
Received: 9 November 2018 Accepted: 18 December 2018

DOI: 10.1002/qre.2448

R E S E A R C H A R T I C L E

The effect of continuously updating control chart limits on
control chart performance
Leo C.E. Huberts Marit Schoonhoven Ronald J.M.M. Does

Department of Operations Management,
University of Amsterdam, Amsterdam,
The Netherlands

Correspondence
Leo C.E. Huberts, Department of
Operations Management, University of
Amsterdam, Plantage Muidergracht 12,
1018TV, Amsterdam, The Netherlands.
Email: L.c.e.huberts@uva.nl

Abstract

An open topic within statistical process monitoring is the effect on control chart
properties of updating the control chart limits during the monitoring period. The
challenge is to use the correct data for updating the control limits as in-control
data could be incorrectly classified as out of control and therefore not used for
re-estimating the parameters, and out-of-control data could be classified as in
control and therefore used for re-estimating. In the present article, we study the
effect of updating the Shewhart, cumulative sum, and exponentially weighted
moving average control chart limits. We simulate different scenarios: the mon-
itoring data could be in or out of control, and the practitioner may or may not
be able to find out whether the process is indeed out of control when the con-
trol chart gives a signal. The results reveal that the variation in the performance
of the conditional control charts decreases significantly as a result of updating
the control chart limits when the updating data are in control and also when the
updating data are out of control and the practitioner is able to classify correctly
data samples that produce a signal. However, when a practitioner is not able to
classify a signal correctly, the advisability of updating depends on the type of
control chart and the level of data contamination.
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1 INTRODUCTION

The control chart proposed by Shewhart,1 the cumulative sum (CUSUM) control chart proposed by Page,2 and the expo-
nentially weighted moving average (EWMA) control chart proposed by Roberts3 are tools that are applied for monitoring
quality indicators. The advantage of the CUSUM and EWMA compared with the Shewhart control chart is that they can
detect smaller sustained shifts in the process mean earlier. In order to construct the control chart limits, the distributional
parameters of the process characteristic have to be estimated. In the literature, it is often assumed that the parameters are
estimated only once during the so-called Phase I stage, and that the control chart remains fixed during the monitoring
period, a stage which is usually referred to as Phase II (see, eg, Vining4).

A control chart design is usually evaluated by determining the performance in expectation, ie, the unconditional control
chart performance, and the distributional properties of performance metrics of the conditional control charts. Jones et al5,6

and Saleh et al7 studied the unconditional and conditional performance of the EWMA, CUSUM, and Shewhart control
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charts, respectively. All conclude that the variation within the performance of the conditional control charts is very large
when the parameters are estimated.

Jensen et al8 surveyed the literature on estimated control charts and identified 13 issues for future research. Issue 6 of
Jensen et al8 suggests reestimating the limits during the monitoring period: “Related to the previous research question is
the effect on control chart properties when the control limits are updated in some future time that is not necessarily during
a start-up period. If the process is in control, it would be reasonable to use the data to update control limits during Phase
II and not continue to use the original limits indefinitely. It is not clear how control chart performance is impacted, but it
seems that making use of earlier Phase II data would lead to better control charts.” This issue is the subject under study in
the present paper. In this context, we should also mention the self-starting CUSUM and Shewhart control chart designs
proposed by Hawkins9 and Quesenberry,10 respectively. These designs can already be used when just a few samples are
available. The performance of these charts was studied by Keefe et al11 using a simulation procedure. However, they did
not study the effect of out-of-control data and reset the parameters to the initial Phase I estimates when the conditional
control chart gives a signal.

In the present article, we study the effect of updating for different scenarios: the updating data may be in or out of
control, signals may or may not be correctly classified (depending on the scenario), and when the control chart signals
the parameters are re-estimated, and the updating continues.

The article is structured as follows. Section 2 gives the relevant control chart designs. Section 3 describes the scenarios
that will be included in the simulation procedure, which is described in Section 4. Then, the results during and after
updating are given in Sections 5 and 6, respectively, and Section 7 offers conclusions and recommendations.

2 CONTROL CHART DESIGNS

This section gives the Shewhart, CUSUM, and EWMA control chart designs.
Let Xij denote the jth observation in sample i (i = 1, 2, .... and j = 1, 2, ...n), and let Xi denote the vector containing

the n observations of sample i. Further, let mI denote the number of Phase I samples for initial parameter estimation and
mu the number of samples within the updating period. We assume that the mI samples in Phase I are in control (in this
stage the practitioner determines the in-control state). The mu monitoring/updating samples may or may not be out of
control. Further, we assume that the observations Xij in the first mI samples are independently and identically N(𝜇, 𝜎2)
distributed and that the observations in the next mu samples are independently and identically N(𝜇 + 𝛿, 𝜎2) distributed
with probability P, where the values of 𝛿 and P depend on the scenario. Finally, let t be the time stamp during monitoring
(t = mI + 1,mI + 2, … ,mI + mu), and let X ic

t−1 denote the samples that are classified as in control up to and including
time t − 1. The number of samples within X ic

t−1 is denoted by mt− 1 (so mI ⩽ mt− 1 ⩽ mI + mu).
For each of the three control charts, 𝜇 and 𝜎 have to be estimated, and we use the same estimators for each chart. The

parameter 𝜇 is estimated by

Xt−1 = 1
mt−1

t−1∑
i=1

(
1
n

n∑
𝑗=1

Xi𝑗

)
𝟙X i∈X ic

t−1
, (1)

with 𝟙 as the indicator function. Further, 𝜎 is estimated by

S̃t−1 =

(
1

mt−1

t−1∑
i=1

S2
i 𝟙X i∈X ic

t−1

)1∕2

∕c4(mt−1(n − 1) + 1), (2)

where Si is the ith sample standard deviation defined by

Si =

(
1

n − 1

n∑
𝑗=1

(Xi𝑗 − Xi)2

)1∕2

and

c4(x) =
( 2

x − 1

)1∕2 Γ(x∕2)
Γ((x − 1)∕2)

.

The following sections outline the Shewhart, CUSUM, and EWMA control chart designs.
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2.1 Shewhart control chart
The estimated Shewhart control limits based on the samples in X ic

t−1, used for monitoring at time t, t = mI + 1,mI +
2, … ,mI + mu, are given by

ÛCLt−1 = Xt−1 + 3S̃t−1∕
√

n,

L̂CLt−1 = Xt−1 − 3S̃t−1∕
√

n,
(3)

where Xt−1 is given by (1) and S̃t−1 by (2), while 3 is the traditional constant used for known parameters to ensure that the
false alarm probability (average run length) of the chart is equal to 0.0027 (370)*.

2.2 CUSUM control chart
As the Crosier CUSUM control chart outperforms the classical CUSUM chart (see Crosier14), we will apply this design.

Let Ct, t = mI + 1,mI + 2, … ,mI + mu, denote the standardized statistic defined as

Ct = |Vt−1 + Q̂t|, (4)

where Q̂t =
Xt−Xt−1

S̃t−1∕
√

n
and VmI = 0. The monitoring statistic then becomes

Vt =
{ 0 if Ct ⩽ k

(Vt−1 + Q̂t)(1 − k
Ct
) if Ct > k, (5)

where k is the reference value that determines the point at which Vt accumulates deviations from the target value Xt−1
and is commonly set at k = 1

2
. The chart signals if |Vt| > H, where H is the CUSUM control chart limit whose value

depends on desired chart performance. To achieve an in-control average run length (ARL) of 370 for k = 1
2

and known
parameters, H should be set at 4.3904 (see also Crosier14).

2.3 EWMA control chart
The EWMA control chart is an extension of the CUSUM chart, adding weights to the cumulative sum of observations.
The EWMA statistic is defined as

Zt = 𝜆Xt + (1 − 𝜆)Zt−1, (6)

where 0 < 𝜆 ⩽ 1 and ZmI equals the mean estimate XmI . For 𝜆 = 1, the EWMA control chart is equal to the Shewhart
control chart. The EWMA control limits for monitoring the process at time t = mI + 1,mI + 2, … ,mI + mu are

ÛCLt−1 = Xt−1 + LS̃t−1√
n

√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2t],

L̂CLt−1 = Xt−1 − LS̃t−1√
n

√
𝜆

2 − 𝜆
[1 − (1 − 𝜆)2t],

(7)

where 𝜆 and L determine the in-control performance. We set 𝜆 = 0.1 and L = 2.703 because for these settings, the
in-control ARL is 370 when the distributional parameters are known and the chart is able to detect small mean shifts
quickly (cf. Lucas and Saccucci15). When Zt falls above (below) ÛCLt−1 (L̂CLt−1), the process is considered out of control.

3 SIMULATION SCENARIOS

In this section, we describe the various scenarios included in the simulation. For each scenario and control chart type, we
simulate 100 000 conditional control charts. The scenarios that we consider are presented in Table 1. The case mu = 0
is used to investigate how control chart performance improves when updating (mu > 0) compared with not updating

*The reason why we use the traditional constant is that we want to make a comparison with the CUSUM and EWMA control charts with traditional
constants. We have, however, also studied the performance of the updated Shewhart chart with the constants for estimated parameters of Goedhart
et al,12,13 but the results are similar.
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TABLE 1 Scenarios

Phase I: Updating: Signal:
mI mu IC or OOC? IC or OOC? Reason Known?

Reference 1 5 0 IC N/A N/A
Reference 2 200 0 IC N/A N/A
Reference 3 2000 0 IC N/A N/A
Scenario 1 5 1995 IC IC No
Scenario 2 200 1800 IC IC No
Scenario 3 5 1995 IC IC Yes
Scenario 4 200 1800 IC IC Yes
Scenario 5 5 1995 IC OOC: P = 0.01; 𝛿 = 0.5 No
Scenario 6 200 1800 IC OOC: P = 0.01; 𝛿 = 0.5 No
Scenario 7 5 1995 IC OOC: P = 0.01; 𝛿 = 0.5 Yes
Scenario 8 200 1800 IC OOC: P = 0.01; 𝛿 = 0.5 Yes
Scenario 9 5 1995 IC OOC: P = 0.01; 𝛿 = 2 No
Scenario 10 200 1800 IC OOC: P = 0.01; 𝛿 = 2 No
Scenario 11 5 1995 IC OOC: P = 0.01; 𝛿 = 2 Yes
Scenario 12 200 1800 IC OOC: P = 0.01; 𝛿 = 2 Yes
Scenario 13 5 1995 IC OOC: P = 0.1; 𝛿 = 3 No
Scenario 14 200 1800 IC OOC: P = 0.1; 𝛿 = 3 No
Scenario 15 5 1995 IC OOC: P = 0.1; 𝛿 = 3 Yes
Scenario 16 200 1800 IC OOC: P = 0.1; 𝛿 = 3 Yes

Abbreviations: IC, in control; OOC, out of control.

(mu = 0). The reference scenario mI = 2000 and mu = 0 is included to determine the difference in performance by
starting with a small sample and then updating (using mI + mu = 2000 samples in total) compared with directly con-
structing a control chart based on mI = 2000 samples. Hence, we consider three reference scenarios: mI = 5, 200, 2000,
all with mu = 0.

In scenarios 1 to 4, the monitoring/updating data are in control, and mI is 5 or 200, and mu is 1995 (for mI = 5) or 1800
(for mI = 200). In scenarios 5 to 8, 9 to 12, and 13 to 16, the monitoring/updating data may be out of control, with varying
levels of contamination. The contamination is modeled as follows: each sample has a probability P that the observations
are drawn from a N(𝜇 + 𝛿, 𝜎2) distribution. We assume that, when the process is out of control, then the process remains
out of control until the control chart gives a signal.

Moreover, we investigate the effect of the incorrect classification of a signal. In scenarios 1, 2, 5, 6, 9, 10, 13, and 14, it is
assumed that the operator cannot classify a signal correctly and therefore relies on the control chart. Thus, samples that
give no signal are considered as in control and used for re-estimating the control limits, and data that give a signal are
classified as out of control and not used for reestimation. In these scenarios, it is thus not possible to trace back the start
of the out-of-control situation and filter out previous out-of-control samples. On the other hand, in scenarios 3, 4, 7, 8, 11,
12, 15, and 16, we assume that the operator is able to identify the cause of a signal; so data samples that give a false signal
are included, and we assume that in this case, it is possible to retrace the start of the out-of-control situation and exclude
previous out-of-control samples from estimation.

4 SIMULATION PROCEDURE

Below, we describe the simulation procedure.

Step 1: Generate conditional control chart
In this step, we construct the initial conditional control chart based on the Phase I dataset of mI (5, 200) samples of size
5. We estimate 𝜇 and 𝜎 with the estimators Xt−1 and S̃t−1 (t − 1 = mI) given by (1) and (2), respectively, and determine
the Shewhart or EWMA control limits using (3) or (7), respectively. The limit for the CUSUM control chart is 4.3904.
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Step 2: Use conditional control chart for monitoring and update the chart
For each t = mI + 1,mI + 2, … ,mI + mu: for scenarios 1 to 4, draw a sample Xt from N(𝜇, 𝜎2), and for scenarios 5 to
16, when the process is in control, draw a sample with probability 1 − P from N(𝜇, 𝜎2) and otherwise from N(𝜇 + 𝛿, 𝜎2),
with the values of P and 𝛿 depending on the scenario (see Table 1). Calculate the test statistics (Xt, Vt, or Zt).

When the test statistic falls between ÛCLt−1 and L̂CLt−1, the dataset of classified in-control samples, X ic
t−1, is aug-

mented with Xt and denoted by X ic
t . The process parameters are recalculated using (1) and (2), and the control limits

ÛCLt and L̂CLt are determined with the new parameter estimates.
When the test statistic falls outside the control limits ÛCLt−1 and L̂CLt−1, the next step depends on the scenario. For
scenarios 1, 2, 5, 6, 9, 10, 13, and 14 (the reason-unknown scenarios) the current data sample Xt is considered out of
control and therefore not added to the dataset of classified in-control samples. The limits are not recalculated. Thus,
ÛCLt = ÛCLt−1, L̂CLt = L̂CLt−1, Xt = Xt−1 and S̃t = S̃t−1. For the CUSUM and EWMA control charts, we set Vt = 0
and Zt = XmI .

In contrast, when the test statistic falls outside the control limits, but the process is in control, and the operator is
able to determine the cause of the signal—as is the case in scenarios 3, 4, 7, 8, 11, 12, 15, and 16—Xt will be used for
updating the control chart. The dataset of classified in-control samples, X ic

t−1, is augmented with Xt and is denoted by
X ic

t . The process parameters are recalculated using (1) and (2), and the control limits ÛCLt and L̂CLt are determined
with the new parameter estimates.

When the test statistic falls outside the control limits, the process is out of control, and the operator is able to deter-
mine the cause of the signal—as is the case in scenarios 3, 4, 7, 8, 11, 12, 15, and 16—Xt will not be used for updating the
control chart. Moreover, previous real out-of-control samples, the number denoted by N with N ⩽ mu, are excluded
from X ic

t−1. Thus, X ic
t = X ic

t−N , ÛCLt = ÛCLt−N , L̂CLt = L̂CLt−N , Xt = Xt−N , and S̃t = S̃t−N . For the CUSUM and EWMA
control charts, we set Vt = 0 and Zt = Xt−N .

To assess the performance during updating, we determine for each conditional control chart the true alarm per-
centage (CTAP) and the false alarm percentage (CFAP) within each simulation run. Related measures were presented
by Fraker et al,16 Chakraborti et al,17 and Frisén.18 To this end, for 100 000 simulation runs, we count the number of
correct signals, out-of-control samples, false alarms, and in-control samples.

Step 3: Assess the conditional control chart performance
To assess the performance of a conditional control chart during updating, we determine the CTAP and CFAP as follows:

CTAP =
#correct signals

#out-of-control samples
,

and

CFAP =
#false signals

#in-control samples
.

To assess the conditional performance of a conditional control chart after updating, we determine the conditional false
alarm probability (CFAR) and the conditional average run length (CARL). For the Shewhart chart, these values can be
obtained by

CFAR = Φ
(

L̂CLt − 𝜇

𝜎∕
√

n

)
+ 1 − Φ

(
ÛCLt − 𝜇

𝜎∕
√

n

)
, (8)

and
CARL = 1∕CFAR. (9)

For the CUSUM and EWMA control charts, CFAR is assessed by determining the number of false alarms on an
interval of 100 000 samples, and CARL is determined by the Markov chain approaches given by Hany and Mahmoud19

and Saleh et al.20

Step 4: Assess the overall control chart performance
To assess the unconditional control chart performance during updating, we determine the average true alarm per-
centage (ATAP) and the average false alarm percentage (AFAP) by averaging the CTAP and CFAP values for the R
simulation runs.
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The expected average run length after updating (AARL) and the expected false alarm rate after updating (AFAR) are
determined by averaging the corresponding conditional values obtained in the R simulation runs. Moreover, we deter-
mine the 10th and 90th percentiles of the CARL and CFAR values, which are indicated by CARL10, CARL90, CFAR10,
and CFAR90.

The next two sections present the performance results during and after updating.

5 PERFORMANCE DURING UPDATING

In this section, we consider the chart performance during updating for either mu = 1995 or mu = 1800 updates. The
ATAP and AFAP values for the three charts are reported in Table 2.

5.1 Shewhart
The in-control behavior of scenarios 1 to 4 for the Shewhart chart is as expected. For the small mean deviations (𝛿 = 0.5)
of scenarios 5 to 8, in the reason-unknown scenarios (5 to 6), the ATAP values are smaller than the known parameter
detection probability (0.03), and the AFAP values are larger as well. In the reason-known scenarios (7 to 8), the ATAP and
AFAP values are very close to the known detection probabilities for the Shewhart chart. For larger deviations 𝛿 = 2, 3 in
scenarios 9 to 16, the detection percentages of Table 2 show almost perfect detection, as expected for the Shewhart chart
when large mean shifts occur.

5.2 CUSUM and EWMA
As the results for the CUSUM and EWMA are comparable, we will consider them together in this section. The in-control
AFAP performance is around 0.0027. As expected, the CUSUM and EWMA charts are more capable of detecting small
mean shifts (𝛿 = 0.5) in scenarios 5 to 8 than the Shewhart chart. For 𝛿 = 2, the ATAP values for both charts are around

TABLE 2 Performance during updating

Phase I: Phase II: Signal: ATAP (AFAP)
mI mu IC or OOC? IC or OOC? Reason Known? Shewhart CUSUM EWMA

Reference 1 5 0 IC N/A N/A NA (NA) NA (NA) NA (NA)
Reference 2 200 0 IC N/A N/A NA (NA) NA (NA) NA (NA)
Reference 3 2000 0 IC N/A N/A NA (NA) NA (NA) NA (NA)
Scenario 1 5 1995 IC IC No NA (0.0027) NA (0.0028) NA (0.0025)
Scenario 2 200 1800 IC IC No NA (0.0027) NA (0.0027) NA (0.0026)
Scenario 3 5 1995 IC IC Yes NA (0.0027) NA (0.0028) NA (0.0025)
Scenario 4 200 1800 IC IC Yes NA (0.0027) NA (0.0027) NA (0.0026)
Scenario 5 5 1995 IC OOC: P = 0.01; 𝛿 = 0.5 No 0.0107 (0.0086) 0.1106 (0.0054) 0.0962 (0.0091)
Scenario 6 200 1800 IC OOC: P = 0.01; 𝛿 = 0.5 No 0.0167 (0.0044) 0.1199 (0.0029) 0.113 (0.0028)
Scenario 7 5 1995 IC OOC: P = 0.01; 𝛿 = 0.5 Yes 0.0225 (0.0027) 0.1263 (0.0026) 0.1143 (0.0024)
Scenario 8 200 1800 IC OOC: P = 0.01; 𝛿 = 0.5 Yes 0.0277 (0.0027) 0.13 (0.0026) 0.1245 (0.0024)
Scenario 9 5 1995 IC OOC: P = 0.01; 𝛿 = 2 No 0.9296 (0.0033) 0.5901 (0.0027) 0.5477 (0.0027)
Scenario 10 200 1800 IC OOC: P = 0.01; 𝛿 = 2 No 0.932 (0.0027) 0.593 (0.0027) 0.5564 (0.0025)
Scenario 11 5 1995 IC OOC: P = 0.01; 𝛿 = 2 Yes 0.9297 (0.0027) 0.5993 (0.0026) 0.5638 (0.0024)
Scenario 12 200 1800 IC OOC: P = 0.01; 𝛿 = 2 Yes 0.9309 (0.0027) 0.5995 (0.0026) 0.5681 (0.0024)
Scenario 13 5 1995 IC OOC: P = 0.1; 𝛿 = 3 No 0.9999 (0.0027) 0.8803 (0.0024) 0.6971 (0.0074)
Scenario 14 200 1800 IC OOC: P = 0.1; 𝛿 = 3 No 0.9999 (0.0027) 0.8935 (0.0019) 0.745 (0.003)
Scenario 15 5 1995 IC OOC: P = 0.1; 𝛿 = 3 Yes 0.9999 (0.0027) 0.9095 (0.0018) 0.8191 (0.0015)
Scenario 16 200 1800 IC OOC: P = 0.1; 𝛿 = 3 Yes 0.9999 (0.0027) 0.91 (0.0017) 0.8176 (0.0015)

Abbreviations: AFAP, average false alarm percentage; ATAP, average true alarm percentage; CUSUM, cumulative sum; EWMA, exponentially weighted moving
average; IC, in control; OOC, out of control.
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FIGURE 1 Mean estimates during updates for scenario 13

0.5 to 0.6, detecting more than half of the out-of-control observations. Furthermore, the AFAP values for both charts in
Table 2 are acceptably close to 0.0027 in scenarios 9 to 12. However, in scenarios 13 to 16, for large and frequent deviations
(𝛿 = 3,P = 0.1), the ATAP values indicate that the CUSUM and EWMA charts still miss a significant portion of the
out-of-control observations. The CUSUM (EWMA) chart detects during updating only about 90% (70% to 82%) of the
out-of-control observations.

The ATAP values are affected by the (contaminated) parameter estimates. Consider the mean estimates during updating
for scenario 13 in Figure 1 for the three charts. For the first 100 updates, all three charts show very inaccurate estimation of
the mean because of (mostly) the effects of an inaccurate Phase I mean estimate. Over time, the Shewhart chart improves
to a very accurate mean estimate of around 0 as it perfectly detects all out-of-control observations. The CUSUM and
EWMA chart converge to higher estimates of the mean, as because of their lower detection probability, they include
contaminated samples in the mean estimate.

6 PERFORMANCE AFTER UPDATING

This section presents the performance results of the control charts after updating. The tables that correspond to this
section are Tables 3 (Shewhart), 4 (CUSUM), and 5 (EWMA).

6.1 Shewhart
As we can see in Table 3, updating the chart after a limited initial Phase I dataset (scenarios 1 to 4 and 7 to 16) can result
in a control chart performance that is similar to directly estimating limits from a very large Phase I dataset (reference
scenario 3). More specifically, for these scenarios, a chart estimated on mI = 5 or mI = 200 samples, which is then used
for monitoring and updating during mu = 1995 or mu = 1800 samples, respectively, results in a chart that has the same
performance as charts estimated directly from a large Phase I dataset (mI = 2000 and mu = 0). This means that in these
scenarios, monitoring can start quickly on a limited dataset. It should also be noted that a chart that is initially estimated
on a small dataset (mI = 5), followed by monitoring and updating, leads to a similar performance as of a chart for which
a larger Phase I dataset is used (mI = 200) before the monitoring and updating starts.

We can also conclude that, for a more serious level of contamination (scenarios 9 to 16), it does not matter whether
the practitioner classifies signals correctly (scenarios 9, 10, 13, 14) or incorrectly (scenarios 11, 12, 15, 16). The reason
is that these out-of-control conditions are quickly detected so that there are fewer out-of-control samples in the estima-
tion dataset. Moreover, excluding from the estimation dataset any samples that give a false alarm does not result in a
significantly worse performance, as we have also seen in scenarios 1 to 4.
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When there is a little contamination (scenarios 5 to 8), performance depends on the operator's ability to classify
out-of-control signals correctly. When it is possible to determine the cause of the signal and trace back the start of the
out-of-control situation, the resulting control chart performs well. On the other hand, when it is not possible to identify the
cause and retrace the start of the signal, then many out-of-control samples will be left in the estimation sample (because
smaller out-of-control levels are not detected quickly by the Shewhart control chart), resulting in less representative final
control limits and worse performance.

6.2 CUSUM and EWMA
As the conclusions for the CUSUM (Table 4) and EWMA (Table 5) control charts are very similar, we describe them
together.

As with the Shewhart control chart, we can see that depending on the scenario, updating generates the same perfor-
mance as direct estimation from a large Phase I dataset (reference scenario 3: mI = 2000, mu = 0). Mainly, in scenarios
where the data are in control (scenarios 1 to 4) or where the operator is able to identify the cause of a signal and trace back
the start (scenarios 7, 8, 11, 12, 15, and 16), control chart performance is similar to the performance of charts estimated
on a large Phase I dataset.

When the operator is not able to identify the cause of a signal (and filter out previous out-of-control data samples),
the performance of the updated control chart depends on the contamination level. Mainly, for major contamination (sce-
narios 13 and 14), out-of-control signals will not be detected quickly so that, until the chart gives a signal, many of the
out-of-control samples are included in the estimation dataset, affecting the control chart limits.

7 CONCLUSION

In the present article, we have simulated 16 scenarios, differing in the size of Phase I datasets (mI = 5, 200), in the ability
to determine the cause of a signal, and in the status (in or out of control) of the updating datasets. The charts' performances
have been analyzed both during and after (at t = 2000) the updating period.

The results show improved chart behavior for updated limits when the updating dataset is in control, even when the
size of the initial dataset is very small (mI = 5). This holds for all three charts and means that excluding samples that
give a false alarm from the estimation dataset does not affect control chart performance for these values of mI and mu.

For a low level of contamination (eg, 𝛿 = 0.5), the limits can be updated safely for all three charts as long as the signal
reason is known and the out-of-control data can be removed. When the signal reason is unknown, so that the origin of the
out-of-control situation can not be retraced, the results show a decline in performance for all three charts. The Shewhart
chart is especially vulnerable, as it has the least ability to quickly detect small shifts in the process mean.

For higher contamination levels (eg, 𝛿 = 2, 3), it is safe to update the Shewhart chart control limits even if the signal
reason is unknown. This is due to the chart's ability to detect all out-of-control signals, preventing that contaminated
samples are included in the data set. For the CUSUM and EWMA charts, updating is only safe if the signal reason is
known and the origin can be retraced. If this is not the case, the data and evolving statistic will get contaminated, and the
performance of the CUSUM and EWMA charts is quite poor.

In summary, we definitely recommend updating control limits for the Shewhart, EWMA, and CUSUM charts as long
as the reason for out-of-control signals is known and the origin can be retraced. If this is not the case, the best strategy
depends on the size of the expected mean deviation. For large deviations, the Shewhart chart is safe to use, but the EWMA
and CUSUM charts are not. For smaller deviations, the Shewhart chart fails, and performance of the CUSUM and EWMA
charts is better. We suggest further research on the behavior of updating the limits for various subgroup sample sizes, as
well as on performance for varying distributional assumptions.

REFERENCES
1. Shewhart WA. Quality control charts. Bell Syst Tech J. 1926;5:593-603.
2. Page ES. Continuous inspection schemes. Biometrika. 1954;41:100-115.
3. Roberts SW. Control chart tests based on geometric averages. Technometrics. 1959;42:97-101.
4. Vining G. Technical advice: phase I and phase II control charts. Qual Eng. 2009;21:478-479.
5. Jones LA, Champ CW, Rigdon SE. The performance of exponentially weighted moving average charts with estimated parameters.

Technometrics. 2001;43:156-167.



1128 HUBERTS ET AL.

6. Jones LA, Champ CW, Rigdon SE. The run length distribution of the CUSUM with estimated parameters. J Qual Technol. 2004;36:95-108.

7. Saleh NA, Mahmoud MA, Keefe MJ, Woodall WH. The difficulty in designing Shewhart X and X control charts with estimated parameters.
J Qual Technol. 2015;47:127-138.

8. Jensen WA, Jones-Farmer LA, Champ CW, Woodall WH. Effects of parameter estimation on control chart properties: a literature review.
J Qual Technol. 2006;38:349-364.

9. Hawkins DM. Self-starting CUSUM charts for location and scale. Statistician. 1987;18:299-315.
10. Quesenberry CP. SPC Q charts for start-up processes and short or long runs. J Qual Technol. 1991;23:213-224.
11. Keefe MJ, Woodall WH, Jones-Farmer LA. The conditional in-control performance of self-starting control charts. Qual Reliab Eng Int.

2015;27:488-499.
12. Goedhart R, Schoonhoven M, Does RJMM. Correction factors for Shewhart X and X control charts to achieve desired unconditional ARL.

Int J Prod Res. 2016;54:7464-7479.
13. Goedhart R, Schoonhoven M, Does RJMM. On guaranteed in-control performance for the Shewhart X and X control charts. J Qual Technol.

2018;50:130-132.
14. Crosier RB. A new two-sided cumulative sum quality control scheme. Technometrics. 1986;28:187-194.
15. Lucas JM, Saccucci MS. Exponentially weighted moving average control schemes: properties and enhancements. Technometrics.

1990;32:1-12.
16. Fraker SE, Woodall WH, Mousavi S. Performance metrics for surveillance schemes. Qual Eng. 2008;20:451-464.
17. Chakraborti S, Human SW, Graham MA, Phase I. Statistical process control charts: an overview and some results. Qual Eng. 2009;21:52-62.
18. Frisén M. Optimal sequential surveillance for finance, public health, and other areas (with discussion). Seq Anal Design Methods Appl.

2009;28:310-337.
19. Hany M, Mahmoud MA. An evaluation of the Crosier's CUSUM control chart with estimated parameters. Qual Reliab Eng Int.

2016;32:1825-1835.
20. Saleh NA, Mahmoud MA, Abdel-Salam AG. The performance of the adaptive exponentially weighted moving average control chart with

estimated parameters. Qual Reliab Eng Int. 2013;29:595-606.

AUTHOR BIOGRAPHIES

Leo C.E. Huberts is a PhD student in the Department of Operations Management and consultant at the Institute
for Business and Industrial Statistics of the University of Amsterdam, the Netherlands. His current research topic
is big data in statistical process monitoring.

Marit Schoonhoven is an associate professor at the Department of Operations Management and senior consultant
at the Institute for Business and Industrial Statistics of the University of Amsterdam, the Netherlands. Her current
research interests include control charting techniques and operations management methods.

Ronald J.M.M. Does is professor of Industrial Statistics at the University of Amsterdam, Director of the Institute
for Business and Industrial Statistics, and Head of the Department of Operations Management at the Amsterdam
Business School. He is a Fellow of the ASQ and ASA, an elected member of the ISI, and an Academician of the Inter-
national Academy for Quality. His current research activities include the design of control charts for nonstandard
situations, healthcare engineering, and operations management methods.

How to cite this article: Huberts LCE, Schoonhoven M, Does RJMM. The effect of continuously updating con-
trol chart limits on control chart performance. Qual Reliab Engng Int. 2019;35:1117–1128. https://doi.org/10.1002/
qre.2448

https://doi.org/10.1002/qre.2448
https://doi.org/10.1002/qre.2448

	The effect of continuously updating control chart limits on control chart performance
	Abstract
	INTRODUCTION
	CONTROL CHART DESIGNS
	Shewhart control chart
	CUSUM control chart
	EWMA control chart

	SIMULATION SCENARIOS
	SIMULATION PROCEDURE
	PERFORMANCE DURING UPDATING
	Shewhart
	CUSUM and EWMA

	PERFORMANCE AFTER UPDATING
	Shewhart
	CUSUM and EWMA

	CONCLUSION
	References


