule have a more pronounced dome shape (Kuiper et al.,
2015). The graph shows that the effect of increasing the prob-
ability v is not necessarily monotone, though. The dashed line
in Figure 4 is the solution to 𝜕𝜚̃(q, v)∕𝜕v = 0, which gives

v0(q) = max

{
q − 1 +

4(q − 1)2

3 − 2q + 𝜚
, 0

}
.

For 𝜚 = 0.5, in the area above the dashed line, v ≥ v0(q), an
increase in the probability v of a walk-in decreases the varia-
tion 𝜚̃.

3.4 Overtime

The makespan (SET) T as defined in Equation (2) determines
how long the service provider should be available. Overtime
occurs if T > SET, with SET the scheduled or targeted SET.
Overtime is an undesirable effect, but it is not taken into
account in objective functions of the form Equation (3). Here,
we show how overtime can be incorporated by a minor mod-
ification.

An objective function that penalizes overtime is

ℱ[x1,… , xn−1] + 𝜔̄ 𝔼O = 𝜔
n∑

i=1

𝔼Ii + (1 − 𝜔)
n∑

i=1

𝔼Wi + 𝜔̄ 𝔼O

= 𝜔
n∑

i=1

𝔼Ii + (1 − 𝜔)
n∑

i=1

𝔼Wi + 𝜔̄max

{
n−1∑
i=1

xi + Sn − SET, 0

}

≈ 𝜔
n∑

i=1

𝔼Ii + (1 − 𝜔)
n∑

i=1

𝔼Wi + 𝜔̄

(
n∑

i=1

𝔼Bi +
n∑

i=1

𝔼Ii − SET

)
(9)

for some scalar 𝜔̄ > 0 and scheduled SET. Given the fact that
the 𝔼Bi s and SET are not affected by the choice of the sched-
ule, it is seen that minimizing the above objective function is
equivalent to minimizing

𝜔 + 𝜔̄
1 + 𝜔̄

n∑
i=1

𝔼Ii +
1 − 𝜔
1 + 𝜔̄

n∑
i=1

𝔼Wi.
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This objective function is of the same form as the origi-
nal problem, but with adapted weights. As a consequence,
the techniques we developed can be used in the setting
that incorporates overtime in the objective function. Indeed,
Klassen and Yoogalingam (2014) conclude by simulation
that the incorporation of overtime in the objective function
has a similar effect as increasing the weight put on idle
time.

3.5 Possible extensions

To explicitly show the flexibility of our model, we outline
some extensions in several directions. In the first place, while
we concentrate in this article on the situation that the patients’
service times are i.i.d., our set-up naturally extends to hetero-
geneous service times; more specifically, the result of The-
orem 1 does not require the service times to be i.i.d., and
the evaluation techniques also generalize to heterogeneous
service times. This observation in particular implies that the
parameters q and v could be chosen slot-dependent. This
could be used if it is empirically observed that there are some
systematic variations in these parameters. For instance, if the
no-show probability at the first slot, early in the morning, is
higher than later in the day, then this can be taken care of
by giving the parameter q corresponding to the first patient a
suitably chosen higher value.

Above we assumed that at most one walk-in patient could
be added to each appointment slot. One could, however, con-
sider the (more realistic) setup in which walk-ins follow a
Poisson process with parameter 𝜅. This means that the num-
ber of unscheduled patients entering in [ti, ti+1) follows a
Poisson distribution with parameter 𝜅xi, with xi = ti+1 − ti
denoting the slot length. By Equation (8) we know for the
situation with only no-shows (i.e., no walk-ins), the mean
𝔼B̄ equals (1 − q)𝜇, whereas the variance 𝕍arB̄ equals (𝜚 +
q)(1 − q)𝜇2. Incorporating Poisson walk-ins, the mean (of the
work brought along by all patients in this slot) becomes

𝔼B̃i = 𝜇(1 − q + 𝜅xi),

whereas (relying on the variance version of Wald’s equality
for a random sum of random variables) the variance becomes

𝕍arB̃i = 𝕍arB̄ + 𝜅xi 𝜚𝜇
2 + 𝜅xi 𝜇

2

= (𝜚 + q)(1 − q)𝜇2 + 𝜅xi(𝜚 + 1)𝜇2.

When dividing 𝕍arB̃i by (𝔼B̃i)
2, we thus obtain

𝜚̃i(q, 𝜅) =
(𝜚 + q)(1 − q) + 𝜅xi(𝜚 + 1)

(1 − q + 𝜅xi)2
.

The procedure can even be further generalized by allowing
the arrival rate 𝜅 to be time dependent (which is in partic-

ular useful if there is, say, a day profile in the arrival pro-
cess of the walk-ins). If the walk-in arrival rate at time s is
𝜅(s), then 𝜅xi in the above expression should be replaced by
∫

[ti,ti+1]
𝜅(s) ds.◊

4 OPERATION OF THE WEBTOOL

We explain the use of the webtool in practice. First, the user
enters appropriate values for 𝜇 (= 𝔼Bi) and 𝜚, preferably
based on the estimated first two moments of measured service
times. Typical values for 𝜚 in healthcare are between 0.1225
and 0.7225 (Çayirli & Veral, 2003), where larger 𝜚 implies
less consistent and less predictable service times. Both 𝜇 and
𝜚 need to be estimated from recorded service times, from
which the average X̄ and standard deviation S can be used

to estimate 𝜇 and 𝜚 (the latter as
S2

X̄2
). The user also enters

estimates for the per-slot probabilities q and v of a no-show
or a walk-in.

Second, the user enters two out of the triple n (the num-
ber of patients to be scheduled), 𝜔 (the desired weight),
and 𝔼T (the expected SET). As explained before, 𝜔 is ulti-
mately a strategic choice reflecting the clinic’s value proposi-
tion. Robinson and Chen (2011) studied mean queue lengths
and utilizations in practice to determine how the trade-off
is implicitly made in reality. They report implied values up
to 𝜔 = 0.98, corresponding to situations where idle times
are minimized by allowing long waiting times for patients.
Depending on which two parameters are entered, the webtool
produces the following results:

1. If n and 𝜔 are provided, the webtool generates the result-
ing optimal schedule as well as its expected makespan 𝔼T .

2. Entering n and 𝔼T (where, evidently, 𝔼T > n𝔼B), the tool
determines the implied value of 𝜔 and returns the optimal
schedule that matches the expected makespan 𝔼T .

3. The final option is to select 𝔼T and 𝜔 to find out how many
patients can optimally be scheduled such that the expected
makespan remains below 𝔼T , given the weight 𝜔.

Note that in the latter two use cases the requirement set
on the makespan can be thought of as complying to a tar-
get on the SET. The tool produces schedules in continu-
ous time. In practice, however, slot lengths are typically dis-
crete multiples of a resolution Δ (for instance 5 min), which
the user can specify. An idea is to round the arrival epochs
t1,… , tn to multiples of Δ. Such a procedure is computation-
ally considerably more efficient than solving the correspond-
ing integer-programming problem. As illustrated in Table 2,
rounding typically leads to near-optimal solutions: the sched-
uled arrival epochs of the rounded schedule and those of the
optimal discrete solution differ only for one (for 𝜔 = 0.5) or
two patients (for 𝜔 = 0.8). Moreover, the difference in terms
of the objective function is marginal.
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TA B L E 2 Both tables give values for the interarrival and arrival times,
for the optimal continuous schedule, the optimal discrete schedule, and the
rounded schedule. Left table corresponds to 𝜔 = 0.5 and right table to
𝜔 = 0.8. In the tables, 𝜚 is assumed 0.5 and Δ = 5

𝝔 = 0.5 and 𝝎 = 0.5

Patient Continuous Discrete Rounded

i x̄i t̄i+1 xi ti+1 xi ti+1

1 15.93 15.93 15 15 15 15

2 20.76 36.69 20 35 20 35

3 21.48 58.17 20 55 25 60

4 21.73 79.90 25 80 20 80

5 21.81 101.71 20 100 20 100

6 21.82 123.54 25 125 25 125

7 21.77 145.31 20 145 20 145

8 21.65 166.96 20 165 20 165

9 21.42 188.38 25 190 25 190

10 20.97 209.35 20 210 20 210

11 19.99 229.34 20 230 20 230

12 17.03 246.37 15 245 15 245

𝔼T 268.92 268.51 268.55

Objective function 66.57 67.04 67.04

𝝔 = 0.5 & 𝝎 = 0.8

Patient Continuous Discrete Rounded

i x̄i t̄i+1 xi ti+1 xi ti+1

1 8.82 8.82 10 10 10 10

2 15.32 24.14 15 25 15 25

3 16.64 40.79 15 40 15 40

4 17.13 57.91 20 60 20 60

5 17.31 75.22 15 75 15 75

6 17.33 92.55 20 95 20 95

7 17.24 109.78 15 110 15 110

8 17.02 126.81 20 130 15 125

9 16.66 143.46 15 145 20 145

10 16.05 159.51 15 160 15 160

11 14.96 174.47 15 175 15 175

12 12.42 186.89 15 190 10 185

𝔼T 222.30 223.74 222.42

Objective function 52.46 52.77 52.79

5 PERFORMANCE EVALUATION

We discuss now how our approach performs. The second
part of this section presents a quantitative comparison of our
approach against a selection of competing methods. Not all
approaches published in the literature solve exactly the same
problem, however, and to avoid a comparison of apples and
oranges, the first part of this section presents a collation of a
wider range of approaches against qualitative criteria.

5.1 Qualitative comparison

We first compare approaches in terms of the generality
of the scheduling problem that they can solve, and their
ease of use. Table 3 collates approaches presented in the
recent literature (Çayirli et al., 2012; Denton & Gupta, 2003;
Hassin & Mendel, 2008; Kaandorp & Koole, 2007; Klassen
& Yoogalingam, 2009; Mak et al., 2015; Robinson & Chen,
2003). We also included Bailey’s rule (Bailey, 1952), where
two patients are scheduled in the first slot, and subsequent
arrival times are set at intervals equal to the mean service
time. This rule marks the beginning of scientific interest in
the topic and has had a big impact in the field. We include the
rule as a benchmark against which the newer approaches can
be compared.

The first part of the qualitative comparison addresses the
generality of the scheduling problem that the approaches can
solve. The first criterion summarizes the components of the
objective function that is optimized, where 𝔼W is a short-
hand for the sum of expected waiting times, 𝔼I for the sum
of expected idle times, and 𝔼O for overtime. Note that all
approaches incorporate expected waiting time in their objec-
tive function, and either the expected idle time, or overtime,
or both. All approaches offer at least one weight parameter
for balancing these subgoals.

The criteria No-shows and Walk-ins indicate whether these
phenomena are incorporated in the approach. The crite-
rion of Service times summarizes the distributional assump-
tions that the approach makes about FB. Most approaches
claim that they are applicable for a wide range of distribu-
tions (described as “general” in the table). Other approaches
are based on specific distributional assumptions, such as
the lognormal (which seems realistic in many situations) or
the exponential distribution (which will rarely be realistic).
Approximations and simplifications summarizes the sort of
tactics used to make the problem tractable.

The next three criteria reflect how easily the approaches
can be used. Required input summarizes the parameters that
the user needs to estimate and offer as input, such as 𝜇, 𝜚,
q, and v. Approaches that need fewer estimates are easier to
use, whereas approaches such as Klassen and Yoogalingam
(2009) and Denton and Gupta (2003) require the user to deter-
mine the whole distribution FB before the approach can be
used. Computation time qualifies how fast the approach is,
ranging from methods that return a schedule almost instanta-
neously, to approaches that are so slow that for larger session
sizes n, the computation time becomes prohibitive, especially
if users want to experiment with the options and try out vari-
ous alternative schedules. Implementation describes the form
in which the approach is offered to users, which may be in
the form of a webtool, a closed-form expression, or an imple-
mentation requiring specialist software. The last criterion in
Table 3, Performance, summarizes the results of the quantita-
tive comparisons explained in the second part of this section.

From the table we conclude that all approaches have a more
narrow application domain than our method, although Çayirli
et al. (2012) (restricted to lognormally distributed service
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times) and Klassen and Yoogalingam (2009) (do not incorpo-
rate walk-ins) are rather similar. In terms of ease of use, the
differences are large, with on one extreme, some approaches
offering an easy-to-use closed-form expression or a webtool,
but on the other extreme, approaches that require specialist
software or that quickly become very slow for all but the
smallest session sizes n. Again Çayirli et al. (2012) is compa-
rable to our approach, and also Mak et al. (2015) and Robin-
son and Chen (2003) have comparable ease of use. Combin-
ing the two perspectives, we believe that only Çayirli et al.
(2012) competes with our approach, all the others either solv-
ing a more restricted problem, or offering inferior ease of use.

5.2 Quantitative comparison of
performance

Based on the qualitative comparison in Table 3, we selected
the universal appointment rule CAY (Çayirli et al., 2012) as
the main competitor. CAY produces dome-shaped schedules,
where the arrival times are set at

ti := max

{
0, k(i − 1)𝔼B̃ − 𝜎′

√
i ⋅

n + i
n − 1

}
, (10)

where time is normalized such that 𝔼Bi = 1 and 𝜎′ is
a revised standard deviation. The schedule is additionally
adjusted for situational characteristics by the scalar k. It is
a value that depends on 𝜚, 𝜔, q, v, and n, and which opti-
mizes a linear-weighted objective function. The relationship
between k and the parameters 𝜚, 𝜔, q, v, and n is approxi-
mated by a nonlinear regression equation, based on extensive
simulations, and achieving an R2 of 0.9529. CAY optimizes
a weighted-linear objective function of expected idle time,
waiting time, and overtime.

The CAY rule approximates the optimal schedule for a sit-
uation by the best fitting schedule adhering to Equation (10),
which in turn is approximated by the nonlinear regres-
sion equation for k. This fitted approximation has an R2 of
0.9529 when service times are lognormal, but its precision
is unknown otherwise. The proposed approach approximates
service times by their phase-type counterparts, and returns the
corresponding optimal schedule (exactly on the grid points,
or by interpolation otherwise).

The numerical performance comparison is based on 3 ×
3 × 3 × 2 × 3 = 162 test cases that Çayirli et al. (2012) claim
to be representative for outpatient clinics. These 162 situa-
tions correspond to 𝜚 equal to 0.16, 0.36, and 0.64; no-show
probabilities q of 0.05, 0.20, and 0.40, and walk-in probabil-
ities v of 0.0, 0.2, and 0.4. The number n of patients to be
scheduled equals 10 or 20. The weight parameter 𝜔∕(1 − 𝜔)
has three levels: 2, 5, and 10 (and hence 𝜔 equals 2∕3,
5∕6, and 10∕11). To enable the comparison with CAY we
include and fix the relative cost of overtime (w.r.t. the cost
of idle time) by setting 𝜔̄ = 1.5𝜔. As a consequence, the
optimization problem uses a revised weight parameter 𝜔⋆ :=
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F I G U R E 5 The appointment schedules generated by the CAY rule, with same settings as used in Figure 3

2.5𝜔∕(1 + 1.5𝜔), which is the result of Equation (9). In our
cases this leads to the following 𝜔⋆ values 5∕6, 25∕27, and
26∕27. Furthermore, in line with Çayirli et al. (2012), the test
cases involve a lognormal distribution for the service times.
Note that this set-up for the comparison favors the CAY rule,
as this rule was optimized for lognormal services times. The
lognormal distribution is not a phase-type distribution, so the
test cases are unfavorable to our approach.

Figure 5 depicts the interarrival times by using the CAY

rule with the same settings as used earlier. A comparison of
Figures 3 and 5 shows that both approaches lead to dome-
shaped patterns. The interarrival times by the CAY rule (Fig-
ure 5) start low and then jump to a plateau after which the slot
lengths gradually decrease, which is a direct consequence of
Equation (10) that imposes this structure. In our approach,
however, the dome shape is endogenous: we do not a priori
impose this shape, but it instead follows by optimizing our
objective function.

For each of the 162 test situations, we computed a sched-
ule following our approach, and following the CAY rule. We
express the performance of both schedules in terms of the
objective function given in Equation (9). To evaluate the
objective function, given one of both schedules, we simu-
late 10,000 sessions, where the service times are drawn from
a lognormal distribution (with squared coefficient of varia-
tion 𝜚), and no-shows and walk-ins are incorporated as real-
izations of Bernoulli variables with probabilities q and v.
From these 10,000 realizations,

∑n
i=1 𝔼Ii and

∑n
i=1 𝔼Wi can

be found. Thus, for each of the 162 test cases, we determined
the achieved values ℱ𝙲𝙰𝚈 and ℱ𝙿𝚁𝙾 of the objective function
in Equation (9) for the schedules generated by the CAY rule
and by the proposed approach, respectively.

Table 4 presents the relative difference in the performance
achieved by our schedules compared to those generated from

the CAY rule in the 162 test cases. The table’s entries are
100% × (ℱ𝙲𝙰𝚈 − ℱ𝙿𝚁𝙾)∕ℱ𝙿𝚁𝙾. The proposed approach out-
performs CAY in 154 of the 162 test cases; in the other eight
cases, the relative difference is below 1%. Averaged over all
162 cases, CAY performs about 5.8% worse than the pro-
posed approach, even though the test cases are favorable to
the CAY rule.

Zooming in on the realized schedules by both approaches,
we observe that differences between the scheduled appoint-
ment times are relatively small. However, the effects of these
small differences on the corresponding 𝔼Ii and 𝔼Wi typically
accumulate over a session, which in many cases lead to a sub-
stantially different value of the objective function. The result-
ing differences in terms of expected idle and waiting times
are most pronounced in the last slots, where the idle times
fall and waiting times rise more sharply for the PRO approach
than for the CAY rule.

A similar numerical study shows that the proposed
approach outperforms Bailey’s rule by over 21.2%. We
improved Bailey’s rule by modifying the slot lengths so that
they incorporate the probabilities of no-shows and walk-ins
(following the ideas outlined in the section that deals with no-
shows and walk-ins). The improved rule is still outperformed
by the proposed approach by 9.5% (this result is reported in
the bottom row of Table 3). In similar vein, we improved the
methods of Mak et al. (2015) and Robinson and Chen (2003)
to take no-shows and walk-ins into account, and Hassin and
Mendel (2008) to take walk-ins into account. In the improved
versions, these methods are outperformed by 24.6%, 17.7%,
and 9.5%.

From the qualitative and quantitative comparisons in this
section, we conclude that the proposed approach is general
and easy to use, and that the produced schedules outperform
competing approaches almost uniformly.
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TA B L E 4 Performance of our approach relative to the CAY rule. The percentages are the gain of our approach compared to CAY

n = 10 n = 20

Environment 𝝎⋆ = 5∕6 𝝎⋆ = 25∕27 𝝎⋆ = 25∕26 𝝎⋆ = 5∕6 𝝎⋆ = 25∕27 𝝎⋆ = 25∕26

# 𝝔 q v %

1 0.16 0.05 0.00 17.15 25.79 34.65 7.11 12.56 20.20

2 0.16 0.05 0.20 8.97 13.04 20.04 2.65 3.54 8.89

3 0.16 0.05 0.40 11.06 11.85 17.57 4.06 3.34 6.74

4 0.16 0.20 0.00 1.75 6.13 15.51 0.87 0.57 4.78

5 0.16 0.20 0.20 2.39 2.40 6.12 2.13 0.13 0.79

6 0.16 0.20 0.40 3.62 2.13 4.53 1.21 0.36 0.62

7 0.16 0.40 0.00 −0.92 1.97 10.11 4.19 −0.26 1.44

8 0.16 0.40 0.20 0.43 −0.62 1.57 6.08 1.78 −0.10

9 0.16 0.40 0.40 2.11 −0.08 0.93 3.08 1.67 −0.09

10 0.36 0.05 0.00 7.18 16.30 25.57 2.35 7.46 15.33

11 0.36 0.05 0.20 5.95 10.99 18.86 1.85 4.38 10.16

12 0.36 0.05 0.40 9.11 10.98 17.42 3.49 4.23 9.51

13 0.36 0.20 0.00 2.00 6.31 14.30 1.28 1.17 6.88

14 0.36 0.20 0.20 2.83 3.45 8.79 1.45 0.58 3.34

15 0.36 0.20 0.40 4.73 4.53 8.41 1.31 1.10 3.26

16 0.36 0.40 0.00 −0.33 2.83 10.28 3.28 −0.41 2.99

17 0.36 0.40 0.20 0.90 0.94 4.91 3.03 0.24 0.43

18 0.36 0.40 0.40 2.96 1.93 4.47 1.21 0.25 0.61

19 0.64 0.05 0.00 5.44 11.13 19.56 1.40 6.11 14.58

20 0.64 0.05 0.20 5.48 9.61 17.28 1.85 4.48 11.95

21 0.64 0.05 0.40 9.26 11.56 18.08 3.69 5.98 12.02

22 0.64 0.20 0.00 2.10 5.40 13.88 1.21 1.80 8.14

23 0.64 0.20 0.20 2.82 4.47 10.03 1.10 1.47 6.03

24 0.64 0.20 0.40 5.96 7.50 12.48 1.82 2.25 6.75

25 0.64 0.40 0.00 0.22 3.83 10.72 2.17 0.07 4.46

26 0.64 0.40 0.20 1.51 3.13 7.17 1.52 0.21 2.53

27 0.64 0.40 0.40 5.57 5.29 9.46 0.81 0.70 3.39

Average 4.45 6.77 12.69 2.45 2.44 6.13

6 DISCUSSION AND CONCLUSIONS

Appointment scheduling directly impacts the perceived qual-
ity, cost-efficiency, and capacity of a substantial part of
healthcare services. Our account establishes a framework for
reasoning about the performance of appointment schedules,
and structures the problem of designing a schedule. We frame
the problem as one of achieving appropriate buffers to absorb
variability and uncertainty in the arrivals and service times
of patients.

We further show that the appropriateness of schedules per-
tains to two issues. First, the achieved balance between idle
and waiting time, reflected in the implied 𝜔, should be con-
sistent with the clinic’s value proposition. And second, for
given 𝜔, the achieved expected idle and waiting times should
be as near as possible to the efficient frontier. Our framework

identifies a number of situational characteristics besides 𝜔
that should be taken into account in the design of a sched-
ule: the number n of patients to be scheduled per session, the
mean service time 𝜇, the squared coefficient of variation 𝜚 of
service times, and the probabilities q of a no-show and v of
a walk-in.

For the actual generation of schedules we propose an
approach that is fast, robust, and flexible. We offer a webtool
that produces optimal schedules instantaneously. The sched-
uled interarrival times follow the familiar dome-shaped pat-
tern and are based on an approximation of the service–time
distribution by its phase-type counterpart. The tool offers a
number of customizations such as the choice of four objective
functions and a preferred resolution on the produced sched-
ules. The tool implements three functionalities: it produces
an efficient schedule given n and 𝜔, or the implied 𝜔 given n
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and the expected SET 𝔼T , or the number of patients that can
be scheduled for a given value of 𝜔 in a session with expected
end time 𝔼T .

Compared to other approaches, our method is more useful
in terms of the generality of the problem that it can solve,
and in terms of its ease of use, as shown in Table 3. Numer-
ical simulations demonstrate that the method outperforms its
main competitor, the universal appointment rule of Çayirli
et al. (2012), almost uniformly and by 5.8% on average. The
traditional rule of Bailey (Bailey, 1952) is outperformed by
22.1% on average.

This article contributes to the literature presenting and
assessing mathematical approaches to the problem of
appointment scheduling. A rich literature has built up on
this subject, with the approaches included in the performance
comparison in the previous section as the most relevant con-
tributions for our setting. Recently, De Snoo et al. (2011),
Ahmadi-Javid et al. (2017), and others have drawn attention
to clinical practice, raising the question in how far mathemat-
ical approaches are, can, and should be adopted in practice.
These questions are the focus of a multiple-case-study under-
taken by Kuiper et al. (2021), involving 10 outpatient clinics.
The authors find a large gap between mathematical theory,
which offers a rich edifice of formal mathematical optimiza-
tion approaches, and clinical practice, which deals with the
problem based on experience and improvisation. Across the
board, care professionals are unaware of results in operations
research theory and there is limited awareness of the concepts
on which it is built, such as the pursuit of striking a balance
between waiting and idle times.

None of the clinics studied in Kuiper et al. (2021) used any
form of theory, data, or formal method to design its schedul-
ing policies, and instead, scheduling is based on experience
and practices that have evolved over years. Partly, these find-
ings mirror a conclusion of White et al. (2011), that clini-
cians’ intuition about managing capacity in clinics may differ
substantially from best policies.

Kuiper et al. (2021) propose that mathematical optimiza-
tion approaches, such as the one proposed in this article, are
useful especially in clinics whose operations have the char-
acteristics of a high-volume and low-variety process, where
patients and resources are interchangeable for the purpose of
scheduling. Mathematical optimization may be less useful in
settings where the scheduling problem is dominated by com-
plex constraints brought about by idiosyncratic differences
between patients, resources, and demands.

We believe that the framework set forth in this article estab-
lishes a solid basis for further refinements and additions. We
demonstrated how the core procedure for computing suit-
able schedules lends itself easily to the incorporation of
situational specifics such as no-shows, walk-ins, overtime,
and discrete time slots. Further research could enrich the
approach by incorporating additional relevant phenomena,
such as unpunctuality (e.g., Çayirli et al., 2006; Klassen
& Yoogalingam, 2014; Deceuninck et al., 2018). Obvious
candidates include the situation of multiple interchangeable
healthcare providers, heterogeneous patient populations, and

processes consisting of more than one stage. The integration
of such additions into a single framework and webtool is
a strong trump for finding adoption for the approach in
practice.
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