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CASE REPORT

Multilevel process monitoring: A case study to predict student success
or failure

Leo C. E. Huberts, Marit Schoonhoven, and Ronald J. M. M. Does

Department of Operations Management, Amsterdam Business School, University of Amsterdam, Amsterdam, The Netherlands

ABSTRACT
In this case study, we demonstrate the use of multilevel process monitoring in quality con-
trol. Using high school data, we answer three research questions related to high school stu-
dent progress during an academic year. The questions are (1) What determines student
performance? (2) How can statistical process monitoring be used in monitoring student pro-
gress? (3) What method can be used for predictive monitoring of student results? To answer
these questions, we worked together with a Dutch high school and combined hierarchical
Bayesian modeling with statistical and predictive monitoring procedures. The results give a
clear blueprint for student progress monitoring.

KEYWORDS
hierarchical Bayesian;
multilevel; predictive
monitoring; statistical
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performance

1. Motivation

“Early Warning Indicator Reports were invaluable to
the success of our school” (high school principal, a
quote from the Strategic Data Project Report by
Becker et al. (2014)). These early warning indicator
reports monitor students throughout their school car-
eer and warn teachers and staff of students with high
dropout risks. According to Romero and Ventura
(2019), such early identification of vulnerable students
who are prone to fail or drop their courses is crucial
for the success of any learning method. Also, monitor-
ing allows for the identification of students who are
insufficiently challenged and will benefit from more
stimulating classroom material.

Navigating the large body of literature in statistical
process monitoring, predictive monitoring and educa-
tional data mining is a daunting task when looking
for answers as to what metrics should be monitored
and which methods should be implemented.

Multilevel modeling is often a good method in
educational settings and can be used for predictive mon-
itoring in quality control. In this article, we demonstrate
such a procedure and aim to guide researchers and
practitioners in monitoring student performance, specif-
ically in a high school setting. To achieve this, we work
closely with a Dutch high school to answer the following

questions 1) What determines student performance? 2)
How can statistical process monitoring be used in
monitoring student progress? 3) What method can be
used for predictive monitoring of student results?

1.1. Statistical process monitoring

Statistical process monitoring (SPM) provides techni-
ques to monitor a process real time. As the amount
and complexity of available data are increasing, there
is a need for SPM methods that utilize more of the
inherent structure of the data. This need has driven
SPM to evolve in recent years from univariate meth-
ods monitoring a single quality indicator, to monitor-
ing methods for complex multivariate processes. A
method that is used for multivariate processes are
profile monitoring. Profile monitoring checks the sta-
bility of the modeled relationship between a response
variable and one or more explanatory variables over
time. Often profile monitoring uses regression control
charts which were first introduced by Mandel (1969).
The current body of regression control charting litera-
ture almost exclusively handles the monitoring of lin-
ear profiles using classical regression models. Weese
et al. (2016) noted that large data sets often contain
complex relationships and patterns over time, such as
hierarchical structures and autocorrelation.
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The case study presented in this paper contains
complex relationships and patterns, notably the hier-
archical structure of courses, students and classes (see
Figure 1). State-of-the-art multivariate control chart-
ing based on linear regression models ignores this
structure. However, incorporating hierarchical struc-
tures into the models can improve the reliability of a
monitoring system. Therefore, we will develop a con-
trol chart that can signal at three levels, the class, stu-
dent and course level. Also, Woodall and Montgomery
(2014) gave an overview of current directions in SPM
and highlighted profile monitoring with multiple pro-
files per group as a topic for further research.

The advantage of using a hierarchical model is an
improved estimation of process variability; according
to Gelman (2006), hierarchical modeling is almost
always an improvement compared to classical regres-
sion. The reason is that a hierarchical model includes
the effects of both observed and unobserved variables,
where unobserved variables are not explicitly meas-
ured but inherent to the group. Another advantage
over classical regression is that a multilevel model
provides a way to monitor new groups since the
model generates some prior beliefs upon which to
base the distribution and the prediction for the new
groups. Furthermore, in contrast with classical regres-
sion, multilevel modeling is capable of prediction for
groups with a small number of observations.

Multilevel models have been used in agricultural
and educational applications for decades (Henderson
et al. 1959; Aitkin and Longford 1986; Bock 1989;
Aaronson 1998; Sellstr€om and Bremberg 2006).
Today, hierarchical models are used in spatial data
modeling (Banerjee, Carlin, and Gelfand 2014),
extreme value modeling (Sang and Gelfand 2009),
quantum mechanics (Berendsen 2007) and even in the
modeling of intimacy in marriage (Laurenceau,
Barrett, and Rovine 2005). However, to the best of
our knowledge, multilevel modeling has not found its
way to SPM. Schirru, Pampuri, and De Nicolao (2010)
modeled multistream processes in semiconductor
manufacturing using a multilevel model, but it is only
applicable to two levels. Qiu, Zou, and Wang (2010)
considered nonparametric profile monitoring using

mixed-effects modeling, although they did not con-
sider hierarchical modeling.

This article will explore process monitoring for a
school data set that contains the grades of students in
different groups over time. The school is interested in
monitoring deviations in student results from what is
given by the model, which is a form of profile moni-
toring. Therefore, we will investigate SPM based on
hierarchical Bayesian models. In the next section, we
will discuss the use of a hierarchical model to predict
outlying results on the student level.

1.2. Predictive monitoring

Becker et al. (2014) emphasized the need for action-
able predictive analytics in high schools to keep stu-
dents on track toward graduation and better prepare
them for college and career success. The report dis-
cussed three examples of early warning indicator sys-
tems that help school teachers and management with
early identification of students with a lower probabil-
ity of passing, based on logistic regressions of student
grade and attendance information.

Early prediction of learning performance has
gained more traction in the literature, as showcased
by a recent special issue of IEEE Transactions on
learning technologies. Together with monitoring big
and complex data, predictive monitoring is recently
being considered in quality technology literature (for
example Kang et al. 2018; Wang et al. 2019).
Although our case study focuses on the use of predict-
ive monitoring to improve the quality of education,
the presented methods can be used in any setting
where clear hierarchical data structures exist.
Baghdadi et al. (2019) stated that the ability to esti-
mate when the performance will deteriorate and what
type of intervention optimizes recovery can improve
the quality and productivity and reduce risk concern-
ing worker fatigue. Our case study offers a very simi-
lar approach to improve the quality and productivity
of high school education by monitoring student
performance.

The hierarchical model will thus be applied in two
ways. First, control charting is applied based on the

Figure 1. The hierarchical structure of the case study data with classes as the top level. Students within these classes are the mid-
dle level and courses followed by these students form the lower level.
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multilevel model. Second, the multilevel model is used
for predicting results on the student level. This results
in a hierarchical early warning indicator system that
can be applied in schools for predictive monitoring of
student outcomes.

The outline of this paper is as follows. The next
section describes the relevant educational literature,
the practical problem we aim to solve and the data
that was available. The hierarchical model and its per-
formance are discussed in the section after this, fol-
lowed by a section that investigates student
performance monitoring. The last section summarizes
the results.

2. Problem description

In this section, we describe related student performance
literature, the goal of the method to be developed and
the data set including the predictor variables.

2.1. Student performance literature

This section will shortly discuss a selection of determi-
nants of student performance, whose selection has
been based on a literature study. The determinants,
their expected effects on performance and their mod-
eling approach are summarized in Table 1. The
important variables will be used in the modeling
approaches of later sections. The “unobserved” varia-
bles represent variables that were not available in this
study, but the hierarchical modeling specification
incorporates many of these “unobserved differences”
between students and students within courses.

Nichols (2003) found a significant relationship
between poor performance at the beginning of stu-
dents’ educational careers and later on. Furthermore,
students who struggle academically had increased
school absences and students from lower-income fam-
ilies showed a higher probability of poor results. This
suggests an important role for family income,

absences and temporal effects in predicting individual
high school performance.

Socioeconomic status (SES) has long been argued
to significantly affect school performance, although
the importance varies greatly among different analy-
ses. Geiser and Santelices (2007) argued omission of
socioeconomic background factors can lead to signifi-
cant overestimation of the predictive power of aca-
demic variables, that are strongly correlated with
socioeconomic advantage. They based this assumption
on a study by Rothstein (2004), which argued the
exclusion of student background characteristics from
prediction models inflates college admission tests’
apparent validity by over 150 percent.

Disabilities can be a determinant of student per-
formance. Dyslexic children fail to achieve school
grades at a level that is commensurate with their intel-
ligence (Karande and Kulkarni 2005). Although they
might not be directly linked to learning, disabilities
like asthma, epilepsy, and autism can indirectly influ-
ence academic performance. Autistic children can face
a lot of problems in school as their core features
impair learning. Furthermore, medical problems like
visual impairment, hearing impairment, malnutrition,
and low birth weight can cause difficulties in school.

The language that children speak at home can influ-
ence their academic abilities both positively (Buriel et al.
1998) and negatively (Kennedy and Park 1994). Collier
(1995) found that immigrants and language minority stu-
dents need 4–12 years of second language development
for the most advantaged students to reach deep academic
proficiency and compete successfully with native speak-
ers. It has been suggested that the presence of non-native
speakers in schools harms the performance of native
speakers, but this has been refuted by Geay, McNally,
and Telhaj (2013). In contrast, children who interpret for
their immigrant parents; “language brokers,” often per-
form better academically (Buriel et al. 1998).

Some variables remain unobserved but can be
incorporated in models by allowing for unobserved

Table 1. Summary of determinants of student performance according to the literature and modeling approach.

Determinant
Effect on performance

Student level Class level Modeling approach

SES þ Explanatory variable
Disabilities – Explanatory variable
Language þ/– Explanatory variable
Non-native þ/– – Explanatory variable
Student effort þ þ Student unobserved heterogeneity
Peer associations þ/– þ/– Student/course unobserved heterogeneity
Parent involvement þ Student unobserved heterogeneity
School climate þ/– þ/– Course unobserved heterogeneity
Intelligence þ Explanatory variable, student unobserved heterogeneity
Grades þ Time varying explanatory/dependent variable
Absences – – Time varying explanatory variable

JOURNAL OF QUALITY TECHNOLOGY 3



heterogeneity. One is student effort, which is charac-
terized by the level of school attachment, involvement,
and commitment displayed by the student (Stewart
2008). Also, peer influence, i.e. the associations between
high school students, matter a great deal to individual
academic achievement and development (Nichols and
White 2001). Besides, parent involvement is likely to
influence academic achievement. Sui-Chu and Willms
(1996) found that the most important dimension of
parent involvement toward academic achievement is
home discussion. They suggested facilitating home dis-
cussion by providing concrete information to the
parents about parenting styles, teaching methods, and
school curricula. Finally, school climate (a.o. Stewart
2008) and intelligence (Rohde and Thompson 2007;
Laidra, Pullmann, and Allik 2007; Parker et al. 2006)
are important for academic achievement.

Parent involvement, disciplinary climate, and indi-
vidual intelligence are usually quite difficult to measure.
This study aims to incorporate them nonetheless.
Parent involvement is incorporated mostly in student
unobserved heterogeneity. Limited observed informa-
tion on the parents is included in the predictive model
(i.e. education level and SES). Disciplinary climate and
class disruptions are mostly covered by including
absences that equate to dismissals from class and
within unobserved course differences. Individual intelli-
gence is approximated using primary school test scores.

Next, some time-varying variables are important.
The first variable is the grade. For each course, specific
tests are taken with varying weights. Anytime during
the year, these tests determine a current weighted aver-
age grade for each student and course. The resulting
end-of-year grade is the most important student per-
formance indicator. Also, absences are important as
attending class helps students understand the material
and motivates their participation (Rothman 2001). The
variables test grades and absences are generated over
time. Finally, temporal effects on student performance
encompass both inter-year changes and intra-year
changes. Students will change the allocation of their
effort and time according to their current average
grade, their average grade for other courses, seasonal
effects, within school changes and external factors.
Ideally, modeling will allow for student and course-spe-
cific effects to vary over time. The next section will
describe the Dutch high school system.

2.2. The Dutch high school system

The Dutch school system in general consists of eight
years of primary school, followed by four, five or six

years of high school. There is one level of primary
school, but there are multiple levels of high school.
Two criteria have been used in recent years to deter-
mine the level of high school a child is allowed to go
to. Firstly, there is the teacher’s advice. The teacher
advises the level that fits the child in the final year of
primary school. This advice is based on the perform-
ance of the child in a specific primary school.

Secondly, the National Institute for Test
Development (in Dutch: Centraal Instituut voor Toets
Ontwikkeling, abbreviated by CITO) test is a test that
is developed by the CITO organization and is scientif-
ically designed to test a child’s academic abilities. It
was initiated in the Netherlands by the famous psych-
ologist professor A.D. de Groot in 1966 and every
school is required to conduct the CITO or a similar
test at the end of primary school as of 2014.

To pass any specific year of high school, conditions
set by the school have to be met. These conditions
usually consist of requirements on the end-of-year
average grades for all the student’s courses. The grades
in most Dutch high schools are on a scale of 1 to 10.
The end-of-year grades are usually rounded, and a
course is failed or “insufficient” if the rounded grade
is below 6. The amount of allowed “failpoints,” i.e. the
total points below six, can then be restricted. A school
might, for example, have a student repeat the current
year if he or she scores more than two failpoints,
which could be a student with a grade of three for a
single course, or a four and a five or three fives at the
end of the year. The restrictions are not limited to the
number of failpoints. There can be requirements on
the total average grade and certain subtleties emerge
once the students start splitting up into high school
profiles, where different students do a different set of
courses from their fourth year on. These school pro-
files can have special requirements, with usually more
importance assigned to the profile courses.

When implementing a predictive monitoring
scheme in a school, the specific rules a school employs
define the passing probability that is estimated. When
for example a student is failing a profile course, this
can lead to failing the year directly. If the same stu-
dent would obtain the same grade for a different
course, this would not necessarily mean failing the
year. Therefore, different courses have different levels
of importance to the probability of success for indi-
vidual students. The school that has kindly provided
the data described in the next section has different
passing conditions for each year. Although the imple-
mentation at the school incorporates all conditions,
the predictive analyses in this paper reflect a
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simplified version to demonstrate the detective capa-
bilities of the methods.

2.3. Data set

A large, detailed data set was provided by a Dutch
high school. In total there are eight years of data
available, comprising of 36 different subjects followed
by over 1,700 unique students (about 51% girls) and
711,653 individual tests. The students were born in 38
different countries, speak 18 different languages and
were taught by 110 different teachers. Out of the
unique students, 326 had some kind of disability while
at school, 162 had a non-Dutch nationality and 51
students had a serious language barrier. The number
of students with parents who have attended university
or higher-level academics is 261 and 86% of students
were residents of the large city that the school is
located in during their time at the Dutch high school.

To incorporate socioeconomic status (SES) in this
analysis, nation-wide social status data provided by
the Dutch government was used. The relative SES
score of a student using a country-wide ranking of his
or her postal code was added to the data set.

Learning disabilities that have been confirmed by
the school are included in the data set. The most
common learning disabilities in the data are
Attention-Deficit/Hyperactivity Disorder (ADHD)
and dyslexia.

The data used in this paper contains grades that
are on a 1-10 scale. Although easy to interpret, there
arise some difficulties when using these grades for

modeling. First, as Figure 2 shows, there are peaks at
integer grades and grades on a.5 scale. This is due to
teachers grading on an integer or.5 point scale instead
of using continuous grades. This becomes less of a
problem with average grades, as they are eventually
rounded but fairly continuous during the year.

Second, when predicting the precise end-of-year
grade, grades below 1 or above 10 should be impos-
sible. However, both grades should have some positive
probability, as some students do achieve average
grades of 10 for specific courses during a year.

The following section describes the selected pre-
dictor variables in the data.

2.4. Determinants of student performance

We have discussed some of the literature on determi-
nants of high school performance in Section 2.1. This
section investigates these variables in the data.

The raw values for the most important categorical
variables in the data are plotted in Figure 3. The first
pair of boxplots in Figure 3 shows that girls seem to
outperform boys in terms of final grades, which is
consistent with the literature in different settings (see
Rahafar et al. 2016; Deary et al. 2007; Battin-Pearson
et al. 2000 for examples of gender gap findings in aca-
demic achievement). The second pair of boxplots in
Figure 3 indicates that students with a disability
achieve lower end-of-year grades, consistent with the
findings of Karande and Kulkarni (2005). Children of
highly educated parents seem to perform slightly

Figure 2. Histogram of the individual test grades in the data.
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better at this school in terms of final grades, as
depicted in the third pair of boxplots in Figure 3.

In line with Buriel et al. (1998), children born out-
side of the Netherlands do not underperform as
shown by the fourth pair of boxplots in Figure 3.
Students with a different native language do achieve
slightly lower grades in the data, supporting conclu-
sions by Collier (1995) and Kennedy and Park (1994).
The end-of-year grades are lower toward the end of
high school, as indicated in Figure 3.

Figure 4 shows the two most important numerical
independent variables plotted against the final grades.
The CITO score has a positive correlation with grades
as shown by the positive linear trend in Figure 4a.
This makes sense, as the CITO test is designed as a
predictor of individual intelligence. Furthermore, in
line with Rothman (2001), more absences mean lower
final grades in the data, as indicated by the negative
linear trend in Figure 4b.

3. Hierarchical model

The objective is to monitor student progress during
the school year, where the school’s main interest lies
in signaling “exceptional” students. Exceptional
students can be both underperforming and overper-
forming students. In this section, we introduce a
three-level hierarchical model for student grades and
compare its performance to simpler models in moni-
toring student performance.

3.1. The model

Throughout the year, students take tests for every
course i ¼ 1, ::::, n0: The grades for these tests are
defined as gki 2 ½1, 10� with k ¼ 1, ::,Ki, where Ki is
the number of tests taken in course i. As these grades
are obtained for individual tests, we have a set of
cumulative weighted average grades yi, j½i�, h½j½i�� for
course i, student j and class h. For readability we drop
subscripts j and h. The individual test results gki and
the weights of the tests wki determine the average

grade yi ¼
PKi

k¼1
wkigkiPKi

k¼1
wki

, with yi 2 ½1, 10�:
We consider a hierarchical model with three levels

and use the index iði ¼ 1, 2, :::, n0Þ to denote the indi-
vidual course level, jðj ¼ 1, 2, :::, n1Þ to denote the indi-
vidual student level and hðh ¼ 1, 2, :::, n2Þ for the class
level (see Figure 1). We have p0 predictors for the
course level, p1 for the student level and p2 for the class
level. We define row vectors XðL0Þ

i ,XðL1Þ
j and XðL2Þ

h ,
which consist of the intercept and predictor values for
the course, student and class levels respectively.

We model cumulative weighted average grade yi for
course i as

yi � NðXðL0Þ
i b

ðL0Þ
j i½ � , r

2Þ, for i ¼ 1, :::, n0 ðCourse levelÞ,

where the student levels are modeled as

b
ðL0Þ
j � NðbðL1Þh j½ � X

ðL1Þ0
j ,RðL1ÞÞ, for j

¼ 1, :::, n1 ðStudent levelÞ,

Figure 3. Boxplots of the final grades for the most important categorical predictor variables.
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and the class levels are specified by

vecðbðL1Þh Þ � NðbðL2ÞXðL2Þ0
h ,RðL2ÞÞ, for h

¼ 1, :::, n2 ðClass levelÞ,
where XðL0Þ

i is a 1� ðp0 þ 1Þ row vector of subject
specific variables such as course content and level;
b
ðL0Þ
j½i� is a ðp0 þ 1Þ � 1 vector of parameters for student

j that follows course i; r2 is the variance for the
course level; bðL1Þh½j� is a ðp0 þ 1Þ � ðp1 þ 1Þ parameter
matrix determined by the class h that student j is in;
XðL1Þ
j is a 1� ðp1 þ 1Þ row vector of student specific

variables such as age, absences and IQ; RðL1Þ is the
covariance matrix for parameters b

ðL0Þ
j ; vecðbðL1Þh Þ is

the vectorized version of bðL1Þh with dimensions ðp0 þ
1Þðp1 þ 1Þ � 1; bðL2Þ is a ðp0 þ 1Þðp1 þ 1Þ � ðp2 þ 1Þ
parameter matrix at the class level; XðL2Þ

h is a 1�
ðp2 þ 1Þ row vector of class specific variables such as
class size; and RðL2Þ is the covariance matrix for
parameters bðL1Þh :

3.2. Estimation

The parameters of a multilevel model can be esti-
mated using, among other methods, maximum likeli-
hood, generalized least squares and Bayesian theory
(Hox, Moerbeek, and Van de Schoot 2017). A discus-
sion of Bayesian and likelihood-based techniques for
multilevel models is given by Browne and Draper
(2006). These authors show that Bayesian estimation
often provides an improvement over likelihood meth-
ods in terms of both point and interval estimates as

well as the posterior distributions for the parameters.
We use Bayesian estimation to estimate the parame-
ters in this article.

The full parameter space fbðL0Þ, r2, bðL1Þ,
RðL1Þ,bðL2Þ,RðL2Þg, where bðL0Þ and bðL1Þ are constructed

by stacking the parameter matrices b
ðL0Þ
j and b

ðL1Þ
h for

all groups j and h respectively, can be estimated based
on data that are considered representative, i.e. in con-
trol. To estimate the parameters, we use the Bayesian
method applying Markov Chain Monte Carlo
(MCMC) methods which use the Gibbs sampling pro-
cedure. These methods are described in the appendix
and are applied using the rJAGS package to link to
JAGS (Plummer 2018).

As the number of parameters increases quickly
with added group levels, estimation time increases
greatly as well. Thus when defining a multilevel
model, there is a tradeoff between added precision
and the additional estimation time for a group level.
In a two-level model, the number of parameters we

need to estimate is 1 for r2, ðp0 þ 1Þðp1 þ 1Þ for bðL1Þ

and 1
2 ðp0 þ 1Þðp0 þ 2Þ for RðL1Þ (bðL0Þ is constructed

using the estimates for bðL1Þ). For the three-level
model this increases, with 1 for r2, 12 ðp0 þ 1Þðp0 þ 2Þ
for RðL1Þ, ðp0 þ 1Þðp1 þ 1Þðp2 þ 1Þ for bðL2Þ and 1

2 ðp0 þ
1Þðp1 þ 1Þððp0 þ 1Þðp1 þ 1Þ þ 1Þ for RðL2Þ (bðL0Þ and

bðL1Þ are constructed using the estimates for bðL2Þ).
For example, if there are three parameters per level,
the number of parameters is 27 for a two-level model
and 211 for a three-level model.

Figure 4. Scatterplots of the final grades and most important numerical variables with a linear trend-line.
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After applying the estimation procedure as
described in the appendix, we obtain the estimations
for the parameters in the three-level model, which we
denote by fb̂ðL0Þ

, r̂2, b̂
ðL1Þ

, R̂
ðL1Þ

, b̂
ðL2Þ

, R̂
ðL2Þg: Later on

we can use this three-level model for monitoring the
relationships given by the model as well as for pre-
dicting results.

3.3. Results

In this section, we consider the accuracy of the end-
of-year average grade estimates for N¼ 3, 839 courses
and 268 students during the school year 2014/2015.
This subset consists of the first-, second- and third-
year students. In the fourth year students choose a
profile, which changes the class compositions. The
five school years from 2009 to 2014 are used to esti-
mate the parameters.

As benchmarks, we consider using the weighted
average grade ðyiÞ and a simple one-level linear
regression model (ŷsrÞ to predict. The one-level linear
regression fits yi ¼ Xibþ ei using the same predictors
as the multilevel specification.

As measures of accuracy, we report the Root Mean
Squared Errors (RMSE) and the Nearest Neighbors
proportions (NN). The RMSE is calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i2N

ðyi � ŷiÞ2
s

, (1)

with i identifying all the predicted grades and N the
total number of grades. The RMSE score strongly

punishes large errors. The second measure of per-
formance is nearest neighbors percentage (NN)

NN ¼ 1
N

X
i2N

Iðŷi � 1 � yi � ŷi þ 1Þ: (2)

Note that an alternative criterion is the Mean
Absolute Deviation (MAD). However, those results
were comparable to the RMSE.

Table 2 reports the RMSE and NN for the hier-
archical model (ŷH), the one-level linear regression fit
(ŷsr) and the weighted average (yi) at five points in
time t ¼ 0, 0:1, 0:3, 0:5, 0:7:

The two performance measures in Table 2 show
the superiority of the hierarchical method ŷH when
predicting end-of-year grades at the beginning of the
year (t¼ 0). As the year progresses, the relative advan-
tage of the model decreases over time as more grades
accumulate and the final grade is less uncertain. A
comparison of Tables 3 and 4 clarifies the advantage
of the hierarchical regression model compared to a
one-level model. Both tables show the predicted and
realized end-of-year grades before the start of the
year. The difference in RMSE of 0.292 might not
seem worth the trouble at first, but when we compare
these two tables, Table 4 shows much more granular-
ity in the results. The hierarchical model identifies
much more structure in the data, which is especially
valuable in predicting far above- and below-aver-
age grades.

4. Monitoring student performance

This section is about monitoring student performance
using accumulated test grades. We will consider statis-
tical process monitoring techniques and predict-
ive monitoring.

Table 2. RMSE and NN results for the predictions of the
2014/2015 end-of-year grades of 268 students using the aver-
age grade (yi), the simple regression (ŷ sr) and the hierarchical
specification (ŷH).

Time
RMSE NN

t yi ŷ sr ŷH yi ŷ sr ŷH
0 – 1.152 0.860 – 0.802 0.902
0.1 1.526 1.069 0.835 0.699 0.830 0.908
0.3 1.037 0.831 0.741 0.856 0.917 0.940
0.5 0.773 0.668 0.648 0.931 0.956 0.957
0.7 0.511 0.478 0.474 0.980 0.983 0.984

Table 3. Confusion matrix of the predictions for the 2014/
2015 end-of-year grades of 268 students based on the simple
linear regression model at t¼ 0.

Actual grades

3 4 5 6 7 8 9 10

Predicted 6 0 1 0 0 0 0 2 0
7 9 53 208 722 962 747 283 33
8 0 6 20 134 255 252 140 12

Table 4. Confusion matrix of the predictions for the 2014/
2015 end-of-year grades of 268 students based on the three-
level model at t¼ 0.

RMSE ¼ 0.860
Actual grades

3 4 5 6 7 8 9 10

Predicted 3 0 1 1 0 0 0 0 0
4 0 1 3 2 0 0 0 0
5 3 10 19 27 11 2 0 0
6 4 36 114 358 182 55 10 0
7 2 10 83 425 749 434 79 3
8 0 2 8 43 267 464 213 14
9 0 0 0 1 8 44 118 22
10 0 0 0 0 0 0 5 6
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4.1. Statistical process monitoring

To use a classical control chart technique (i.e. Shewhart,
CUSUM or EWMA charts) we need a phase I data set that
serves as a training set and a phase II data set that will be a
test set (Vining 2009). Phase I is used to analyze the model
and to estimate the parameters involved. The data used are
assumed to be in control, and monitoring begins in phase
II. In this case, and many other practical examples, there is
no obvious phase I at hand. We could use student data
from previous years as phase I. These are not available how-
ever, for first-year students, for new courses and in case of
limited data. Furthermore, a second-year course is different
from a first-year course and most students don’t repeat a
year. Identifying a clear phase I/phase II setup is thus diffi-
cult. These problems are amplified by the fact that yi is not
i.i.d., violating the assumptions of the basic use of charts.

By modeling yi, we can correct for a lot of the
problems we see for classical control charting techni-
ques. We model yi at time t using all test grades
before time t, with t 2 ftI ,Tg where tI indicates the
start of the school year and T the end of the school
year. We then calculate an expected value ŷi: The dif-
ference between the expected value and the actual
observed value yi at time t can then be monitored in a
phase II data set using a residual control chart setup.

4.1.1. Three-level control chart
In this case, we evaluate whether the relations given
by the three-level model still hold. To this end, we
monitor the residuals at the three levels. For existing
groups, we have estimates of the full parameter space
fb̂ðL0Þ

, r̂2, b̂
ðL1Þ

, R̂
ðL1Þ

, b̂
ðL2Þ

, R̂
ðL2Þg: Then using these

estimated parameters, we can calculate the residuals
for the three levels for any new observation
fyi,XðL0Þ

i ,XðL1Þ
j ,XðL2Þ

h g
rðL0Þi ¼ yi � XðL0Þ

i b̂
ðL0Þ
j i½ �

rðL1Þj ¼ b̂
ðL0Þ
j � b̂

ðL1Þ
h j½ � X

ðL1Þ0
j ,

rðL2Þh ¼ vecðb̂ðL1Þ
h Þ � b̂

ðL2Þ
XðL2Þ0
h ,

where rðL0Þi , rðL1Þj and rðL2Þh are the residual vectors at
the three levels of size 1, ðp0 þ 1Þ and ðp0 þ 1Þðp1 þ
1Þ, respectively.

In line with traditional SPM techniques, we want
to determine if a new observation stems from the in-
control phase I distribution, which was obtained using
estimation (i.e. phase I) data fXðL0Þ

I ,XðL1Þ
I ,XðL2Þ

I , yIg of
size n0, where XðL0Þ

I is the n0 � ðp0 þ 1Þ matrix with
the ith row containing the intercept and predictor val-
ues for course i. The other matrices are constructed in
a similar way. The residuals can be monitored using
control charting techniques.

For example, we can use a Shewhart control chart
taking the mean and variance estimates from phase I
for rðL0Þi with upper and lower control limits dUCLy ¼
3r̂2 and dLCLy ¼ �3r̂2: The chart signals when the
residual exceeds one of the control limits, after which
the underlying cause can be investigated.

For rðL1Þj and rðL2Þh , multivariate control charts are
needed because these residuals are multidimensional.
A multivariate Hotelling T2 chart offers a solution
with test statistics (cf. 11.23 in Montgomery 2007)

T2
ðL1Þ ¼ n0r

ðL1Þ0
j R̂

ðL1ÞrðL1Þj , (3)

T2
ðL2Þ ¼ n0r

ðL2Þ0
h R̂

ðL2ÞrðL2Þh , (4)

where n0 is the number of observations used to
estimate the covariance matrix. The lower control
limit for these T2 charts is LCL¼ 0, the upper control
limit with false alarm percentage a is UCLðL1Þ ¼
p1ðn0�1Þ
n0�p1

Fa, p1, n0�p1 for T2
ðL1Þ and UCLðL2Þ ¼ p2ðn0 � 1Þ

n0 � p2Fa, p2, n0�p2 for T
2
ðL2Þ:

If the T2
ðL2Þ chart gives a signal, the root cause ana-

lysis can focus on the class level; if the T2
ðL1Þ chart

gives a signal the root cause analysis can focus on the
student level; and if the Shewhart chart gives a signal,
the root cause analysis can focus on the course level.

Besides monitoring the residuals, there is the
option of monitoring the parameter estimates.
Similar to Kang and Albin (2000), a T2 chart can
be used to monitor the parameter estimates
fb̂L0

, r̂2, vecðb̂ðL1ÞÞ, R̂ðL1Þ
, b̂

ðL2Þ
, R̂

ðL2Þg:

4.1.2. Example
To illustrate this three-level monitoring approach, wemoni-
tor the cumulative weighted average yi at 15 times through-
out the school year 2014/2015 using the same subset as in
the previous. Phase I consists of the five school years from
2009 to 2014; phase II is the school year 2014/2015 for the
3,839 courses followed by 268 first-, second- and third-year
students. We apply the hierarchical regression model and
monitor the residuals using a Shewhart control chart.

The school aims to detect “exceptional” courses and
students. It considers exceptional courses as final grades
below 6 or above 8. Each point below 6 is counted as a
“failpoint.” A single course with an end-of-year grade 5
equals 1 failpoint; a single course with an end-of-year
grade 3 equals 3 failpoints, and one course grade of 4 and
one of 3 equals 5 failpoints, etc. On the other hand, each
point above 8 is counted as an “excelpoint.” Thus the
maximum grade of 10 for a course equals 2 excelpoints.
An exceptional student is a student with at least four fail-
points, and/or at least four excelpoints.
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The three-level model estimates have an overall RMSE
of 1.172. Figure 5 displays an example of a Shewhart
chart monitoring the residuals of the first level rðL0Þi : The
chart signals four times near the end of the year. In total,
the residuals charts signal 190 times (88 of which
(46.32%) are exceptional courses), for 112 different stu-
dents (36 of which (32.14%) are exceptional students).

As given by Eq. [3], we can also monitor the stu-
dent level residuals using a Hotelling T2 chart. Using
the same data as in the previous, the T2 chart signals
at least once for 105 students (38 (36.19%) of which
are exceptional students).

The charts signal exceptional cases throughout the
year. However, we cannot retrospectively determine if
at the time of a signal there was some unknown factor
that influenced the performance of student j for
course i. We are thus unable to distinguish false from
true signals. It does, however, out-of-the-box, identify
students whom we know have interesting performance
during the monitoring phase.

The statistical monitoring approach identifies inci-
dental anomalies in the weighted averages. However,
the school’s main focus is to identify students who
need either support or more challenging coursework.
This monitoring approach is insufficient for that goal.
Therefore, in the next section, we use the hierarchical
model to monitor student expected end-of-year results
to identify under- or overperforming students.

4.2. Predictive monitoring

The high school in this case study aims to predict the
end-of-year grades of its students. This enables the

school to receive early warnings on exceptional stu-
dents. In this section, we will thus consider predictive
monitoring of student performance.

4.2.1. Multilevel predictive monitoring
As demonstrated in Section 3.3, the predictions of the
three-level model are relatively accurate. Furthermore,
the three-level model can be used for new students/
classes and when there are a small number of courses
per student or students per class. In this section, we
will thus use the three-level model for predict-
ive monitoring.

We want to monitor PðEÞt, defined as the prob-
ability of some event E at time t. PðEÞt summarizes
the outcome of the model into a single predictive
probability at time t, with t 2 ftI ,Tg where tI indi-
cates the start of the year and T the end of the year.
The chart signals when PðEÞt exceeds threshold C,
which is defined as the maximum allowed probability
of event E occurring (0 < C < 1). Event E concerns
the values of yi, which is context dependent and can
take many forms (yi ¼ e, yi � e, yi � e, e1 � yi �
e2,

Pb
i¼a yi � e etc., where e, e1 and e2 are arbitrary

constants and a and b are integers between 1 and
n0). Following the MCMC estimation of the
posterior densities of the parameters h ¼ fbðL0Þ, r2,
bðL1Þ,RðL1Þ, bðL2Þ,RðL2Þg as described in the supplemen-
tary material, we can use the posterior densities to cal-
culate PðEÞt:

The steps for predictive monitoring are

1. Define event E and threshold C
2. Specify the multilevel model for yi

Figure 5. Residual Shewhart control chart monitoring rðL0Þi based on a three-level regression (signals in red).
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3. Estimate the parameters to obtain ĥI using the
phase I data at time tI using MCMC, described in
the appendix

4. Calculate PðEÞt using the newly available observa-
tions at time t > tI

5. Signal if PðEÞt > C
6. Re-estimate the parameters to obtain t̂ using all

available data at time t and go back to step 4 for
a new timepoint tII > t:

Assume that we have a large in-control phase I
data set fXðL0Þ

I ,XðL1Þ
I ,XðL2Þ

I , yIg at time t ¼ tI. At time
t < tI we obtain the estimates for the parameters
fb̂ðL0Þ

, r̂2, b̂
ðL1Þ

, R̂
ðL1Þ

, b̂
ðL2Þ

, R̂
ðL2Þg based on observa-

tions in phase I. As described in the appendix for the
three-level model, using the estimates of the parame-
ters, at any time t > tI we have a predicted distribu-
tion for the outcome variable ŷi, t

ŷi, t � NððXðL0Þ
i, t � XðL1Þ0

j i, t½ � Þb̂
ðL2Þ

XðL2Þ0
h j i, t½ �½ �,

ðXðL0Þ
i, t � XðL1Þ

j i, t½ �ÞR̂
ðL2ÞðXðL0Þ

i, t � XðL1Þ0
j i, t½ � Þ þ XðL0Þ

i, t R̂
ðL1ÞXðL0Þ0

i, t þ r̂2Þ,

where � is the Kronecker product. We can use this
result to estimate the probability of the outcome
PðEÞt: The event E can take several forms. Suppose
we consider yi � e, i.e. we study that the grade yi is
less than e. The monitoring scheme we propose uses
the posterior distribution of ŷi, t to calculate the prob-
ability PðEÞt: The chart signals when PðEÞt > C, with
C the threshold that determines the maximum allowed
probability of event E.

Monitoring PðEÞt requires periodic re-estimation of
the parameters to incorporate newly available informa-
tion at time t. Around the time event E occurs, the
probability PðEÞt converges to 1 if t ! T: The major
advantage of monitoring PðEÞt instead of yi, t is that,
depending on the predictive capability of the multilevel
model, the monitoring scheme provides early warning
and the opportunity to intervene before event E occurs.
If intervention occurs, it is important to include this in
the predictors fXðL0Þ,XðL1Þ,XðL2Þg by including an add-
itional variable, to extract the effect of the intervention
on outcome E. Furthermore, there is no need for n0
control charts. All that is required is a single control
chart plotting values of PðEÞt and signaling for obser-
vations or groups for which PðEÞt exceeds C.

4.2.2. Example
Following the steps outlined before, we define two
events: Ef as a student failing the year and Ee as a

student excelling that year. Ef occurs if a student
has four or more failpoints, as defined in the previ-
ous section (the number of points below 6 for all
courses a student follows in a year). Ee occurs if a
student has four or more excelpoints (the number
of points above 8 for all courses a student follows in
a year).

The end-of-year rounded grade of student j for
course i is defined as yij. At time t, the probability of
a student failing the year can thus be summarized by
PðEfj Þt ¼ PðPnj

i¼1 maxð0, ð6� yijÞÞ � 4Þt, where nj is
the number of courses for student j. The probability
of a student excelling in the year can then be sum-
marized by PðEe

j Þt ¼ PðPnj
i¼1 maxð0, ðyij � 8ÞÞ � 4Þt at

time t.
Using the same data set as in the previous sec-

tion, Figure 6 shows a control chart of 1� PðEf
j Þt

for J¼ 268 students at 15 points in time. As an
example, the threshold C¼ 0.05 is depicted as a
dashed line. Note that 1� PðEfj Þt equals the prob-
ability of passing the year. The Jp ¼ 238 students
who passed are depicted in blue and the probabil-
ities of the Jf ¼ 30 students who failed in red.
Although there are some exceptions, overall the
model consistently estimates the passing probabil-
ities for the students who fail the year much lower
than the students who pass the year. This can also
be seen in the probabilities of failure in Table 5.
This table reports the values of 1

Jp

P
j2Jp PðE

f
j Þt (the

average estimated probability of failure for students
that pass the year) in the top row and 1

Jf

P
j2Jf PðE

f
j Þt

(the average estimated probability of failure for stu-
dents that fail the year) in the bottom row. The
model consistently assigns a higher average prob-
ability of failure to students that end up failing
the year.

Figure 7 plots PðEe
j Þt for the same J¼ 268 students.

The Jn ¼ 222 students who did not excel are depicted
in red and the probabilities of the Je ¼ 46 students
who excelled are depicted in blue. As an example,
threshold C¼ 0.95 is depicted as a dashed line. The
model has impressive performance, shown also by the
differences in average probabilities over time between
students who excel, 1

Je

P
j2Je PðEej Þt , and those that do

not, 1
Jn

P
j2Jn PðEej Þt , as depicted in Table 6.

Depending on the threshold C that determines if
the monitoring scheme signals, the model correctly
identifies several students who will fail/excel as well as
some false positives. Tables 7 and 8 report the preci-
sion and recall values monitoring Ef and Ee, respect-
ively, where the precision is defined as
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PrecisiontðCÞ ¼ tptðCÞ
tptðCÞ þ fptðCÞ

with tptðCÞ equal to the number of true positives at
time t for threshold C and fptðCÞ the number of false
positives at time t for threshold C. The recall is given
by

RecalltðCÞ ¼ tptðCÞ
tptðCÞ þ fntðCÞ

where fntðCÞ equals the number of false negatives at
time t for threshold C (Powers 2011).

Table 7 shows the procedure correctly identifies
students who will fail the year early on. The perform-
ance is impressive, where, depending on the chosen
level of C, multiple early warnings are generated aid-
ing in the student support system. For example, set-
ting C at 0.75, the procedure identifies almost half (14
out of 30) of the students who will fail before the start
of the year with only 26% (5) false positives.

Table 8 shows the precision and recall values when
predicting excelling students. Depending on the
school’s preferences, high precision or recall can be
achieved early on in the year. For example, setting C
at 0.50, the procedure identifies half (23 out of 46) of
the students who will excel before the start of the year
with only 15% (4) false positives.

The multilevel monitoring procedure has shown its
value in a high school setting, as it adequately pro-
vides expected end-of-year grades for all students and
subjects. This can aid in classifying at-risk students

Figure 6. A control chart monitoring the estimated probabilities of passing 1� PðEf Þt for 268 students in 2014/2015, with dashed
threshold C¼ 0.05 in black. The dashed blue lines represent students that passed, the red solid lines students that failed.

Table 5. Average estimated probabilities of failing PðEf Þt for
268 students in 2014/2015, split by observed outcome.

Time

Failed 0 0.1 0.3 0.5 0.7 0.9 1

No 0.02 0.02 0.04 0.03 0.03 0.01 0.00
Yes 0.27 0.28 0.52 0.61 0.75 0.79 1.00

12 L. C. E. HUBERTS, M. SCHOONHOVEN, AND R. J. M. M. DOES



who need support, as well as the areas in which they
need help. On the other side of the spectrum, the
model successfully identifies excelling students who

can benefit from more challenging schoolwork. The
model further provides easily interpretable results, as
well as good explainability for the parameters.

Figure 7. A control chart monitoring the estimated probabilities of excelling PðEeÞt for 268 students in 2014/2015, with dashed
threshold C¼ 0.95 in black. The solid blue lines represent students that excelled, the red dashed lines students that did not excel.

Table 6. Average estimated probabilities of excelling PðEeÞt for 268 students in 2014/2015, split by observed outcome.
Time

Excelled 0 0.1 0.3 0.5 0.7 0.9 1

No 0.05 0.04 0.04 0.06 0.04 0.03 0.00
Yes 0.50 0.49 0.50 0.61 0.67 0.81 1.00

Table 7. PrecisiontðCÞ (RecalltðCÞ) results when monitoring PðEf Þt with various values of C and t using the three-level model pre-
dictions of end-of-year grades for 268 students in 2014/2015.
C

0.05 0.1 0.25 0.5 0.75 0.999

Time 0 1 (0.07) 1 (0.07) 1 (0.07) 0.67 (0.13) 0.74 (0.47) 0.25 (0.93)
0.1 1 (0.07) 1 (0.07) 1 (0.07) 1 (0.27) 0.71 (0.40) 0.25 (0.93)
0.3 1 (0.10) 1 (0.20) 0.85 (0.37) 0.76 (0.53) 0.67 (0.67) 0.27 (1)
0.5 1 (0.33) 1 (0.43) 0.94 (0.53) 0.79 (0.63) 0.67 (0.67) 0.34 (0.97)
0.7 1 (0.57) 1 (0.63) 0.88 (0.73) 0.77 (0.70) 0.70 (0.77) 0.40 (0.97)
0.9 0.90 (0.63) 0.86 (0.63) 0.88 (0.70) 0.81 (0.70) 0.81 (0.73) 0.59 (0.90)
1 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
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5. Conclusions

This case study has considered three research ques-
tions concerning high school students’ performance.
We worked together with a Dutch high school in
attempting to answer the following questions (1)
What determines student performance? (2) How can
statistical process monitoring be used in monitoring
student progress? (3) What method can be used for
predictive monitoring of student results? This resulted
in the use of a three-level model in a predictive moni-
toring scheme that can be applied when monitoring
hierarchical data. We discuss our results in
the following.

5.1. What determines student performance?

The detailed data set made available by a Dutch high
school has shown interesting determinants of student
performance. These are generally in line with the edu-
cational literature and are useful when monitoring
student progress.

Female students were found to obtain higher final
grades. In line with the literature, students with dis-
abilities perform slightly worse. Children with highly
educated parents outperform their peers with less-
educated parents in this case study.

The nationality and language barrier variables rep-
resent an interesting case study of the discussed the-
ory on immigrant and language barriers in academia.
Consistent with work by Geay, McNally, and Telhaj
(2013) and the “language broker” effect of Buriel et al.
(1998), students born abroad achieve similar results to
their locally born peers. A serious language barrier
does seem to produce slightly lower grades. This, in
turn, is consistent with findings by Kennedy and Park
(1994) and Collier (1995).

Students show a decrease in performance through
their high school career, with around half a point dif-
ference in grades between the first and fourth years of
high school. Absences seem to have a strong negative
correlation with grades, which justifies the penaliza-
tion of these types of absences. On a policy level, the

relationship between the primary school test scores
(CITO) and student grades should be considered
toward current discussion around the determinants of
the high school level.

The main goal of the school was to monitor stu-
dent performance as the process output throughout
the year. Therefore, statistical and predictive monitor-
ing techniques were considered.

5.2. Statistical process monitoring

Classical statistical process monitoring techniques are
often insufficient when applied to complex processes,
for which increasingly large data sets are available.
When a hierarchical structure is present in the data
set, multilevel modeling improves the reliability of
process monitoring. Using multilevel models improve
estimation accuracy and explainability over regular
linear regression models. Furthermore, the method is
essential for predictive modeling of new students/
classes or students/classes with small sample sizes.

Univariate statistical process monitoring techniques
proved insufficient in this case study and one-level
linear regression models did not provide satisfactory
results. We have discussed a three-level model
together with the monitoring options. Residual control
charting at the three levels was proposed as the multi-
level statistical monitoring method for online moni-
toring of process output. The proposed multilevel
monitoring framework did provide promising results.

5.3. Predictive monitoring

A predictive monitoring method has been developed
to enable an early warning monitoring system. This
method monitors the probability of an event, rather
than a process output. The three-level model was used
to continuously predict end-of-year individual grades.
Using a Bayesian hierarchical model, probability dis-
tributions for the student outcomes are obtained.
These can be used to monitor unwanted results in the
form of under- and overperforming students using a

Table 8. PrecisiontðCÞ (RecalltðCÞ) results when monitoring PðEeÞt with various values of C and t using the three-level model pre-
dictions of end-of-year grades for 268 students in 2014/2015.
C

0.99 0.95 0.75 0.5 0.25 0.01

Time 0 1 (0.02) 1 (0.09) 0.93 (0.3) 0.85 (0.5) 0.69 (0.72) 0.38 (0.89)
0.1 1 (0.04) 1 (0.2) 0.94 (0.35) 0.72 (0.46) 0.71 (0.65) 0.45 (0.87)
0.3 1 (0.09) 1 (0.28) 0.89 (0.37) 0.83 (0.54) 0.68 (0.54) 0.45 (0.85)
0.5 1 (0.37) 1 (0.41) 0.92 (0.52) 0.77 (0.59) 0.65 (0.67) 0.47 (0.96)
0.7 1 (0.43) 1 (0.48) 0.89 (0.54) 0.88 (0.61) 0.72 (0.78) 0.57 (0.93)
0.9 1 (0.57) 1 (0.63) 0.94 (0.74) 0.88 (0.83) 0.8 (0.87) 0.64 (1)
1 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
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single predictive control chart setup. This predictive
monitoring approach was shown to be very useful in
practice, as the school obtains valuable early warnings
on both under- and overperforming students.

The proposed multilevel process monitoring frame-
work can be useful across many applications, including
industrial processes (batch production, multiple facto-
ries), market monitoring, HR analytics, sports and
more. Implementation of multilevel models can be
challenging, however, especially in a Bayesian setting.
Sampling procedures can be used to simplify the ana-
lysis. We have provided a full analysis of the three-level
model and its estimation in the supplementary mater-
ial, where we used Gibbs sampling to estimate the
parameters. Using these parameters, predictions were
made for the monitoring period, after which the
parameters can be updated to improve the predictive
power of the model. Predictive monitoring results in
early warning systems, that can greatly aid in early
detection and prevention of special cause variation.

We argue the importance of predictive monitoring in
general. As more and more data are available, the use
of more complex models can extract more information
toward valuable predictions. Summarizing complex
processes into simple and interpretable results is essen-
tial. Multilevel modeling is one method that achieves
this, which is applicable in cases where a clear hierarchy
is present. There are of course many more statistical
and machine learning methods that can be applied. We
encourage research that investigates the use of these
methods in a predictive monitoring setting.

Concluding this paper, early warning indicator sys-
tems have the potential to improve the educational
system at a low cost. These systems can add a layer of
sophistication to school and teacher performance
evaluation and work toward fulfilling individual stu-
dent needs.
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Appendix

A.1. Predictive distribution

If we represent the three-level model in the following way

yi ¼ XðL0Þ
i b

ðL0Þ
j i½ � þ eðL0Þi , eðL0Þ � Nð0, r2yÞ

b
ðL0Þ
j ¼ b

ðL1Þ
h j½ � X

ðL1Þ0
j þ e

ðL1Þ
j , eðL1Þ � Nð0,RðL1ÞÞ

vecðbðL1Þh Þ ¼ bðL2ÞXðL2Þ0
h þ e

ðL2Þ
h , eðL2Þ � Nð0,RðL2ÞÞ

(A1)

we can summarize the model into

yi ¼ XðL0Þ
i vec�1ðbðL2ÞXðL2Þ0

h j i½ �½ �ÞX
ðL1Þ0
j i½ � þ XðL0Þ

i vec�1ðeðL2Þh ÞXðL1Þ0
j i½ �

þ XðL0Þ
i e

ðL1Þ
j i½ � þ eðL0Þi :

We obtain parameter estimates fb̂ðL0Þ
, r̂2, b̂

ðL1Þ
,

R̂
ðL1Þ

, b̂
ðL2Þ

, R̂
ðL2Þg using the observations during phase I time

period t < tI: At any time t > tI we have a predicted

distribution for the outcome variable ŷi, t: Considering the
distributions of the error terms ŷi, t has a normal distribution

ŷi, t � NððXðL1Þ
j i, t½ � � XðL0Þ

i, t Þb̂ðL2Þ
XðL2Þ0
h j i, t½ �½ �,

ðXðL1Þ
j i, t½ � � XðL0Þ

i, t ÞR̂ðL2ÞðXðL1Þ
j i, t½ � � XðL0Þ

i, t Þ0 þ XðL0Þ
i, t R̂

ðL1ÞXðL0Þ0
i, t þ r̂2Þ,

where � is the Kronecker product and we use the relation-
ship vecðABCÞ ¼ ðC0 � AÞvecðBÞ:

A.2. Prior distributions

The full parameter space h ¼ fbðL0Þ, r2, bðL1Þ,
RðL1Þ, bðL2Þ,RðL2Þg, where bðL0Þ and bðL1Þ are constructed by

stacking the parameter matrices bðL0Þj and b
ðL1Þ
h for all groups j

and h respectively, are estimated using the Gibbs sampler
(Casella and George 1992). The Gibbs sampler approximates the
posterior distribution by sampling from the full conditional dis-
tributions of the parameters. We use the rJAGS package in R to
link to JAGS (Plummer 2018).

The estimation requires prior distributions for the
unknown parameter space. Parameters bðL0Þ and bðL1Þ have
priors given explicitly by the model. Proper diffuse priors
are chosen for parameters fr2,RðL1Þ, bðL2Þ,RðL2Þg:

The vector vecðbðL2ÞÞ has a multivariate normal prior
Nða,BÞ, with diagonal covariance matrix B and larger val-
ues of B reflecting greater uncertainty. Thus proper but dif-
fuse priors were determined, with a ¼ 0 and B ¼ 1000I,
where I is the identity matrix.

The covariance matrix RðL1Þ associated with level 1 student
unobserved differences and the covariance matrix RðL2Þ for
unobserved group level 2 differences are both defined as positive
definite matrices with Inverse Wishart priors W�1ðC, ðp0 þ
1Þ þ 1Þ for RðL1Þ and prior W�1ðD, ðp0 þ 1Þðp1 þ 1Þ þ 1Þ for
RðL2Þ: C and D are diagonal matrices, where smaller values cor-
respond to more diffuse priors. Values for these inverse Wishart
distributions are set at C ¼ D ¼ diagð0:001Þ:

For the variance parameter r2 of the error term in the
model the inverse Gamma distribution, IG(a, b), was
chosen. We use an uniformative prior, with parameters a ¼
0:001; b ¼ 1; r2 � IGð0:001, 1Þ:
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