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Abstract

Research on the performance evaluation and the design of the Phase II EWMA

control chart for monitoring the mean, when parameters are estimated, have

mainly focused on the marginal in‐control average run‐length (ARLIN). Recent

research has highlighted the high variability in the in‐control performance of

these charts. This has led to the recommendation of studying of the conditional

in‐control average run‐length (CARLIN) distribution. We study the perfor-

mance and the design of the Phase II EWMA chart for the mean, using the

CARLIN distribution and the exceedance probability criterion (EPC). The CAR-

LIN distribution is approximated by the Markov Chain method and Monte

Carlo simulations. Our results show that in‐order to design charts that guaran-

tee a specified EPC, more Phase I data are needed than previously recom-

mended in the literature. A method for adjusting the Phase II EWMA control

chart limits, to achieve a specified EPC, for the available amount of data at

hand, is presented. This method does not involve bootstrapping and produces

results that are about the same as some existing results. Tables and graphs of

the adjusted constants are provided. An in‐control and out‐of‐control perfor-

mance evaluation of the adjusted limits EWMA chart is presented. Results

show that, for moderate to large shifts, the performance of the adjusted limits

EWMA chart is quite satisfactory. For small shifts, an in‐control and out‐of‐

control performance tradeoff can be made to improve performance.

KEYWORDS

bootstrap, conditional average run‐length, exceedance probability criterion, exponentially weighted

moving average chart, Markov chain, unconditional and conditional perspectives
1 | INTRODUCTION

Jones et al1 studied the conditional and the unconditional run‐length distribution of EWMA chart with estimated
parameters in both the in‐control (IC) and the out‐of‐control (OOC) cases. Based on the percentage increase in the false
alarm rate (FAR), they concluded that when parameters are estimated and the smoothing constant (λ) is small, larger
Phase I sample sizes are needed, to design charts with acceptable FAR performance. However, their study did not take
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into account the random variability of the FAR, the so‐called “practitioner to practitioner” variability, which is inherent
to parameter estimation. Motivated by this, Saleh et al2 examined the CARLIN distribution of the EWMA chart as a func-
tion of the number of Phase I subgroups (m), subgroup size (n), and λ. Based on the standard deviation (SDCARLIN) of
CARLIN, they concluded, contrary to Jones et al,1 that, much larger Phase I sample sizes are required to design Phase II
EWMA charts with larger λ than with smaller λ.

In his seminal work on prospective application of the Phase II X chart, Chakraborti3 was among the first group of
authors to highlight the variation present in the conditional run‐length distribution and hence the importance of examin-
ing the practitioner to practitioner variability via the conditional run‐length distribution. He emphasized how the condi-
tional false alarm rate (CFAR) behaves as a random variable when parameters are estimated and used to construct Phase II
charts. Inspired by this, for the Phase II S and S2 charts, Epprecht et al4 examined theCFAR distribution as a function of the
Phase I sample size mn. They then made recommendations about the minimum size of the Phase I sample, which is
required, to guarantee, with a high probability 1 − p, that the CFAR will not exceed some specified nominal CFAR value
(denoted CFAR0). This is the exceedance probability criterion (EPC) introduced by Albers et al5 and Gandy and Kvaloy6

which sets an upper prediction bound toCFAR. In the same spirit, we examine theCARLIN distribution of the EWMAchart
as a function of λ, m, and n = 5 and set a lower prediction bound to CARLIN. We then make recommendations about the
value ofm, which is required, to guarantee, with a specified high probability 1‐p, that the CARLINwill exceed a nominally
specified value, denoted ARL0. This approach has been recommended in the recent literature as the CARLIN (also the
CFAR) is a random variables with high variability which is the cause of practitioner to practitioner variation. Our results
reveal that in order for the EWMA chart to meet the EPC specification, even more Phase I data are needed than was pre-
viously recommended by Saleh et al2 and Jones et al.1Moreover, consistently with Jones et al1 but contrary to Saleh et al,2 it
will be seen that small values of λ require larger Phase I sample sizes than large values of λ.

However, in practice, it may be difficult and expensive to get such huge amounts of Phase I data. Hence, control limits
are adjusted as a function of the amount of data available at hand. Jones7 adjusted the control limits of the Phase II EWMA
chart to achieve a certain nominally specified marginal or unconditional in‐control ARL (ARL0). This is the unconditional
approach. Values of the charting constant (L) were given graphically for different values of ARL0, m, n, and choice of λ
ranging from 0.02 to 1. However, the unconditional approach ignores the practitioner to practitioner variability (the var-
iation in the CARLIN distribution). To this end, Saleh et al2 used the EPC and bootstrapping to design the EWMA chart
when parameters are estimated. The EPC does not ignore the variation in the CARLIN distribution but controls it with a
high probability in the form of a prediction interval. The EPC was popularized by Jones and Steiner8 and Gandy and
Kvaloy6; since then, the EPC and the associated bootstrap approach have been used bymany authors. Wemention, among
others, Saleh et al,9 Aly et al,10 Faraz et al,11,12 and Hu and Castagliola.13 However, bootstrapping is computer intensive
and may be somewhat difficult to apply in practice. This is also exacerbated by the fact that, even though the underlying
problem and the chart performance specificationsmay be the same, repeated applications of the bootstrap approachwould
almost surely result in different adjusted limits and can lead to comparability issues. Hence, it is not surprising that, with
the exception of Faraz et al11 and Hu and Castagliola,13 the authors who have used the bootstrap approach did not provide
or show tables of their new charting constants. Each of the Hu and Castagliola13 charting constants was found by running
the bootstrap approach 100 times and averaging the results. On an average computer, this takes a lot of time. Hence, with-
out these tables, coming up with the charting constant can be frustrating for a practitioner.

Under the assumption that the process output is normally distributed, bootstrapping is not necessary to apply the
EPC. For example, Goedhart et al14-16 provided analytical results in the form of numerical solutions and approxima-
tions, for the Shewhart charts for the mean, and provided tables for the charting constants. But, for the EWMA chart,
such analytical approximations are difficult to obtain because the charting statistics are dependent. Consequently, this
paper presents a different method of adjusting the Phase II control limits according to the EPC, which guarantees, with
a specified high confidence, that the CARLIN of the EWMA chart exceeds a nominal ARL0. Our approach is based on the
simple idea of approximating the CARLIN distribution by an empirical distribution, which is obtained by generating
many Phase I subgroups, and using the Markov Chain to calculate the corresponding CARLIN values. It will be seen that
this approach requires less computational effort than the bootstrap approach, yet it produces results that are as accurate
as some known analytical results. Thus, tables and graphs of the required charting constants are provided to help prac-
titioners implement the EWMA chart with estimated parameters easily in practice. A program to implement our
method, written in R, is available from the authors on request.

The paper is organized as follows. Section 2 introduces some notation and terminology used, gives an overview of
the EWMA chart and the Markov Chain technique, and presents the estimators that are used to estimate the unknown
process parameters. Section 3 evaluates the traditional EWMA chart in terms of the EPC and provides rough guidelines
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on the number of Phase I subgroups required to achieve a certain high proportion of high CARLIN values relative to a rea-
sonable nominal value. Section 4 presents the new charting constants (adjusted control limits) so that the Phase II EWMA
chart has a guaranteed nominal IC performance according to the EPC. Section 5 gives a detailed evaluation of the IC and
OOC performance of the new constants (the EPC adjusted limits based Phase II EWMA chart) and compares it with the
performance of the traditional Phase II EWMA chart with unadjusted limits (limits calculated for Case K) according to
the EPC. Finally, a summary and some conclusions are given.
2 | EWMA CHART WITH ESTIMATED PARAMETERS

Let Xij, i = 1, 2, … ,m and j = 1, 2, … , n denote the IC Phase I data from a normal distribution with an unknown mean μ0
and an unknown standard deviation σ0. For a smoothing constant 0 < λ≤ 1, starting at sampling stage i=m+ 1,m+ 2,…,
the standardized plotting statistic for the Phase II EWMA chart with the estimated parameters is given by

Yi ¼ λWi þ 1 − λð ÞYi−1 (1)

where Wi ¼ Xi − bμ0bσ0= ffiffiffi
n

p , Xi is the ith Phase II sample mean, and bμ0 and bσ0 are the Phase I estimators of the unknown

parameters μ0 and σ0, respectively. It is also assumed that the Phase II data are normally distributed, and for generality,
let μ and σ denote the mean and the standard deviation, respectively, of this distribution. In this paper, we use the

estimators bμ0 ¼ 1
m

∑
m

i¼1
∑
n

j¼1
Xij, the grand mean (see Schoonhoven et al17), and bσ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

∑
m

i¼1
S2i

s
¼ Sp, the pooled standard

deviation estimator, where S2i denotes the variance of the i
th Phase I sample. Among the commonly used estimators for

σ0, the pooled standard deviation estimator provides the lowest values of the mean squared error (Mahmoud et al18). In
addition, as noted in Diko et al,19 the corresponding unbiased version bσ0 ¼ Sp=c4 m n − 1ð Þ þ 1ð Þ(see Montgomery,20

Schoonhoven et al21,22) is equivalent, because,m(n − 1)is typically quite large in our applications and hence the constant
c4(m(n − 1) + 1) is indistinguishable from 1.

We write the statistic Wi in its canonical form

Wi ¼ 1
Q

γTi þ δ −
Zffiffiffiffi
m

p
� �

(2)

where Ti ¼ Xi − μ
σ=

ffiffiffi
n

p , Q ¼ Sp
σ0
, Z ¼ bμ0 − μ0

σ0=
ffiffiffiffiffiffiffi
mn

p , γ ¼ σ
σ0
, and δ ¼ μ − μ0

σ0=
ffiffiffi
n

p . Note that the random variables Ti and Z are

independent standard normal variables that are mutually independent and are also independent of Q. Because

m n − 1ð ÞS2p=σ20eχ2m n−1ð Þ, Q is distributed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2m n−1ð Þ
m n − 1ð Þ

s
. For simplicity, we use the asymptotic (steady state) control limits

h ¼ h n; λ; Lð Þ ¼ ±L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2 − λð Þ

s
: (3)

where L is the charting constant to be found for a given λ value and some chart design/performance metric. The perfor-
mance metric is usually some property of the IC run‐length distribution, eg, ARLIN. For example, for a given value of λ
and a nominal ARLIN = ARL0, when parameters are known, the L values can be found in Crowder23 or in the R package
“spc.”Often, these L values for CaseK are used to construct the Phase II EWMAwhen estimated parameters are used in the
control limits. It is recognized in the literature that this is a problem in the sense of getting many more false alarms than
nominally expected, particularly when the amount of Phase I data is small to moderately large. We provide some solutions
for correcting this problem.

Performance of a control chart is often evaluated by the run length distribution and its associated characteristics, eg,
the mean (the expected value), the standard deviation, and percentiles. The conditional run‐length distribution is the
run‐length distribution that is calculated for given values of Q and Z for a given set of data obtained from a Phase I anal-
ysis. The expected value of this distribution, denoted CARL, is also a random variable with its own distribution. The
expected value of the distribution of CARL is the unconditional ARL, denoted ARL. The conditional run‐length
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distribution and the CARL of an EWMA chart may be calculated (approximated) using the Markov Chain method, see
Brook and Evans24 and Lucas and Saccucci,25 among others. Thus, applying the Markov Chain method, conditionally
on Q and Z, the CARL of the Phase II EWMA chart can be conveniently written as

CARL

¼ v′e I−Pð Þ−1ue
¼ CARL δ;Q;Z;m; n; λ; L; tð Þ;

(4)

where t (which is generally taken as an odd integer) represents the number of transient states in the state space of a

Markov Chain, v′e is the 1 × t row vector with one in the middle position (for an odd integer t, the middle position is

unique) and 0 elsewhere, ue is a t × 1 column vector of ones, I is the t × t identity matrix, P = [plk] is the t × t “essential”

(conditional) transition probability matrix and l; k ¼ −
t − 1
2

; …; 0; …;
t − 1
2

.

The transition probabilities of the essential conditional transition probability matrix,plk, are calculated, under
normality and conditional on Q and Z, as follows.

plk ¼ Φ Q
Sk þ w=2 − 1 − λð ÞSl

λ

� �
− δ þ Zffiffiffiffi

m
p

� �
− Φ Q

Sk − w=2 − 1 − λð ÞSl
λ

� �
− δ þ Zffiffiffiffi

m
p

� �
¼ plk δ;Q;Z;m:n; λ;L; tð Þ (5)

where Φ denotes the cumulative distribution function of a standard normal variable, w ¼ 2h
t
¼ w n; λ;L; tð Þ,

Sf ¼ −
w
2
þ 2

t − 1
2

þ f

� �
þ 1

� �
w
2
¼ Sf n; λ;L; tð Þ and f = l, k. More information on the derivation of result (5) can

be found in Saleh et al.9

From Equation 4, for fixed m, n, δ, λ, and L, it is clearly seen that the CARL depends on the random variables Q and
Z, and hence the CARL is a random variable. Saleh et al2 studied the effect of m and Phase I estimates on the distribu-
tion of CARLIN (the CARL when σ = 0). They found that unless the Phase I parameter estimates are “close” to the true
but unknown parameter values, the CARLIN values can vary widely and from the nominal ARL0. However, a practi-
tioner will almost never know where his/her estimates are in relation to the unknown process parameters. Thus, when
parameters are estimated, using the charting constants for Case K to design Phase II EWMA charts is a risky proposi-
tion, because it can result in very low CARLIN values which will almost surely call into question the process monitoring
regime. This risk can be somewhat reduced by increasing m. However, as will be seen in the next section, the value of m
that is required to reduce the probability of low CARLIN values can be very large. Hence, many control charts in the
recent literature with estimated parameters are now designed such that

P CARLIN > ARL0ð Þ ¼ 1 − p: (6)

It follows that the ARL0 is the 100pth percentile value of the distribution of CARLIN. This is the EPC approach that we
use to evaluate and design the EWMA chart in the following sections.
3 | PERFORMANCE ASSESSMENT OF A STANDARD PHASE II EWMA
CHART USING THE EPC

Recall that a standard Phase II EWMA chart uses the charting constants obtained in the known parameter case when
parameter estimates are plugged in to form the Phase II EWMA chart. Jones et al1 and Saleh et al2 studied the perfor-
mance of the standard Phase II EWMA chart. However, their performance evaluations and sample size recommenda-
tions were based on the ARLIN and SDCARLIN, respectively. Moreover, even though the SDCARLIN accounts for
some of the practitioner to practitioner variability, it does so in a different way compared with the EPC. Unlike the
SDCARLIN, the EPC approach does not only take into account the variability of the CARLIN distribution, it also con-
siders the shape and the skewness. Hence, in this paper, we use the EPC approach to study the same traditional Phase
II EWMA charts that were considered by Jones et al1 and Saleh et al.2 This allows us to compare and contrast our results
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with their results. Note also that Epprecht et al4 used the EPC and its associated CFAR distribution to assess the perfor-
mance of the Shewhart S and S2 charts. Here, we use the more natural CARLIN distribution.

Consider again the EPC given in Equation 6, which can be re‐written as

P CARLIN Q;Z;m; n; λ;L; tð Þ ≤ ARL0ð Þ ¼ p:

Thus, for a givenp ∈ (0, 1) and m, n, λ, L, t, we want to find the 100pth percentile, CARLIN,p, of the distribution of
CARLIN(Q,Z,m,n, λ,L, t). Once found, CARLIN,p is compared with ARL0, which is the theoretical value that must be
exceeded, in an application, with a high probability 1 − p. The comparison between the CARLIN,p and ARL0 will be

based on the percentage difference (PD), which we define as PD ¼ CARLIN ;p − ARL0

ARL0
× 100. The algorithm for the

evaluation of the traditional Phase II EWMA using the EPC is given in Appendix B.
Table 1 shows the CARLIN,p values of the standard Phase II EWMA charts for ARL0 = 100,200,370,500; n = 5 and

different combinations of λ, m, and p. From Table 1, it can be seen that when m is small, the PD values (shown in
the brackets in each cell) are very high in absolute values. This means, for example, for λ = 0.1, m = 30, p = 0.05
and ARL0 = 500, we have CARLIN,p = 50, which is 90% below (PD = −90%) the nominal ARL0 = 500. Thus, in this
case, we expect the CARLIN of the chart to be at least 50 with 95% probability (and conversely, the CARLIN of the
chart to be at most 50 with 5% probability). Ideally, we would like the chart to deliver at least a large CARLIN value
(say ARL0 = 500) with 95% certainty. The value CARLIN,p = 50 is too low, and the risk of getting a number that low
is very high. It can also be seen that when m increases, the CARLIN,p values increase to within 6% less than the
nominal ARL0 values. The convergence is faster for λ = 0.5 than for λ = 0.1. Furthermore, it can be seen that larger
values of p or/and λ are associated with larger CARLIN, p values, improving the results slightly. Thus, when param-
eters are estimated, small CARLIN values (ie, the CARLIN values that are less than the ARL0) occur more often than
desired, while high CARLIN values (the CARLIN values above ARL0). This is not acceptable. Table 1 also allows us to
make rough recommendations about the number of Phase I subgroups m required to achieve adequate Phase II EPC
performance. These recommendations are summarized in Table 2, and they are compared with the Jones et al1

recommendation (that were based on the ARLIN criteria) and Saleh et al2 recommendations (that were based on
SDCARLIN criteria) in Table 3.

Table 2 shows the number of subgroups m required to guarantee that the CARLIN exceeds CARLIN,p by a certain
specified high probability (1 − p). Mathematically, this is written as

P CARLIN > CARLIN ;p
� �

≥ 1 − p

P CARLIN > ARL0 1 − εð Þð Þ ≥ 1 − p
(7)

where ε ≥ 0% is a nominally specified PD value. Note that ε ≥ 0 because in general CARLIN,p < ARL0 (see Table 1). Note
also that if ε = 0%, then CARLIN,p = ARL0, and therefore Equation 7 reduces to Equation 6.

Looking at Table 2, for fixed ARL0, λ, and p, it can be seen that decreasing ε from 20% to 0% increases the
number of Phase I subgroups m required to achieve adequate IC EPC performance. It can also be seen that for fixed
ARL0, λ, and ε, decreasing p from 0.10 to 0.05 increases the value of m. Thus, decreasing ε or p or both improves the
IC chart performance, while increasing ε or p or both degrades the IC chart performance. This also shows the
flexibility of the EPC formulation (Equation 7), which can be used to improve the IC chart performance or to balance
it with the OOC chart performance by manipulating ε or p or both. Later, we will provide an example of how this
balance can be achieved. Table 3 compares our recommendations with the Jones et al1 and Saleh et al2

recommendations.
From Table 3, it can be seen that for p = 0.05,0.10; ε = 0%, n = 5, and all λ, it will take more than 10 000 Phase I

subgroups to guarantee (with a high probability) that the nominal ARL0 value will be exceeded. Thus, based on the
EPC, it is seen that significantly more Phase I data are required than previously recommended by both Jones et al1

and Saleh et al.2 Furthermore, for the EPC approach, it can be seen that when CARLIN,p is ε = 10% or ε = 20% below
the ARL0; a large number of subgroups is still required to guarantee with high certainty that CARLIN > CARLIN,p.
Moreover, small λ values require more data than larger λ values. This agrees with the findings of Jones et al,1 but it
is in contrast with the findings of Saleh et al.2



TABLE 2 Minimum m required for CARLIN,p to be ε = 0 %, 10 %, 20% below the nominally ARL0 = 100,200,370,500 for n = 5;λ = 0.1, 0.5

and p = 0.05, 0.10

ARL0 = 100 ARL0 = 200 ARL0 = 370 ARL0 = 500

ε P = 0.05 P = 0.10 P = 0.05 P = 0.10 P = 0.05 P = 0.10 P = 0.05 P = 0.10

λ = 0.1 0% >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000
10% 10 000 6000 6000 4000 6000 4000 6000 4000
20% 900 600 1000 900 1500 900 1500 1000

λ = 0.5 0% >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000 >10 000
10% 2000 1500 4000 2000 4000 2000 4000 2000
20% 500 400 600 400 900 500 900 600

TABLE 1 The 5th and the 10th (P = 0.05, 0.10) percentiles of the CARLIN distribution as a function of m for λ = 0.1, 0.5, n = 5 and

ARL0 = 100,200,370,500

ARL0 = 100 (L = 2.148) ARL0 = 200 (L = 2.454) ARL0 = 370 (L = 2.702) ARL0 = 500 (L = 2.815)

λ m P = 0.05 P = 0.10 P = 0.05 P = 0.10 P = 0.05 P = 0.10 P = 0.05 P = 0.10

0.1 30 24 (−76%) 30 (−70%) 34 (−83%) 45 (−78%) 44 (−88%) 61 (−84%) 50 (−90%) 71 (−86%)

50 32 (−68%) 39 (−61%) 48 (−76%) 63 (−69%) 69 (−81%) 92 (−75%) 84 (−83%) 112 (−78%)

100 47 (−53%) 55 (−45%) 76 (−62%) 92 (−54%) 115 (−69%) 141 (−62%) 141 (−72%) 179 (−64%)

400 72 (−28%) 77 (−23%) 135 (−33) 146 (−27%) 232 (−37%) 257 (−31%) 298 (−40%) 336 (−33%)

500 75 (−25%) 79 (−21%) 143 (−29%) 152 (−24%) 247 (−33%) 269 (−27%) 324 (−35%) 354 (−29%)

600 78 (−22%) 81 (−19%) 147 (−27%) 156 (−22%) 257 (−31%) 278 (−25%) 341 (−32%) 370 (−26%)

900 81 (−19%) 83 (−17%) 157 (−22%) 164 (−18%) 283 (−24%) 298 (−20%) 376 (−25%) 396 (−21%)

1000 81 (−19%) 84 (−16%) 160 (−20%) 166 (−17%) 288 (−22%) 299 (−19%) 381 (−24%) 404 (−19%)

1500 84 (−16%) 86 (−14%) 168 (−16%) 172 (−14%) 303 (−18%) 314 (−15%) 406 (−19%) 422 (−16%)

2000 86 (−14%) 87 (−13%) 171 (−15%) 175 (−13%) 313 (−15%) 322 (−13%) 421 (−16%) 434 (−13%)

4000 88 (−12%) 89 (−11%) 178 (−11%) 181 (−10%) 329 (−11%) 335 (−9%) 444 (−11%) 452 (−10%)

6000 89 (−11%) 90 (−10%) 181 (−10%) 183 (−9%) 336 (−9) 341 (−8%) 454 (−9%) 460 (−8%)

10000 90 (−10%) 91 (−9%) 183 (−9%) 185 (−8%) 342 (−8) 345 (−7%) 462 (−8%) 467 (−7%)

ARL0 = 100 (L = 2.534) ARL0 = 200 (L = 2.777) ARL0 = 370 (L = 2.978) ARL0 = 500 (L = 3.071)

λ m P = 0.05 P = 0.10 P = 0.05 P = 0.10 P = 0.05 P = 0.10 P = 0.05 P = 0.10

0.5 30 34 (−66%) 41 (−59%) 58 (−71%) 72 (−64%) 87 (−77%) 111 (−70%) 111 (−78%) 143 (−71%)

50 46 (−54%) 52 (−48%) 80 (−60%) 94 (−53%) 126 (−66%) 154 (−58%) 161 (−68%) 198 (−60%)

100 59 (−41%) 65 (−35%) 106 (−47%) 120 (−40%) 182 (−51%) 206 (−44%) 239 (−52%) 272 (−46%)

400 79 (−21%) 82 (−18%) 152 (−24%) 160 (−20%) 267 (−28%) 284 (−23%) 355 (−29%) 379 (−24%)

500 81 (−19%) 84 (−16%) 155 (−23%) 163 (−19%) 278 (−25%) 295 (−20%) 372 (26%) 394 (−21%)

600 82 (−18%) 85 (−15%) 159 (−21%) 167 (−17%) 290 (−22%) 303 (−18%) 385 (−23%) 403 (−19%)

900 85 (−15%) 88 (−12%) 167 (−17%) 172 (−14%) 302 (−18%) 314 (−15%) 400 (−20%) 419 (−16%)

1000 86 (−14%) 88 (−12%) 168 (−16%) 174 (−13%) 304 (−18%) 316 (−15%) 405 (−19%) 424 (−15%)

1500 88 (−12%) 90 (−10%) 173 (−14%) 178 (−11%) 316 (−15%) 327 (−12%) 423 (−15%) 437 (−13%)

2000 90 (−10%) 91 (−9%) 177 (−12%) 181 (−10%) 325 (−12%) 333 (−10%) 434 (−13%) 447 (−11%)

4000 92 (−8%) 94 (−6%) 183 (−9%) 186 (−7%) 336 (−9%) 343 (−7%) 452 (−10%) 460 (−8%)

6000 94 (−6%) 95 (−5%) 186 (−7%) 188 (−6%) 342 (−8%) 348 (−6%) 460 (−8%) 467 (−7%)

10000 95 (−5%) 95 (−5%) 189 (−6%) 191 (−5%) 348 (−6%) 352 (−5%) 468 (−6%) 475 (−5%)

DIKO ET AL. 1149



TABLE 3 Recommended minimum number of phase I subgroups when n = 5 and ARL0 = 200

λ

0.1 0.2 0.5 1

Jones et al1 (marginal ARL criteria) 400 300 200 100

Saleh et al2 SDCARLIN criteria 600 700 900 1000

This paper EPC criteria with p = 0.10 and ε = 20% 900 600 400 370

This paper EPC criteria with p = 0.05 and ε = 20% 1000 700 600 560

This paper EPC criteria with p = 0.10 and ε = 10% 4000 3000 2000 1500

This paper EPC criteria with p = 0.05 and ε = 10% 6000 5000 4000 2500

This paper EPC criteria with p = 0.05,0.10 and ε = 0% >10 000 >10 000 >10 000 >10 000
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4 | ADJUSTMENT OF THE STANDARD PHASE II EWMA CHART LIMITS
FOR GUARANTEED CONDITIONAL PERFORMANCE

We have seen that, to achieve adequate EPC performance, a very high number of Phase I subgroups is required when
using the standard Phase II EWMA chart limits. In practice, it may be difficult and expensive to come up with these
high Phase I subgroup numbers. Thus, for a given amount of Phase I data (number of Phase I subgroups, with a fixed
sample size), the control limits need to be adjusted.

Consider again the EPC: P(CARLIN(Q,Z,m,n, λ,L, t) > ARL0(1 − ε)) ≥ 1 − p, which is equivalent to stating that the
cdf of CARLIN(Q,Z,m,n, λ,L, t) at ARL0 must be less than or equal to p. Then, given ε, p, ARL0,m, n, λ, and t, we want to
solve this equation for L. Because a closed‐form analytical expression for the cdf of CARLIN is not available, a formula to
TABLE 4 L values that guarantee that P(CARLIN > ARL0) = 0.90 for the EWMA X chart for n = 5; m = 30,50,100,300,1000;λ = 0.1, 0.2, 0.5,

1; ε = 0% and ARL0 = 100,200,370,500

p = 0.10

ARL0 m λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

100 30 3.09 3.01 2.92 2.88
50 2.79 2.79 2.79 2.79
100 2.50 2.62 2.71 2.72
300 2.32 2.48 2.62 2.66
1000 2.23 2.42 2.58 2.62
Known parameter 2.148 2.360 2.534 2.576

200 30 3.49 3.34 3.20 3.13
50 3.16 3.12 3.08 3.03
100 2.86 2.92 2.96 2.96
300 2.63 2.77 2.87 2.89
1000 2.53 2.70 2.83 2.85
Known parameter 2.454 2.636 2.777 2.807

370 30 3.78 3.59 3.43 3.34
50 3.46 3.38 3.30 3.24
100 3.16 3.16 3.16 3.16
300 2.89 2.99 3.09 3.09
1000 2.78 2.92 3.04 3.05
Known parameter 2.702 2.859 2.978 3.000

500 30 3.92 3.70 3.54 3.44
50 3.59 3.49 3.40 3.34
100 3.29 3.28 3.26 3.26
300 3.02 3.10 3.18 3.18
1000 2.90 3.03 3.13 3.14
Known parameter 2.815 2.962 3.071 3.090



DIKO ET AL. 1151
calculate the CARLINis. Our approach is to generate the empirical distribution of CARLIN using different values of L in
the interval [ L, ∞), starting from the Case K L value towards infinity. For each empirical distribution, the CARLIN,p
value is calculated. The first value of L for which CARLIN,p > ARL0(1 − ε) is chosen to be the solution. A step‐by‐step
algorithm for finding L is given in Appendix C. Like the other algorithms we presented, this algorithm requires an
approximation of the CARLIN distribution, via the empirical distribution. In our view, this is what gives it an edge over
the bootstrap algorithm used in Saleh et al2 and others, which requires more computational effort.

Table 4 gives the L values that guarantee, with (1 − p)% probability, that the CARLIN will exceed a specified lower
bound ARL0. Looking at Table 4 for ARL0 = 370, λ = 1 and m = 50, 100, 300, 1000, it can be seen that our constants
L = 3.24, 3.16, 3.09, 3.05 are exactly equal to those in Goedhart et al.14,16 The constants in Goedhart et al14,16 were
obtained analytically and are regarded as an improvement to the computationally intensive bootstrap approach. This
FIGURE 1 Graphs of the unadjusted (case K) and adjusted L values for 0.02 ≤ λ ≤ 1; ARL0 = 100 and n = 5. The adjusted L values were

generated to guarantee P (CARLIN > ARL0) = 0.90 for m = 30,50,100,300,1000

FIGURE 2 Graphs of the unadjusted (case K) and adjusted L values for 0.02 ≤ λ ≤ 1; ARL0 = 200 and n = 5. The adjusted L values were

generated to guarantee P (CARLIN > ARL0) = 0.90 for m = 30,50,100,300,1000
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validates our method. In addition to Table 4 for ARL0 = 100,200,370,500, we have generated four figures in which the
practitioner may find his/her constant L given its own m and λ by means of interpolation. These are shown below.

Looking at Figures 1–4, for any given ARL0, m and λ values, it can be seen that the adjusted L values are all greater
than the corresponding Case K L values. It can also be seen that, for a given ARL0 and λ, the adjusted L values decrease
as m increases and converge to the known parameter (unadjusted/standard) L value. Consequently, Phase II EWMA
chart that are designed using the new L values will have wider control limits, and this will lead to an improved IC per-
formance than the charts whose design uses the Case K L values. This improved IC performance, that is widening the
limits, can lead to some deterioration of the OOC chart performance. This has been noted in the literature (see, eg,
Goedhart et al15) as the price to pay for satisfactory nominal IC chart performance with a high probability. However,
it is possible with our approach to relax the IC behavior of the EWMA chart. This can be done by increasing ε or p or
FIGURE 3 Graphs of the unadjusted (case K) and adjusted L values for 0.02 ≤ λ ≤ 1; ARL0 = 370 and n = 5. The adjusted L values were

generated to guarantee P (CARLIN > ARL0) = 0.90 for m = 30,50,100,300,1000

FIGURE 4 Graphs of the unadjusted (case K) and adjusted L values for 0.02 ≤ λ ≤ 1; ARL0 = 500 and n = 5. The adjusted L values were

generated to guarantee P (CARLIN > ARL0) = 0.90 for m = 30,50,100,300,1000



TABLE 5 The CARLIN,p values for the IC and OOC performance of the EWMA Xchart with the adjusted (ARL0 = 200, p = 10%)and

unadjusted (ARL0 = 200) limits for n = 5; m = 50,100; λ = 0, 0.1, 0.2, 0.5, 1; δ = 0, 0.25, 0.5, 1, 1.5 and some percentiles

m = 50

Perc λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

δ = 0

0.05 48 139 60 147 79 166 89 169

0.10 62 202 75 198 92 205 104 205

0.25 92 374 105 322 121 283 134 269

0.50 133 696 146 518 166 411 178 369

0.75 177 1138 197 786 221 581 246 520

0.90 220 1694 252 1140 295 801 327 726

0.95 251 2142 293 1453 346 981 392 889

δ = 0.25

0.05 27 50 29 57 43 82 70 122

0.10 31 63 35 73 54 103 82 144

0.25 43 102 50 115 77 161 108 199

0.50 66 198 81 212 112 254 149 285

0.75 108 452 127 401 164 399 207 415

0.90 163 916 184 704 226 596 278 586

0.95 196 1295 222 928 267 776 333 717

δ = 0.5

0.05 16 23 15 24 21 35 42 69

0.10 17 27 17 27 24 42 48 82

0.25 21 34 22 37 33 58 64 115

0.50 26 48 29 55 47 90 89 167

0.75 36 76 41 89 69 143 126 245

0.90 51 125 61 148 102 228 174 341

0.95 65 182 79 214 125 302 209 425

δ = 1

0.05 8 11 7 9 8 10 15 22

0.10 9 12 8 10 8 12 17 26

0.25 10 13 9 11 10 14 21 34

0.50 11 15 10 14 12 19 28 46

0.75 12 18 12 17 16 25 38 66

0.90 14 21 14 20 20 33 51 90

0.95 15 23 15 23 23 40 62 109

δ = 1.5

0.05 6 7 5 6 4 5 6 9

0.10 6 8 5 6 4 6 7 10

0.25 6 8 5 7 5 6 8 12

0.50 7 9 6 7 6 7 10 16

0.75 7 10 6 8 7 9 13 21

(Continues)
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TABLE 5 (Continued)

m = 50

Perc λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

0.90 8 11 7 9 8 10 17 28

0.95 8 11 7 10 8 12 19 33

m = 100

Perc λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

δ = 0

0.05 75 152 90 173 107 171 117 177

0.10 92 200 106 208 121 196 131 199

0.25 123 290 131 267 145 242 157 243

0.50 155 399 163 344 178 307 192 306

0.75 187 523 202 443 219 390 237 385

0.90 221 650 239 547 268 486 287 472

0.95 240 734 264 619 303 548 326 547

δ = 0.25

0.05 33 50 38 57 58 86 86 133

0.10 38 58 43 68 66 100 98 152

0.25 49 79 56 94 86 133 122 189

0.50 67 119 79 138 113 182 151 242

0.75 95 188 111 213 148 248 193 315

0.90 134 302 149 304 189 328 239 398

0.95 162 387 174 374 217 388 267 453

δ = 0.5

0.05 18 23 18 24 26 36 51 74

0.10 19 25 20 26 30 41 57 85

0.25 22 30 24 32 37 53 71 106

0.50 26 37 30 42 47 70 90 137

0.75 32 48 38 56 61 96 115 178

0.90 40 63 49 74 78 127 144 225

0.95 46 76 58 90 93 151 165 262

δ = 1

0.05 9 11 8 9 7 11 17 23

0.10 9 11 8 10 9 11 19 26

0.25 10 12 9 11 11 13 23 32

0.50 11 13 10 12 12 16 28 40

0.75 12 15 11 13 15 19 35 50

0.90 13 16 12 15 17 23 43 62

0.95 14 17 13 176 19 25 47 70

δ = 1.5

0.05 6 7 5 6 5 5 7 9

(Continues)
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TABLE 5 (Continued)

m = 100

Perc λ = 0.1 λ = 0.2 λ = 0.5 λ = 1

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

0.10 6 7 5 6 5 5 8 10

0.25 6 8 5 6 5 6 9 12

0.50 7 8 6 7 6 7 10 14

0.75 7 9 6 7 6 7 12 17

0.90 8 9 7 8 7 8 14 20

0.95 8 9 7 8 7 9 16 22
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both in Equation 7. As will be seen, in the next section, the result will be less wider adjusted limits, which will improve
the OOC performance.
5 | IC AND OOC PERFORMANCE ANALYSIS AND A COMPARISON OF THE
ADJUSTED AND THE UNADJUSTED LIMITS

Using the bootstrap approach, Saleh et al2 came up with an EWMA chart such that P(CARLIN > 200) = 0.90 for λ = 0.1,
m = 50and n = 5. Following this, they evaluated the IC and OOC conditional performance of this chart. However, their
performance evaluations were done only for this chart and were limited only to δ = 0 and δ = 1. In this section, we
make a much more detailed evaluation and comparison between the performance of the EWMA charts with the pro-
posed adjusted limits and that of the standard (unadjusted) limits chart, for various shifts δ. We also compare our results
with the performance results of the bootstrap based (adjusted limits) EWMA chart in Saleh et al.2 Furthermore, we use
the flexibility of the EPC formulation in Equation 7 to adjust the trade‐off between the IC and OOC performance of the
EWMA chart. By trade‐off, we mean, for example, sacrificing a little IC performance for a better OOC performance.

Table 5 shows the CARLIN,p values for various combinations of p, λ, δ, and m for both adjusted and unadjusted limits.
Again, for given λ and δ = 0, the adjusted limits were obtained such that P(CARLIN > 200) = 1 − p = 0.90 (so that the 10th

percentiles of the CARLIN distribution should be close to 200) while the unadjusted limits were obtained from the R pack-
age “spc,” such that ARL0 = 200, in the known parameters case. Looking at Table 5, for δ = 0and all λ, it can be seen that
the IC performance of the chart with the adjusted limits is as specified. For example, for m = 50, p = 10% and λ = 0.1, 0.2,
0.5, 1, it can be seen (see the bolded row at perc = 10%) that CARLIN,p = 202,198,205,205; respectively, and form = 100, we
have CARLIN,p = 200,208,196,199. All of these CARLIN,p are very close to the nominal ARL0 = 200. Besides, for δ = 0and all
λ, p, m values, the values for the adjusted limits are always higher than the corresponding unadjusted limit. So, for all
percentiles (perc), the adjusted limits charts always guarantee, with high probability (close to the nominal), larger CARLIN
values compared with the unadjusted limits charts. Thus, the good IC performance of the adjusted limits charts is not only
limited to p = 10%, but extends over the entire range of perc's.

However, as mentioned before, because the adjusted limits are wider, they can be insensitive to true process shifts com-
pared with the unadjusted limits. We explore this for the cases when δ= 0.25,0.5,1, 1.5. Looking at Table 5 form= 50, small
shifts δ = 0.25, 0.5and all λ values, it can be seen that the medians (see the bolded rows at perc = 10%) of the CARL distri-
butions for the unadjusted and the adjusted limits charts are radically different. The largest difference occurs at λ= 0.1, while
the smallest difference occurs at λ = 1. Decreasing perc and/or increasingm reduces the differences slightly, but the pattern
remains the same. Thus, for a small shift δ ≤ 0.50, the OOC chart performance of the adjusted limits EWMA chart is not as
good as that of the unadjusted limits charts, particularly when λ = 0.1. But of course the point is that the IC performance of
the unadjusted limits based chart is a much bigger problem. However, for larger shifts, such as δ = 1 or δ = 2 and for all
perc and λ values, the CARLIN,p values for the unadjusted and the adjusted limit charts are quite close. This is even more
so when m = 100. Thus, for moderate to large values of δ, the OOC chart performance of the adjusted limits EWMA
chart is comparable to that of the EWMA chart with the unadjusted limits or the limits for the known parameter case.

Note that, in the literature (eg, Saleh et al2), authors who use the bootstrap approach often compare the OOC behav-
ior of the unadjusted and the adjusted limits charts solely on the basis of a shift of size δ = 1. Figure 5 shows the



FIGURE 5 Boxplots of the CARL distribution when δ = 1,λ = 0.1,p = 10%,ARL0 = 200,m = 50 and n = 5
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boxplots for the OOC CARL distributions of the EWMA chart with the adjusted and the unadjusted limits for λ = 0.1,
δ = 1, m = 50 and n = 5. Based on Figure 5, it has always been concluded that the OOC performance of the bootstrap
adjusted limits is not radically different from that of the unadjusted limits. However, we have shown through the CAR-
LIN,p values, in Table 5, that this only occurs when δ is moderate to large. Therefore, widening the control limits by the
EPC criterion makes them a little insensitive to small process shifts but guarantees a nominal performance with high
probability. This may be the trade‐off one has to accept. However, it is possible to adjust this trade‐off to get a better
OOC performance. This can be done by sacrificing a bit of IC performance. For fixed p, the IC performance can be
sacrificed by increasing ε in Equation 7, while for fixed ε, it can be reduced by increasing p in Equation 7. To illustrate
the former, Figures 6 and 7 show the boxplots for the IC and OOC CARL distributions of the EWMA chart, respectively,
for λ = 0.1; ARL0 = 200; ε = 0 % , 35 % , 69 % ; p = 0.10; m = 50 and n = 5.
FIGURE 6 Boxplots of the CARL distribution when δ = 0,λ = 0.1,p = 10%,ARL0 = 200,m = 50 and n = 5



FIGURE 7 Boxplots of the CARL distribution when δ = 0.25,λ = 0.1,p = 10%,ARL0 = 200,m = 50 and n = 5
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From Figure 6, it can be seen that increasing ε from 0% to 35% leads to a slight loss of the IC performance. For exam-
ple, when ε = 35%, the proportion of CARLIN values that are less than 200 is 20%. But, this is still way better than the
85% that occurs when the unadjusted limits (ε = 69%) are used. From Figure 7, it can also be seen that increasing ε from
0% to 35% leads to an improved OOC performance in the sense that the median for the OOC CARLIN distribution of
ε = 35% is closer to the median (the dotted vertical line) for the OOC CARLIN distribution of ε = 69%. Thus, by sacrificing
a bit of the IC performance, it is possible to improve the EWMA charts ability to detect small shifts.
6 | SUMMARY AND CONCLUSIONS

We study the impact of practitioner to practitioner variability on the performance of the Phase II EWMA chart. As in
Epprecht et al,4 we use the EPC criterion to evaluate the performance of a Phase II EWMA chart with limits for the
known parameter case and give recommendations about the required number of Phase I subgroups to achieve nominal
performance. Our results show that in order to attain or exceed a specified lower bound of CARLIN(given by ARL0) with
a specified high probability, more Phase I data are required than previously recommended by Saleh et al2 and Jones
et al1 Moreover, consistently with Jones et al1 but contrary to Saleh et al,2 our results also show that smaller values
of λ may require a larger number of Phase I subgroups, that is, more Phase I data.

Because it is expensive and sometimes impractical to get such large amount of Phase I data to estimate the process
parameters and construct Phase II charts that guarantee a high probability of high CARLIN's under the EPC, the control
limits are adjusted as a function of the available Phase I data. In this regard, where analytical methods could not be
conveniently used, eg, for the EWMA chart or where normality cannot be assumed, the bootstrap approach has been
an attractive choice. However, many SPC practitioners and researchers have felt that the bootstrap approach may be
somewhat complex and have looked for an alternative. In this paper, we presented an alternative method that can be
used instead of the bootstrap approach. Our method produces the same results as the bootstrap approach, but it is faster.
Based on the new method, tables and the graphs of the adjusted charting constants are provided to help practitioners
implement the Phase II EWMA chart with estimated parameters more easily in practice. The new charting constants
are larger than the traditional ones commonly used for Case K. Thus, the EWMA charts constructed using these new
constants have wider limits, particularly for small λ and/or m.

Adjusting the limits of the EWMA chart, using our new constants, guarantees with high probability that the CARLIN
performance will be as nominally specified. However, there is some concern about the deterioration in the OOC CARL
performance relative to using the unadjusted limits which are wider. This is of course true for all types of control charts
with estimated parameters and has been observed, for example, for the Shewhart charts (see Goedhart et al15). The
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extent of the deterioration depends on the size of the shift δand m. For moderate to large shifts (say δ = 1 and more), the
difference in the OOC CARL performance between the adjusted and unadjusted limits is negligible. However, for small
shifts (say δ = 0.25, 0.50) and small m, the difference is not negligible. Thus, adjusting the control limits can make the
chart somewhat insensitive to detecting small shifts. The insensitivity to small shifts may be improved by sacrificing
some IC chart performance as illustrated in Figures 6 and 7. Nonetheless, it is important to keep in mind that the IC
chart performance is perhaps the most important to have higher confidence in, so sacrificing some OOC performance
may be the price one has to pay when a given amount of Phase I data are used to estimate the parameters to construct
a control chart.
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APPENDIX A

SIMULATION OF THE EMPIRICAL DISTRIBUTION OF CARLIN

Step 1: Specify λ, L, m, and n
Step 2: Simulate an observation Z from the standard normal distribution
Step 3: Simulate an observation Y from the chi‐square distribution with m(n − 1) degrees of freedom and calculate

Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y=m n − 1ð Þp

Step 4: Calculate plk for l, k = − 100, … , 0, . … , 100, using Equation 4 and construct the matrix P
Step 5: Calculate CARLIN using Equation 5
Step 6: Repeat steps (1) to (5) many times (eg, 5000 times).

Order the 5000 CARLIN values in ascending order. This ordered set of values and their associated cumulative frequency
(cumulative probability) constitute an empirical distribution.

Note that, for reasons of calculation speed and accuracy, we used t = 201 states, as recommended in Saleh et al.2
APPENDIX B

THE ALGORITHM FOR EVALUATING THE EPC PERFORMANCE OF A STANDARD PHASE II EWMA X
CHART

Step 1: Fix m, n, λ, L, p, t, and ARL0
Step 2: Generate the empirical distribution of CARLIN (See Appendix A)

https://doi.org/10.1002/qre.2450
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Step 3: Calculate the 100pth percentile CARLIN, p of the empirical CARLIN distribution.

Step 4: Calculate ¼ CARLIN ;p − ARL0

ARL0
× 100, the percentage difference between the CARLIN,p and the ARL0.

Interpretation of PD: A negative PD value means that CARLIN, p < ARL0 by PD percentage points. A positive PD value
means that CARLIN, p > ARL0 by PD percentage points.
APPENDIX C

A STEP‐BY‐STEP ALGORITHM FOR FINDING L USING THE EPC APPROACH

Step 1: Fix ε, p, ARL0, m, n, λ, t, and a value of L in the search interval L ∈ [Case K,∞)
Step 2: Generate the empirical distribution of CARLIN(See Appendix A)
Step 3: Calculate the pth percentile CARLIN,p from the empirical distribution
Step 4: If CARLIN,p > ARL0(1 − ε) stop and use the current value of L otherwise increment L and return to step 2.

To find L very quickly, for a given set of m value, start with the largest m.


