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A B S T R A C T

In recent literature on control charts, the exceedance probability criterion has been introduced to provide a
minimum in-control performance with a specified probability. In this paper we evaluate the two-sided Phase II
CUSUM charts and its in-control conditional average run length (CARLIN) distribution with respect to the ex-
ceedance probability criterion. Traditionally, the CARLIN distribution and its parameters has been calculated by
Markov Chains and simulations. We present in this paper a generalization of the Siegmund formula to calculate
the CARLIN distribution and its parameters. This closed form formula is easy and faster to apply compared to
Markov Chains. Consequently, we use it to make sample size recommendations and to adjust the charting
constants via the exceedance probability criterion. The adjustments are done without bootstrapping. Results
show that, in order to prevent low CARLIN values, more Phase I data are required than has been recommended in
the literature. Tables of the adjusted charting constants are provided to facilitate chart implementation. The
adjusted constants significantly improve the in-control performance, at the marginal cost of a lower out-of-
control performance. Balancing the trade-off between the in-control and out-of-control performance is illustrated
with real data and tables of charting constants.

1. Introduction

Since the in-control conditional average runlength (CARLIN) de-
pends on the Phase I parameter estimates, it is a random variable with
its own probability distribution. It has been shown (cf. Chakraborti,
2006; Saleh, Zwetsloot, Mahmoud, & Woodall, 2016) that these dis-
tributions have large variability and therefore the values of the CARLIN
can be quite different from the nominally specified average run length
(ARL0). In this context, the expected value of the CARLIN has been used
to evaluate and design Phase II control charts. This approach, the so-
called unconditional perspective, has received a lot of attention in the
literature. See, for example, Abbasi, Riaz, and Miller (2012),
Chakraborti (2000), Diko, Chakraborti, and Graham (2016), Diko,
Goedhart, Chakraborti, Does, and Epprecht (2017), Goedhart,
Schoonhoven, and Does (2016), Jardim, Chakraborti, and Epprecht
(2018), and Sanusi, Abujiya, Riaz, and Abbas (2017). However, the
unconditional perspective does not show individual chart performance,
which is known to vary from practitioner to practitioner.

Accordingly, another approach, the so-called conditional perspective,
has been suggested. Under this perspective, a number of criteria has been
used to answer different problems. To study the performance of the one-

sided and two-sided CUSUM location charts, Jones, Champ, and Rigdon
(2004) used the mean, the standard deviation and the 10th, 50th, and 90th
percentiles of the conditional run length distribution. Jeske (2016) pre-
sented a modified Siegmund formula (Siegmund, 1985) for approximating
the CARLIN of the upper one-sided CUSUM chart to derive Phase I sample
size requirements to ensure probabilistic control of the relative error of the
CARLIN. Saleh et al. (2016) used the standard deviation of the CARLIN to
quantify the amount of variation in the in-control CUSUM chart perfor-
mance corresponding to different amounts of Phase I data. In recent lit-
erature on control charts (cf. Diko, Chakraborti, & Does, 2019; Epprecht,
Loureiro, & Chakraborti, 2015), Phase I sample size requirements have
been derived on the basis of the exceedance probability criterion (Albers &
Kallenberg, 2004). In this paper, we use the exceedance probability cri-
terion to derive the number of Phase I subgroups required to design a two-
sided CUSUM control chart for the mean. To calculate the values of the
CARLIN distribution, we extend the Jeske (2016) modified Siegmund for-
mula from the one-sided CUSUM chart to the two-sided case. This is
compared with the Markov Chain method, which is a popular method to
calculate the CARLIN values. It will be shown that the extended modified
Siegmund formula is accurate and easy to use. Our Phase I subgroup re-
quirements turn out to be larger than those of Jeske (2016), Jones et al.
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(2004) and Saleh et al. (2016). However, in practice, the available Phase I
data can be limited. To compensate for limited Phase I data, we adjust the
control limits according to the exceedance probability criterion.

This paper is structured as follows. In Section 2 we give an overview
of the two-sided Phase II CUSUM control chart for monitoring the mean
of a normal process based on some popular estimators for the unknown
process mean and variance. In Section 3, we derive the modified
Siegmund formula to calculate the CARLIN of the two-sided Phase II
CUSUM control chart and compare it with the well-known Markov
Chain method. In Section 4, we introduce the exceedance probability
criterion to obtain the CARLIN prediction bounds. In Section 5, we find
the minimum number of Phase I subgroups required to design a two-
sided Phase II CUSUM control chart. Results are compared with the
available results in the literature. In Section 6, the charting constants
are adjusted without using the bootstrap method (cf. Gandy & Kvaloy,
2013; Jones & Steiner, 2012). Tables of the adjusted constants are
given. A comparison between our method and the bootstrap method is
made. In Section 7, the application of the adjusted and unadjusted
control charts is illustrated using real life data from Montgomery
(2013). The adjusted and unadjusted limits charts are compared in
terms of their in-control and out-of-control performance. Possible trade-
offs to balance the in-control and out-of-control performance of the
adjusted limits charts are suggested. Finally, in Section 8, a summary
and conclusions are offered.

2. Two-sided CUSUM charts with estimated parameters

Let =X i m, 1, 2, ,ij and =j n1, 2, , , denote the in-control
Phase I data from a normal distribution with an unknown mean µ0 and
unknown standard deviation 0. To estimate µ0, we use the estimator

= = =µ X mni
m

j
n

ij0 1 1 . To estimate 0, for n > 1, we use the pooled
standard deviation estimator

= + =
+ =
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where c4 is the unbiasing constant for the estimator Sp assuming the
normal distribution (Montgomery, 2013) and Si is the standard devia-
tion of the ith Phase I sample. For >n 1, there are several other esti-
mators of 0 that can be used. Popular among these are the mean range
and the mean standard deviation estimators. However, the results we
obtained using these estimators marginally differ from the results we
obtained using 01. Hence, we only focus on 01. Furthermore, when the
number of Phase I subgroups m is moderately large, the constant c4
becomes indistinguishable from 1 (cf. Diko et al., 2017; Mahmoud,
Henderson, Epprecht, & Woodall, 2010), hence, we may use = Sp01 .
For =n 1, we use the average moving ranges as the estimator for 0
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where d (2)2 is an unbiasing constant (cf. Montgomery, 2013).
Assuming that the Phase II data are normally distributed with mean

µ and standard deviation , for i=m+1, m+2,⋯ the standardized
charting statistics of the two-sided CUSUM control chart for the mean
are given by
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0
is the i th sample mean, Y is a chi-

square variable with bg degrees of freedom. We use the subscript

=g 1, 2 to distinguish between the two unbiased estimators of 0 that
we employ in this paper. The constants bgand ag ( =g 1, 2) are functions
of m and n. If =g 1 then =b m n( 1)1 and =a 11 . If =g 2 then we
calculate b2 and a2using the Patnaik (1950) approximation as described
in Saleh et al. (2016). The calculation of b2 and a2 can be found in the R
codes in Appendix A. We assume that the starting values ( +Cm and Cm)
are both equal to zero, which means that the process is initially in-
control. Note that, selecting >+C 0m and/or <C 0m gives the chart a fast
initial response or “head start”, since it increases the charts ability to
detect a process that is initially out-of-control (cf. Lucas & Crosier,
1982). We also assume that the reference values ( +k and k ) are both
equal to k. The reference value k is usually chosen to be half the shift ( )
that is considered important enough to be detected.

The standardized two-sided Phase II CUSUM control chart gives an
out-of-control signal when

+ +C h C hori i (4)

where = =+h h h is the charting limit to be found. For the parameters
known case, the h values can be found by specifying ARL0 and k in the
function xcusum.crit(k,ARL0,sided = “two”) of the R package “spc”. As
an example, for some combinations of ARL0 and k, the h values are
given in Table 1.

Since the h values in Table 1 are for the parameters known case,
they do not account for the effects of parameter estimation. Unless the
number of Phase I subgroups m is very large, these charting constants
should not be used to construct Phase II control charts. However, most
practitioners continue to use them regardless of the value of m. This can
be attributed to the fact that adjusting these charting constants for the
effects of parameter estimation is computer intensive. Moreover, no
tables, graphs or software packages for the adjusted h values are con-
veniently available to help practitioners to correctly implement their
Phase II CUSUM control charts with estimated parameters. Hence, in
this paper, the tables of adjusted constants are presented, so that the
two-sided CUSUM chart for the mean with estimated parameters can be
implemented more easily in practice.

3. The modified Siegmund formula for the CARLIN of the two-sided
Phase II CUSUM control chart

Traditionally, the CARLIN values of CUSUM charts have been cal-
culated by simulations and Markov Chains (cf. Brook & Evans, 1972;
Woodall, 1984). Recently, Jeske (2016) presented a modified Siegmund
formula for approximating the CARLIN of the upper one-sided CUSUM
chart. We extend this formula to the two-sided CUSUM chart and
compare the results with the results of the well-known Markov Chain
method.

The original Siegmund approximation (Siegmund, 1985) for the in-
control average run length (ARLIN) of the upper or the lower one-sided
CUSUM with reference value (k) and control limit (h), when the para-
meters are known, is given by

Table 1
Values of k and their corresponding values of h for the two-sided
CUSUM control chart and ARL0= 100, 200, 370.

ARL0 k h

100 0.12 7.968
0.25 5.597
0.50 3.502

200 0.12 9.998
0.25 6.854
0.50 4.172

370 0.12 12.083
0.25 8.008
0.50 4.774
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= + +ARL k h h h
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For the upper one-sided CUSUM chart, when parameters are esti-
mated, Jeske (2016) showed that the signaling event +C hi is
equivalent to

+ + ++max C T n U kV hV(0, ( ))i i1 (6)
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and in which one can identify the

modified “reference value” as +U kV and the modified “control limit”
as hV , respectively. By substituting the modified “reference value” and
the modified “control limit” into Eq. (6), Jeske (2016) proposed the
modified Siegmund formula for approximating the CARLIN of the upper
( +Ci ) one-sided CUSUM chart as
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Note that the +CARLIN is a random variable, being a function of the
two random variables Z and Y . Likewise, for the lower (Ci ) one-sided
CUSUM charting statistic one can rewrite the signaling event C hi .
Then simplify in a similar manner with the “reference value”

+ = +U kV kaZ
m g

Y
bg

and the modified “control limit”

=hV hag
Y
bg
, respectively, and express the modified Siegmund formula

for approximating the CARLIN of the lower (Ci ) one-sided CUSUM
control chart as

=
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Now, using the Van Dobben de Bruyn (1968) formulation for cal-
culating the average runlength of the two-sided tabular CUSUM chart,
the modified Siegmund formula for approximating the CARLIN of the
two-sided CUSUM control chart can be expressed as

= ++CARL Z Y k h m n
CARL Z Y k h m n CARL Z Y k h m n

( , , , , , ) 1
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IN IN

1

(9)

where +CARL Z Y k h m n( , , , , , )IN and CARL Z Y k h m n( , , , , , )IN are given
in Eqs. (7) and (8), respectively.

In Figs. 1 and 2, Q-Q plots are used to illustrate the quality of the
modified Siegmund approximation (Eq. (9)) relative to the Markov
Chain approximation for the CARLIN for n=1, 5, m=1000,
ARL0= 200 and k= 0.25, 0.50, 0.75, 1. The annotated R codes for
applying the modified Siegmund formula and Markov Chain approx-
imation to calculate the empirical CARLIN distributions are given in
Appendix A.

Looking at Figs. 1 and 2, it can be seen that for k=0.25, 0.50 and
0.75, the modified Siegmund approximation based
CARL z y k h m n( , , , , , )IN values are similar to their corresponding
Markov Chain values. But, for k= 1, they are consistently higher than
their Markov Chain counterparts. The latter is more pronounced when
n=5 than n=1. Note that in practice we use k 0.75, since smaller
shifts are of more interest while using a CUSUM chart. Thus, there is no
practical need for using the Markov Chain method to calculate the
CARLIN of the two-sided Phase II CUSUM control chart. We recommend
in these cases Eq. (9) because it is simple and more practical.

The modified Siegmund approximation formula for the CARLIN
given in Eq. (9) is also convenient for approximating some important
CUSUM control chart performance metrics. For example, the mean of

the CARLIN, denoted by AARLIN,

=

=
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and the standard deviation of the CARLIN, denoted by SDARLIN,
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Looking at Eqs. (10) and (11), note that CARL z y k h m n( , , , , , )IN is
given in (9), q is the pdf of a chi-square distribution with bg degrees of
freedom ( =g 1, 2) and is the pdf of the standard normal distribution.
In Fig. 3, for a range of m values, we compare the Siegmund and
Markov Chain (see Appendix A) approximation methods. Note that, the
horizontal line at CARLIN= 200 represents the nominal ARL0, while the
other two horizontal lines are drawn one nominal SDARLIN
(10% *ARL0) away from ARL0= 200.

From Fig. 3, for k 0.75 and all m, it can be seen that the Siegmund
and Markov Chain methods give similar results. It can also be seen that,
for all k, m affects the AARLIN and the SDARLIN. For example, for
k= 0.25, for both the Siegmund and Markov Chain methods, increasing
m to 500 has an impact of reducing the SDARLIN to within 10% of the
ARL0= 200. Furthermore, increasing m to 1000 increases the AARLIN
to ARL0= 200. We conclude that the accuracy of the modified Sieg-
mund formula is not dependent on m and that the modified Siegmund
formula leads to the same conclusions that have been reached by others
such as Saleh et al. (2016), who used the Markov Chain method.
However, the modified Siegmund formula is much simpler and more
convenient to use.

In the next section, we use the modified Siegmund formula to find
the CARLIN prediction bounds based on the exceedance probability
criterion.

4. Prediction bounds

Saleh et al. (2016) used the SDARLIN to study the effects of para-
meter estimation on the Phase II CUSUM control chart. The SDARLIN
indicates the amount of spread of the CARLIN values around the AARLIN.
However, it does not distinguish between low CARLIN’s and high
CARLIN’s. Thus, it cannot explicitly indicate how much of the CARLIN
variability is due to the low CARLIN’s and how much is due to the high
CARLIN’s, which is very important to know, because the goal is to
minimize the low CARLIN’s and maximize the high CARLIN’s. On the
other hand, the CARLIN prediction bounds can be used to provide
boundaries to separate low CARLIN’s from high CARLIN’s values and to
indicate the proportion of each. Hence, to study the effects of parameter
estimation, we advocate using the exceedance probability criterion over
the SDARLIN.

The exceedance probability criterion involves setting up the pre-
diction bounds (or one-sided prediction intervals). As in Epprecht et al.
(2015), an upper one-sided prediction bound for the CARLIN can be
defined as

=P CARL Z Y k h m n ARL p( ( , , , , , ) ) 1 ,IN 0 (12)

where ARL0 is the specified lower prediction bound and p is a prob-
ability. A small value of p such as 0.05 is desirable, since it means that
there will be a small proportion (5%) of low CARLIN’s (CARLIN’s that are
less than ARL0) and hence a large proportion (95%) of CARLIN’s greater
than ARL0 This is desirable from a practical point of view.

To apply the exceedance probability, the distribution of the CARLIN
has to be found or at least approximated. For time-weighted charts,
such as the EWMA and CUSUM charts, the exact distribution is not
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available. Diko et al. (2019) approximated the CARLIN distribution of
the two-sided EWMA chart by an empirical distribution (FN). Their FN
was obtained by generating many Phase I subgroups, calculating the
corresponding CARLIN values by using the Markov Chain method and
then ordering them in ascending order. We will adopt this approach.
However, to calculate the CARLIN values, we use Eq. (9) instead of
Markov Chains. Once FN has been found, we calculate its 100pth per-
centile, denoted by CARLIN,p. The CARLIN,p is the observed (or the es-
timated) CARLIN upper prediction bound, which is compared with the
nominal ARL0. The ARL0 is the theoretical value that must be exceeded
with high probability 1-p. The comparison between CARLIN,p and ARL0
is based on the percentage difference

= ×PD
CARL ARL

ARL
100.IN p, 0

0 (13)

The R code for generating FN and the algorithm for finding PD are
given in Appendix A and Appendix B, respectively, while the results are
given in Table 2.

Table 2 shows the CARLIN,p‘s and PD’s of the standard Phase II
CUSUM control chart for k= 0.25, 0.50 and =ARL 2000 for different
combinations of m, n and p. From Table 2, it can be seen that, for all n,
nearly all the CARLIN,p’s are less than or equal to ARL0. Hence, nearly all
of the PD’s are negative. Thus, in addition to high CARLIN’s, the ob-
served CARLIN prediction bounds include low CARLIN’s. For this reason,
the Phase II CUSUM control charts, designed using the unadjusted h
values (which are shown in Table 1), will have a lower than nominally
expected CARLIN, which means a deterioration in chart performance. It
can also be seen that, for all n and small m, the CARLIN,p and PD are far
less than ARL0 and 0, respectively. Moreover, as m increases, CARLIN,p
and PD converge to ARL0 and 0, respectively.

Based on these results, we can already infer that it will take huge
numbers of Phase I subgroups to make CARLIN,p close enough to ARL0 or
PD close to 0. In the next section, we investigate, in more detail, the
question of how large m should be to design charts.

Fig. 1. QQ-plots for the empirical CARLIN distributions of the two sided CUSUM charts for location when m=1000, n=1 and ARL0= 200.

Fig. 2. QQ-plots for the empirical CARLIN distributions of the two sided CUSUM charts for location when m=1000, n=5 and ARL0= 200.
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5. Required number of Phase I samples

For the upper one-sided CUSUM control chart, Jeske (2016) de-
termined the minimum m required to guarantee with 1 probability
that the relative error RE( ) will be different from 0 by at most

< =

< < =

< < + =
( )

P RE

P

P ARL CARL Z Y k h m n ARL

(| | ) 1

1

( (1 ) ( , , , , , ) (1 )) 1 .

CARL Z Y k h m n ARL
ARL

IN

( , , , , , )

0 0

IN 0
0

(14)

This is not equal to the exceedance probability criterion. In this si-
tuation, the quantity is the sum of the lower and higher tail

probabilities of the distribution of CARLIN. Thus, the m values that are
recommended on the basis of Eq. (14) do not explicitly protect against
high proportions of low CARLIN’s.

In Saleh et al. (2016) the m recommendations were made to keep
the SDARLIN down at, ×ARL0 , where = 0.1. Note that, the SDARLIN
is calculated from the deviations of CARL Z Y k h m n( , , , , , )IN from
AARLIN and the AARLIN is not necessarily equal to ARL0, unless m is
very large. If m is large, then
CARL Z Y k h m n Normal ARL SDARL( , , , , , ) ( , )IN IN0 , because of the
central limit theorem. Consequently, since the area under the normal
curve, within one standard deviation of the mean, is approximately
68%, it can be said that the Saleh et al. (2016) m recommendations
were made to guarantee with 0.68 probability that the difference

Fig. 3. AARLIN and SDARLIN for a two sided CUSUM chart for n= 5 and ARL0=200.

Table 2
CARLIN p, and PD values of a two-sided CUSUM chart as a function of m, n for k=0.25, 0.50; p= 0.05, 0.10; and =ARL 2000 .

m

p n k 30 50 200 500 750 1000 3000 5000 10,000 50,000

0.05 1 0.25 28.78 41.96 92.09 125.68 138.25 145.98 168.29 175.42 182.71 192.52
−85.61 −79.02 −53.95 −37.16 −30.87 −27.01 −15.86 −12.29 −8.65 −3.74

0.50 24.66 37.55 85.39 117.92 130.25 138.37 162.73 170.89 179.48 191.52
−87.67 −81.23 −57.31 −41.04 −34.88 −30.81 −18.64 −14.56 −10.26 −4.24

5 0.25 37.31 53.46 114.68 150.72 162.31 168.98 184.84 188.97 192.75 197.27
−81.34 −73.27 −42.66 −24.64 −18.85 −15.51 −7.58 −5.52 −3.63 −1.37

0.50 44.42 64.69 126.02 155.64 164.79 170.20 184.30 188.37 192.40 197.65
−77.79 −67.66 −36.99 −22.18 −17.60 −14.91 −7.85 −5.81 −3.80 −1.17

10 0.25 38.27 54.57 117.23 154.31 166.27 172.95 188.23 191.82 194.90 198.29
−80.87 −72.72 −41.38 −22.85 −16.87 −13.53 −5.88 −4.09 −2.55 −0.86

0.50 47.61 69.24 134.80 164.19 172.76 177.52 189.16 192.30 195.28 198.97
−76.19 −65.38 −32.56 −17.91 −13.62 −11.24 −5.42 −3.85 −2.36 −0.52

20 0.25 38.56 55.17 118.20 155.95 168.04 174.71 190.05 193.45 196.18 198.93
−80.72 −72.42 −40.90 −22.03 −15.98 −12.65 −4.98 −3.27 −1.91 −0.54

0.50 48.91 71.24 138.59 168.75 177.18 181.75 192.15 194.75 197.07 199.80
−75.55 −64.38 −30.71 −15.62 −11.41 −9.13 −3.92 −2.62 −1.46 −0.10

0.10 1 0.25 36.67 52.24 105.45 136.96 148.29 155.27 174.38 180.35 186.34 194.21
−81.67 −73.88 −47.28 −31.52 −25.86 −22.37 −12.81 −9.83 −6.83 −2.89

0.50 33.04 48.52 100.05 130.91 142.13 149.55 170.18 177.04 184.07 193.69
−83.48 −75.74 −49.97 −34.54 −28.93 −25.23 −14.91 −11.48 −7.97 −3.15

5 0.25 47.51 66.73 129.25 160.37 169.71 175.04 187.89 191.21 194.33 197.97
−76.25 −66.64 −35.38 −19.81 −15.15 −12.48 −6.06 −4.40 −2.84 −1.02

0.50 57.04 79.47 138.28 163.70 171.39 175.88 187.72 191.08 194.34 198.52
−71.48 −60.27 −30.86 −18.15 −14.31 −12.06 −6.14 −4.46 −2.83 −0.74

10 0.25 48.95 68.39 132.59 164.58 173.89 179.00 190.70 193.56 196.04 198.76
−75.53 −65.81 −33.71 −17.71 −13.06 −10.50 −4.65 −3.22 −1.98 −0.62

0.50 61.72 85.82 147.17 171.30 178.26 182.09 191.64 194.21 196.61 199.57
−69.14 −57.09 −26.42 −14.35 −10.87 −8.95 −4.18 −2.90 −1.70 −0.21

20 0.25 49.31 69.21 133.96 166.34 175.87 180.98 192.38 194.93 197.07 199.25
−75.34 −65.40 −33.02 −16.83 −12.07 −9.51 −3.81 −2.54 −1.46 −0.37

0.50 63.61 88.59 151.83 175.76 182.29 185.81 194.04 196.13 198.02 200.21
−68.19 −55.71 −24.09 −12.12 −8.85 −7.10 −2.98 −1.93 −0.99 0.11
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between CARL Z Y k h m n( , , , , , )IN and =AARL ARLIN 0 will be no more
than ×ARL0 . This makes the SDARLIN criteria a special case of Eq.
(14) with =1 0.68, which implies a lower (and an upper) tail
probability of approximately = =p 2 0.16. To illustrate this in more
detail, consider the following chart parameters (n=1, k= 0.25,
h= 6.854), (n=1, k=0.50, h= 4.172), (n= 5, k= 0.25, h= 6.854)
and (n=5, k= 0.50, h= 4.172). For these chart parameters, Saleh
et al. (2016) recommended m=3000, m=5000, m=600 and
m=800, respectively. Using these recommendations, we evaluated
these four CUSUM charts according to the AARLIN, SDARLIN,

<P CARL AARL( (1 ))IN IN and <P CARL ARL( (1 ))IN 0 . The re-
sults are shown in Table 3.

From Table 3, it can be seen that in terms of the SDARLIN the four
CUSUM charts are performing as nominally specified. Except for the
(n=5, m=600, k= 0.25, h= 6.854) chart, the AARLIN’s are very
close to ARL0= 200. For all charts, it can be seen that

< =P CARL AARL( (1 )) 0.16IN IN , so the central limit theorem ap-
plies. Moreover, since AARL ARLIN 0, it can also be seen that

<P CARL ARL( (1 )) 0.16IN 0 , which confirms our explanation.
Therefore, even though p is not explicitly mentioned, Saleh et al.
(2016)’s m values do in fact reduce the frequent occurrence of low
CARLIN’s to 16%. But, if a smaller is used, the probability of an un-
satisfactory CARLIN will be much higher than what might be deemed

acceptable. For example, for the (n= 1,m=5000,k= 0.50,h= 4.172)
if = 0.05 then p=37%. This suggests that in practice, one should
better consider the exceedance probability criterion instead of the
SDARLIN as a chart performance and design criteria.

Given , most practitioners would be interested in higher levels of
protection, such as p=0.05, 0.10, (so that the exceedance probability
in (12) is high, such as 90% or 95%) and would naturally want to know
about the minimum m required to achieve these levels. In technical
terms, the practitioner may want to know the minimum m required to
guarantee with probability 1-p that the RE will be less than 0 by at most
, where p is an explicitly specified small proportion, such as 0.05 or
0.10. To answer this, a method that explicitly controls the lower tail
area, p, of the CARLIN distribution is needed. This can be found by
simply considering only the lower prediction bound (and not the in-
terval) of Eq. (14). Thus,

> =

> =

> =
( )

P RE p

P p

P CARL Z Y k h m n ARL p

( ) 1

1

so that ( ( , , , , , ) (1 )) 1 .

CARL Z Y k h m n ARL
ARL

IN

( , , , , , )

0

IN 0
0

(15)

This is the exceedance probability criterion that was used by Diko
et al. (2019), Epprecht et al. (2015) and Loureiro, Epprecht,
Chakraborti, and Jardim (2018) to recommend Phase I subgroup

Table 3
Four Phase II CUSUM control charts for ARL0= 200. Each constructed using the parameters known case limits with m values that satisfy ×ARL0 ,
where = 0.1.

(n= 1,m=3000,k= 0.25,h=6.854) (n= 1,m=5000,k= 0.50,h=4.172)

AARLIN 199.3 202
SDARLIN 20.2 20.3

<P CARL AARL( (1 ))IN IN 0.16 0.16
<P CARL ARL( (1 ))IN 0 0.17 0.13

(n= 5,m=600,k=0.25,h= 6.854) (n= 5,m=800,k=0.50,h= 4.172)
AARLIN 190.9 197.6
SDARLIN 20.8 20.2

<P CARL AARL( (1 ))IN IN 0.16 0.16
<P CARL ARL( (1 ))IN 0 0.29 0.19

Table 4
Required minimum number of Phase I subgroups, m, as a function of p k n, , , and =ARL 100, 200, 3700 .

= 10% =20% =30%

ARL0 n k p= 0.05 p= 0.10 p= 0.05 p= 0.10 p= 0.05 p= 0.10

100 1 0.25 5300 3350 1300 900 550 400
0.50 7550 4700 1850 1200 800 500

5 0.25 1300 900 450 300 250 200
0.50 1440 1000 400 300 250 200

10 0.25 1050 700 350 260 200 150
0.50 850 600 300 233 200 150

20 0.25 900 650 350 260 200 150
0.50 650 450 250 180 200 150

200 1 0.25 7600 4800 1850 1250 800 550
0.50 10,500 6500 2600 1650 1100 700

5 0.25 1950 1400 700 500 350 250
0.50 2000 1350 600 450 300 200

10 0.25 1500 1100 600 450 350 250
0.50 1200 850 450 300 250 150

20 0.25 1300 950 550 400 350 250
0.50 900 650 350 250 200 150

370 1 0.25 10,650 6850 2650 1800 1150 800
0.50 14,050 8750 3450 2200 1450 950

5 0.25 2900 2050 1050 750 550 400
0.50 2700 1800 800 600 400 300

10 0.25 2250 1600 950 650 550 400
0.50 1650 1150 600 450 350 250

20 0.25 2050 1450 900 600 500 350
0.50 1200 900 500 350 300 200
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numbers for Phase II Shewhart and EWMA control charts. Thus, given
k h n p, , , , , and ARL0 values, Eq. (15) can be solved for m. The algo-
rithm for solving m is given in Appendix C and the results are shown in
Table 4.

Table 4 reveals that, for a given ARL0, m decreases with an increase
of n, and p. For example, for n=1, ARL0= 200, k=0.25, = 0.10, m
varies from about 7600 (when p= 0.05) down to 4800 (when
p=0.10). Thus, it is seen that to keep the probability of low CARLIN’s
less than 0.16, more Phase I data are required than has been re-
commended in Saleh et al. (2016). Where big data is available, we
encourage the practitioners to use Table 4 along with the charting
constants from the R package “spc”. Where data are scarce, the option is
to adjust h as a function of the available m.

6. Adjusting the CUSUM limits

In this section, we adjust the control limits of the two-sided Phase II

CUSUM control chart according to the exceedance probability criterion.
To apply the exceedance probability criterion to adjust the control
limits, the bootstrap method (cf. Gandy & Kvaloy, 2013; Jones &
Steiner, 2012) is used. It is known that repeated application of the
bootstrap method would most likely result in different solutions (cf.
Saleh et al., 2016). To overcome this limitation, Hu and Castagliola
(2017) advise to run over again the bootstrap method a 100 times and
averaging the results. For Shewhart charts, assuming a normal process,
Goedhart, da Silva, et al. (2017), Goedhart, Schoonhoven, and Does
(2017, 2018) and Jardim, Chakraborti, and Epprecht (2018) provided
closed form analytical expressions for the adjusted constants based on
the exceedance probability criterion. Hence in this situation boot-
strapping was not necessary. Moreover, Diko et al. (2019) gave an al-
ternative method for finding the adjusted constants. For comparison
and completeness, we present our method (Diko et al., 2019) and the
bootstrap method in Appendix D and E, respectively.

From Appendices D and E it can be seen that our method differs

Table 5
Adjusted charting constants when n= 5 and = 0.

ARL0= 100 ARL0= 200 ARL0= 370

p k m=30 m=50 m=100 m=200 m=30 m=50 m=100 m=200 m=30 m=50 m=100 m=200

0.05 0.12 24.99 17.91 12.29 9.81 49.12 33.72 20.50 14.42 90.16 60.68 33.76 20.79
0.14 23.30 16.31 11.22 9.12 45.36 30.21 18.08 13.01 82.94 53.82 28.32 18.02
0.16 21.52 14.89 10.37 8.49 41.59 26.88 15.99 11.79 75.80 47.00 23.90 15.89
0.18 19.79 13.61 9.51 7.99 37.96 23.65 14.25 10.85 68.69 40.48 20.50 14.20
0.20 18.15 12.41 8.86 7.46 34.28 20.77 12.87 9.97 61.58 34.40 17.78 12.86
0.22 16.64 11.35 8.25 7.05 30.60 18.35 11.65 9.32 54.74 28.94 15.70 11.74
0.24 15.15 10.45 7.76 6.67 27.35 16.27 10.67 8.67 47.84 24.47 14.09 10.84
0.26 13.79 9.67 7.29 6.31 24.20 14.55 9.89 8.12 41.34 20.93 12.74 10.04
0.28 12.63 8.97 6.87 5.97 21.30 13.11 9.20 7.70 35.28 18.15 11.65 9.35
0.30 11.53 8.34 6.45 5.75 18.82 11.82 8.58 7.22 29.88 16.00 10.70 8.79
0.32 10.63 7.81 6.15 5.45 16.70 10.86 8.05 6.86 25.17 14.34 9.97 8.28
0.34 9.84 7.34 5.86 5.25 14.87 10.02 7.52 6.52 21.47 12.98 9.29 7.79
0.36 9.07 6.89 5.59 4.99 13.38 9.35 7.16 6.20 18.64 11.88 8.72 7.42
0.38 8.51 6.53 5.32 4.83 12.19 8.69 6.79 5.98 16.46 10.93 8.17 7.07
0.40 7.95 6.17 5.07 4.65 11.10 8.16 6.40 5.70 14.72 10.14 7.74 6.73
0.42 7.41 5.83 4.92 4.43 10.28 7.68 6.12 5.49 13.30 9.43 7.33 6.43
0.44 6.98 5.60 4.70 4.30 9.55 7.25 5.85 5.25 12.17 8.83 7.01 6.13
0.46 6.65 5.35 4.55 4.17 8.90 6.87 5.59 5.07 11.22 8.35 6.65 5.93
0.48 6.23 5.13 4.35 4.03 8.35 6.54 5.35 4.85 10.37 7.87 6.37 5.67
0.50 5.92 4.92 4.22 3.91 7.81 6.21 5.20 4.71 9.71 7.49 6.11 5.48
0.52 5.70 4.72 4.03 3.73 7.43 5.96 4.98 4.56 9.06 7.12 5.86 5.26
0.54 5.41 4.53 3.93 3.63 7.02 5.65 4.75 4.35 8.51 6.79 5.61 5.10
0.56 5.21 4.34 3.82 3.54 6.64 5.44 4.64 4.24 8.07 6.48 5.38 4.88
0.58 4.93 4.23 3.64 3.44 6.33 5.23 4.50 4.13 7.65 6.15 5.24 4.75
0.60 4.74 4.06 3.56 3.35 6.02 5.02 4.32 4.01 7.30 5.92 5.02 4.62

0.10 0.12 19.91 14.51 10.81 9.21 38.12 25.92 16.79 13.01 69.25 45.27 25.58 17.75
0.14 18.25 13.30 9.92 8.62 34.51 22.91 14.91 11.81 61.92 38.93 21.72 15.71
0.16 16.66 12.09 9.19 8.07 30.90 20.16 13.39 10.87 55.10 32.90 18.80 14.06
0.18 15.21 11.11 8.61 7.58 27.45 17.74 12.15 10.04 48.20 27.77 16.50 12.70
0.20 13.86 10.23 8.05 7.15 24.27 15.77 11.07 9.27 41.58 23.43 14.68 11.68
0.22 12.65 9.45 7.55 6.75 21.45 14.05 10.24 8.74 35.51 20.13 13.22 10.74
0.24 11.57 8.77 7.07 6.37 18.89 12.73 9.47 8.17 29.97 17.47 12.06 9.97
0.26 10.61 8.21 6.71 6.11 16.71 11.60 8.82 7.72 25.30 15.53 11.04 9.34
0.28 9.84 7.67 6.37 5.77 14.81 10.61 8.29 7.31 21.66 13.93 10.25 8.75
0.30 9.13 7.22 6.05 5.55 13.41 9.82 7.79 6.92 18.68 12.60 9.50 8.28
0.32 8.45 6.75 5.75 5.32 12.16 9.14 7.36 6.56 16.48 11.58 8.96 7.78
0.34 7.94 6.44 5.46 5.06 11.12 8.52 6.92 6.29 14.69 10.69 8.39 7.39
0.36 7.46 6.09 5.28 4.89 10.28 8.00 6.60 6.00 13.31 9.91 7.92 7.02
0.38 7.02 5.83 5.03 4.72 9.49 7.49 6.29 5.76 12.07 9.26 7.53 6.76
0.40 6.57 5.56 4.87 4.47 8.88 7.10 6.00 5.50 11.14 8.64 7.14 6.44
0.42 6.23 5.31 4.63 4.33 8.31 6.72 5.72 5.32 10.33 8.13 6.83 6.19
0.44 5.98 5.09 4.50 4.20 7.83 6.44 5.53 5.05 9.63 7.73 6.52 5.93
0.46 5.67 4.87 4.34 4.07 7.37 6.09 5.29 4.89 9.05 7.35 6.25 5.72
0.48 5.45 4.65 4.15 3.94 6.95 5.85 5.05 4.75 8.47 6.97 5.97 5.47
0.50 5.21 4.52 4.04 3.82 6.64 5.61 4.91 4.60 8.01 6.68 5.71 5.31
0.52 4.98 4.33 3.91 3.63 6.28 5.38 4.75 4.38 7.62 6.36 5.54 5.13
0.54 4.73 4.20 3.73 3.53 6.04 5.15 4.55 4.25 7.21 6.11 5.31 4.91
0.56 4.61 4.04 3.64 3.44 5.74 4.94 4.44 4.14 6.87 5.88 5.15 4.78
0.58 4.43 3.93 3.54 3.34 5.53 4.81 4.30 4.03 6.55 5.65 4.95 4.64
0.60 4.26 3.76 3.46 3.26 5.32 4.62 4.12 3.92 6.31 5.42 4.81 4.50
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from the bootstrap method in two significant ways:

1. In Appendix D, the search interval for h has a lower bound and the
solution (say h*) is very close to this lower bound. In Appendix E,
the search interval is unbounded and so to find h* is more de-
manding.

2. In Appendix D, h* is found such that =CARL ARL (1 )IN p, 0 is sa-
tisfied, that is, the solution emanates directly from the definition

> =P CARL ARL p( (1 )) 1IN 0 . However, in Appendix E, h* is
the (1 − p)th percentile of the in-control distribution of the values of
h, which satisfy =CARL ARL (1 )IN 0 . Although it works, it is not
based on the definition of the exceedance probability criterion,
which is why practitioners find the bootstrap method difficult.

Since our method is more logical, less arduous and more precise

than parametric bootstrapping, we used it to find the adjusted charting
limits.

Tables 5 and 6 presents the adjusted limits for n= 5, m=30, 50,
100, 200, k0.12 0.60, ARL0=100, 200, 370, = 0, 0.20, and
p= 0.05, 0.10. Since Tables 5 and 6 do not cover all the values, an R
code to get some of the uncovered values is given in Appendix F. The
use of Tables 5, 6 and Appendix F is outlined below.

Suppose we want to detect a = 1 shift in the process mean by using
a two sided CUSUM chart for location. Note that = µ µ0

0
. What h*

should we use to guarantee that at most p= 10% of the CARLIN’s are
not more than ARL0= 200? Assume that m=30 and n= 5. Since

= 1, then = =k 2 0.50. Since is not mentioned, we should use
Table 5 ( = 0). Looking at Table 5 at

= = = = =p ARL k m n0.10, 200, 0.50, 30, 50 , it can be seen that h* =

Table 6
Adjusted charting constants when n= 5 and = 20%.

ARL0= 100 ARL0= 200 ARL0= 370

p k m=30 m=50 m=100 m=200 m=30 m=50 m=100 m=200 m=30 m=50 m=100 m=200

0.05 0.12 20.29 14.74 10.52 8.75 39.58 27.49 17.33 12.79 72.39 48.98 28.01 18.21
0.14 18.88 13.59 9.74 8.17 36.48 24.73 15.45 11.63 66.69 43.61 23.96 16.03
0.16 17.50 12.48 9.05 7.67 33.52 22.13 13.88 10.68 60.98 38.17 20.63 14.29
0.18 16.19 11.50 8.44 7.22 30.70 19.76 12.55 9.85 55.41 33.16 17.96 12.92
0.20 14.94 10.59 7.88 6.81 27.82 17.55 11.41 9.17 49.77 28.58 15.86 11.78
0.22 13.70 9.80 7.40 6.45 25.02 15.71 10.49 8.54 44.41 24.40 14.17 10.82
0.24 12.69 9.09 6.97 6.12 22.48 14.11 9.68 8.02 38.96 21.05 12.77 10.02
0.26 11.69 8.48 6.58 5.83 20.07 12.74 8.99 7.54 34.01 18.32 11.65 9.34
0.28 10.77 7.91 6.23 5.55 17.95 11.60 8.38 7.13 29.25 16.17 10.72 8.74
0.30 9.95 7.41 5.92 5.31 15.97 10.65 7.87 6.75 25.13 14.42 9.93 8.22
0.32 9.26 6.98 5.64 5.08 14.41 9.82 7.41 6.42 21.60 13.05 9.25 7.76
0.34 8.62 6.59 5.39 4.88 13.05 9.12 7.01 6.13 18.79 11.88 8.67 7.35
0.36 8.05 6.24 5.15 4.68 11.87 8.52 6.64 5.85 16.55 10.92 8.15 6.99
0.38 7.53 5.93 4.94 4.51 10.85 7.97 6.31 5.60 14.80 10.12 7.71 6.67
0.40 7.10 5.64 4.74 4.34 10.05 7.50 6.01 5.37 13.36 9.41 7.29 6.37
0.42 6.69 5.38 4.54 4.18 9.34 7.08 5.75 5.16 12.17 8.81 6.91 6.09
0.44 6.33 5.13 4.38 4.04 8.67 6.71 5.50 4.96 11.17 8.30 6.60 5.85
0.46 6.03 4.92 4.22 3.90 8.15 6.38 5.28 4.79 10.34 7.81 6.30 5.61
0.48 5.71 4.71 4.07 3.77 7.66 6.07 5.07 4.61 9.64 7.42 6.04 5.41
0.50 5.46 4.52 3.93 3.65 7.23 5.79 4.87 4.46 9.00 7.02 5.78 5.20
0.52 5.21 4.36 3.81 3.55 6.84 5.54 4.70 4.31 8.48 6.70 5.56 5.02
0.54 4.99 4.19 3.67 3.43 6.51 5.32 4.54 4.17 7.98 6.41 5.35 4.86
0.56 4.79 4.05 3.57 3.33 6.20 5.10 4.38 4.04 7.57 6.11 5.15 4.69
0.58 4.59 3.91 3.46 3.24 5.91 4.90 4.23 3.92 7.18 5.86 4.97 4.54
0.60 4.42 3.78 3.35 3.14 5.65 4.72 4.09 3.79 6.86 5.62 4.79 4.40

0.10 0.12 16.22 12.21 9.45 8.32 30.81 21.51 14.52 11.65 55.77 36.89 21.92 15.88
0.14 14.94 11.24 8.78 7.79 27.99 19.15 13.07 10.70 49.99 31.96 19.00 14.18
0.16 13.81 10.37 8.21 7.33 25.20 17.03 11.90 9.90 44.59 27.38 16.63 12.83
0.18 12.70 9.62 7.70 6.92 22.61 15.23 10.89 9.19 39.24 23.50 14.79 11.71
0.20 11.67 8.94 7.23 6.55 20.22 13.72 10.04 8.59 34.19 20.28 13.28 10.79
0.22 10.77 8.33 6.83 6.21 18.01 12.41 9.30 8.07 29.42 17.67 12.08 10.00
0.24 9.96 7.80 6.47 5.91 16.09 11.32 8.67 7.60 25.30 15.65 11.09 9.33
0.26 9.24 7.31 6.13 5.64 14.44 10.41 8.12 7.17 21.70 13.99 10.24 8.75
0.28 8.61 6.90 5.83 5.38 13.03 9.60 7.64 6.81 18.90 12.66 9.52 8.23
0.30 8.04 6.50 5.56 5.15 11.86 8.91 7.20 6.47 16.63 11.57 8.89 7.78
0.32 7.55 6.17 5.32 4.94 10.85 8.33 6.82 6.17 14.76 10.65 8.36 7.37
0.34 7.10 5.87 5.09 4.75 10.01 7.84 6.48 5.90 13.32 9.86 7.89 7.02
0.36 6.70 5.58 4.88 4.56 9.29 7.36 6.18 5.65 12.16 9.20 7.46 6.69
0.38 6.33 5.33 4.69 4.39 8.67 6.96 5.90 5.42 11.16 8.64 7.10 6.40
0.40 6.00 5.11 4.52 4.24 8.11 6.60 5.64 5.21 10.31 8.13 6.75 6.13
0.42 5.71 4.88 4.34 4.08 7.64 6.28 5.41 5.01 9.59 7.68 6.43 5.87
0.44 5.45 4.70 4.19 3.95 7.19 5.98 5.19 4.82 8.98 7.27 6.16 5.65
0.46 5.21 4.50 4.04 3.81 6.82 5.73 5.00 4.66 8.45 6.90 5.90 5.43
0.48 4.99 4.33 3.90 3.69 6.47 5.48 4.81 4.49 7.95 6.59 5.67 5.24
0.50 4.78 4.18 3.78 3.57 6.17 5.26 4.64 4.34 7.52 6.29 5.45 5.05
0.52 4.60 4.05 3.66 3.47 5.89 5.05 4.48 4.20 7.15 6.02 5.25 4.88
0.54 4.42 3.90 3.54 3.36 5.64 4.87 4.33 4.07 6.80 5.78 5.07 4.72
0.56 4.26 3.78 3.44 3.26 5.40 4.69 4.19 3.94 6.49 5.55 4.89 4.57
0.58 4.11 3.66 3.34 3.17 5.18 4.52 4.06 3.82 6.20 5.34 4.73 4.42
0.60 3.97 3.54 3.24 3.08 4.97 4.36 3.93 3.71 5.95 5.15 4.58 4.29
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6.64. Further, suppose we use another , whose corresponding k is not
in Table 5. For example = 0.98 ( =k 0.49). For this case the h* solution
is between h* = 6.64 (k=0.50) and h* = 6.99 (k= 0.48). To find it,
we employ a search algorithm, written in R and given in Appendix F.
Before running this code, the lower bound of the search interval has to
be correctly specified. In this case the lower bound is 6.64 (k= 0.50).
Running the code gives h* = 6.82, which is the adjusted constant we
should use when k=0.49.

If we want to improve the out-of-control performance of the chart,
we can increase . Table 6 shows some h* values when = 20%. Looking
at Table 6 at = = = =p ARL k m0.10, 200, 0.50, 300 , it can be seen
that h* = 6.17. If is not in the Tables, we can use the same logic as in
the above paragraph. For example, if = 10%, it can be seen from
Tables 5 and 6 that the h* solution is between h* = 6.17 ( = 20%) and
h* = 6.94 ( = 0), respectively. To find it, we use Appendix F with

= = = = =p ARL k m10%, 0.10, 200, 0.50, 300 and 6.17 as the lower
bound of the search interval (h). Running this R code shows that h* =
6.42.

To improve the out-of-control performance, we can also increase p.
From Table 5 at = = = =ARL k m n200, 0.50, 30, 50 , it can be seen
that if p= 0.05 then h* = 7.81. However, for p=0.07, the h* solution
is between h* = 6.64 (p= 10%) and h* = 7.81 (p= 5%). To find it, we
use the R code in Appendix F with

= = = = =p ARL k m n0.07, 200, 0.50, 30, 50 and 6.64 as the lower

bound of the search interval (h). Running this R code shows that h* =
7.24.

For n=1, the appropriate h* values can also be found by running
the R code in Appendix F. In this case the lower bound of the search
interval should be set equal to the corresponding h* value of the n=5
case. For example, to find h* for

= = = = = =p ARL k m n0, 0.10, 200, 0.50, 30, 10 , we would use
Appendix F with = = = = = =p ARL k m n0, 0.10, 200, 0.50, 30, 10
and 6.64 (n=5 or Table 5) as the lower bound of the search interval.
Doing this gives h*=8.31. This is the adjusted constant we should use
when n=1.

For m values that are not covered by the Tables, we can also use
Appendix F to find the corresponding h*. For example, if m=25,
we can run the R code in Appendix F with

= = = = = =p ARL k m n0, 0.10, 200, 0.50, 25, 50 as parameters and
specify the lower bound as 6.64 (m=30). Running this code gives h*
= 7.20.

Next, real data from Montgomery (2013) is used to illustrate the
implementation of the two sided CUSUM chart for the mean.

7. Implementing the two sided CUSUM chart for the mean: An
example using real data

For our illustration, we consider the hard bake process data in
Montgomery (2013). The data consist of 45 samples of size n=5. We
use the first m=30 in-control samples as our Phase I data to calculate
the mean and standard deviation estimates. We found the Phase I mean
and standard deviation estimates to be 1.504 and 0.138, respectively.
Table 7 shows the sample means of the remaining 15 Phase II samples.
Table 7 also uses these samples to calculate the standardized Phase II
charting statistics. Fig. 4 plots these standardized Phase II charting
statistics on the standardized two-sided Phase II CUSUM control chart.

From Fig. 4, it can be seen that the chart has two sets of control
limits, the adjusted limits (h* = 6.64) and the unadjusted limits
(h= 4.172). These limits were chosen to detect a shift of size = 1 in
the process mean. The unadjusted limits are taken from Table 1 using

=ARL 2000 , k=0.50. The adjusted limits are taken from Table 5 using
= = = = =p ARL k m n0.10, 200, 0.50, 30, 50 . From Fig. 4, it can also

be seen that the adjusted limits are wider than the unadjusted limits.
This has implications on the performance of the chart.

Figs. 5 and 6 show the boxplots of the in-control and out-of-control
CARL distribution, respectively, of the limits in Fig. 4. From Figs. 5 and
6, it can be seen that the unadjusted control limits (narrower limits)

Table 7
Hard bake process data for Phase II and the calculations for the standardized
CUSUM charting statistics.

Phase II Sample # X̄ W k C +C

31 1,472 −1,24707 0,5 −1,84094 0
32 1,5292 1,012808 0,5 −1,32813 1,512808
33 1,5317 1,112275 0,5 −0,71585 3,125083
34 1,57934 3,007709 0,5 0 6,632792
35 1,4279 −3,01758 0,5 −3,51758 4,115216
36 1,48238 −0,85 0,5 −4,86758 3,765214
37 1,49098 −0,50784 0,5 −5,87541 3,757378
38 1,61278 4,338173 0,5 −2,03724 8,595551
39 1,65598 6,056955 0,5 0 15,15251
40 1,64202 5,501534 0,5 0 21,15404
41 1,67156 6,676831 0,5 0 28,33087
42 1,62516 4,830732 0,5 0 33,6616
43 1,69696 7,687411 0,5 0 41,84901
44 1,63214 5,108442 0,5 0 47,45746
45 1,77 10,59343 0,5 0 58,55088

Fig. 4. A Phase II two side CUSUM Control chart to monitor the mean of the hard bake process data with adjusted (h ) and unadjusted limits (h) when m=30, n= 5,
ARL0= 200 and p= 0.10.
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have a poor in-control performance and a slightly better out-of-control
performance compared to the adjusted limits (wider limits).

It can be desirable to improve the out-of-control performance of the
adjusted limits. This means using narrower adjusted control limits
(smaller adjusted constants). These can be found, as demonstrated in
Section 7, by increasing and/or p. This way of improving the out-of-
control performance sacrifices some in-control performance. Another
way of improving the out-of-control performance is to increase m. For
example, looking at Table 5 at = = =p k ARL( 0.10, 0.50, 200)0 it can
be seen that increasing m decreases the adjusted constants from 6.64
(m=30) to 4.60 (m=200). Note that, increasing m improves the out-
of-control performance without sacrificing any in-control performance.

The issue of course is how to increase m given a small initial m such
as m=30. To solve this problem, we suggest first using h* = 6.64
(m=30), as in Fig. 4. Charting should continue until twenty sub-
groups, which plot within the adjusted control limits, are obtained.
These 20 additional subgroups should be in-control and can be com-
bined with the m=30 Phase I subgroups. The resulting 50 subgroups
can then be used to update the Phase I parameter estimates, which
should now be used with the h* = 5.61 (m=50) limits. This updating
process can be repeated until 200 in-control subgroups have been col-
lected. At this point the out-of-control performance of the adjusted
limits will be nearly equal to that of the unadjusted limits and the in-
control performance will be as nominally specified.

8. Summary and conclusions

Currently, the in-control conditional average run length (CARLIN)
distribution of the two-sided Phase II CUSUM charts has been described
using the mean and standard deviation. This CARLIN distribution and its
parameters has been calculated by Markov Chains and simulations. We
presented in this paper a generalization of the Siegmund formula to
calculate the CARLIN distribution and its parameters. It has been seen
that the generalization of the Siegmund formula is accurate, versatile
and practical.

We argued in favor of the usefulness of the exceedance probability
criterion based CARLIN prediction bounds to study the effects of para-
meter estimation. Based on these prediction bounds, it was seen that
even more Phase I data are required than previously recommended
using the SDARLIN criteria.

When analytical methods cannot be found, the bootstrap method
has been used to adjust the control limits according to the exceedance
probability criterion. In this paper we applied a more accurate method
of Diko et al. (2019) to adjust the control limits according to the ex-
ceedance probability criterion. Comprehensive tables of the adjusted
charting constants are given to facilitate implementation of the two
sided CUSUM control chart for the mean.

The generalized Siegmund formula, presented in this paper, can also
be used to find the unconditionally adjusted control limits. This has not
been done in literature. Furthermore, our work can be extended to

Fig. 5. Boxplots of the CARLIN distribution of the two sided Phase II CUSUM chart for the mean of the hard bake process data.

Fig. 6. Boxplots of the out-of-control CARL distribution of the two sided Phase II CUSUM chart for the mean of the hard bake process data.
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other types of standard deviation estimators and process distributions.

Declaration of Competing Interest

The authors declared that there is no conflict of interest.

Acknowledgements

The authors would like to thank the editor, associate editor and
anonymous reviewers for the comments and suggestions that have led
to various improvements.

Appendix A. Simulation of the empirical distribution of CARL and the application of the Markov Chain and modified Siegmund formula
approaches

Code to apply the Markov Chain Approach

CARL= function(br,k,h,delta,m,n){
if (n > 1) {ab= c(1,m * (n− 1))} else
{
M= function(m){
(0.8264 *m−1.082)/(m−1)^2}
r= function(m){
(−2+2 * sqrt(1+ 2 *M(m)))^−1}
t= function(m){
M(m)+1/(16 * r(m)^3)}
bb= function(m){
(−2+2 * sqrt(1+ 2 * t(m)))^−1}
aa= function(m){
1+ (1/(4 * bb(m)))+ (1/(32 * bb(m)^2))− (5/(128 * bb(m)^3))}
ab= c(aa(m),bb(m))} # calculates the constants a and b as a function of m and n
Q=ab[1] * sqrt(rchisq(br,ab[2])/(ab[2]))
Z= rnorm(br)
t= 101 # the total number of transient states
w=h/t # the width of the transient states
sigma=1 # assume sigma0
z= seq(1,t,1) # a vector of transient state identifiers
M=numeric(length(t)) # storage vector of the transient state midpoints
for(j in 1:t){
M[j]= z[j] * w−0.5 * w} # midpoint of the jth transient state
Y=matrix(0,1,t+ 1) # a size t vector of zeros
Y[1]= 1 # change the first element of Y from zero to one
P=diag(t+ 1) # a t*t storage matrix of transient probabilities
I= diag(t+ 1) # identity matrix
Q= sqrt(rchisq(br,m * (n− 1))/(m * (n− 1))) # estimation error for sigma
Z= rnorm(br) # estimation error for mu
for(j in 1:t){
for(l in 1:t){
A=Q * (M[j]+ (w/2)−M[l]+ k)− (((sqrt(n) * delta)/sigma))+ (Z/sqrt(m))
B=Q * (M[j]− (w/2)−M[l]+ k)− (((sqrt(n) * delta)/sigma))+ (Z/sqrt(m))
P[l+ 1,j+ 1]=pnorm(A)− pnorm(B)}} # calculates the transient probabilities for j,l= 2,3,…,t
P[1,1]= pnorm(Q * (k)− (((sqrt(n) * delta)/sigma))+ (Z/sqrt(m))) # calculates the transient probabilities for j,l = 1
for(j in 1:t){
P[j+ 1,1]= pnorm(Q * (−M[j]+ k)− (((sqrt(n) * delta)/sigma))+ (Z/sqrt(m)))} # calculates the transient probabilities for j= 2,3,4,…,t and l= 1
for(l in 1:t){
P[1,l+ 1]= pnorm(Q * (M[l]+ (w/2)+ k)− (((sqrt(n) * delta)/sigma))+ (Z/sqrt(m)))− pnorm(Q * (M[l]− (w/2)+ k)− (((sqrt(n) * delta)/sigma))+ (Z/sqrt(m)))} # calcu-

lates the transient probabilities for j= 1 and l= 2,3,4,…,t
ARL1=Y% *%solve(I− P)% *%matrix(1,t+ 1,1) # CARL of the upper one-sided CUSUM
for(j in 1:t){
for(l in 1:t){
A=Q * (M[j]+ (w/2)−M[l]+ k)− (−((sqrt(n) * delta)/sigma))+ (−Z/sqrt(m))
B=Q * (M[j]− (w/2)−M[l]+ k)− (− ((sqrt(n) * delta)/sigma))+ (−Z/sqrt(m))
P[l+ 1,j+ 1]=pnorm(A)− pnorm(B)}} # calculates the transient probabilities for j,l= 2,3,…,t
P[1,1]= pnorm(Q * (k)− (−((sqrt(n) * delta)/sigma))+ (−Z/sqrt(m))) # calculates the transient probabilities for j,l = 1
for(j in 1:t){
P[j+ 1,1]= pnorm(Q * (−M[j]+ k)− (−((sqrt(n) * delta)/sigma))+ (−Z/sqrt(m)))} # calculates the transient probabilities for j= 2,3,4,…,t and l= 1
for(l in 1:t){
P[1,l+ 1]= pnorm(Q * (M[l]+ (w/2)+ k)− (−((sqrt(n) * delta)/sigma))+ (−Z/sqrt(m)))− pnorm(Q * (M[l]− (w/2)+ k)− (−((sqrt(n) * delta)/sigma))+ (−Z/sqrt(m)))} #

calculates the transient probabilities for j= 1 and l= 2,3,4,…,t
ARL2=Y% *%solve(I− P)% *%matrix(1,t+ 1,1) # CARL of the lower one-sided CUSUM
((1/ARL1)+ (1/ARL2))^−1} # CARL for the two-sided CUSUM (Van Dobben de Bruyn, 1968)

Note that, the codes for the transient state probabilities are based on the mathematical formulas that were provided in Saleh et al. (2016).
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Code to apply the Modified Siegmund formula

CARL= function(br,k,h,delta,m,n){
if (n > 1) {ab= c(1,m * (n− 1))} else
{M= function(m){
(0.8264 *m−1.082)/(m−1)^2}
r= function(m){
(−2+2 * sqrt(1+ 2 *M(m)))^−1}
t= function(m){
M(m)+1/(16 * r(m)^3)}
bb= function(m){
(−2+2 * sqrt(1+ 2 * t(m)))^−1}
aa= function(m){
1+ (1/(4 * bb(m)))+ (1/(32 * bb(m)^2))− (5/(128 * bb(m)^3))}
ab= c(aa(m),bb(m))} # calculates the constants a and b as a function of m and n
Q=ab[1] * sqrt(rchisq(br,ab[2])/(ab[2]))
Z= rnorm(br)

ARL1= (exp(2 * (−((sqrt(n) * delta)/sigma)+ (Z/sqrt(m))+ k *Q) * (h * Q+1.166))− 2 * (−((sqrt(n) * delta)/sigma)+ (Z/sqrt(m))+ k *Q) * (h * Q+1.166)−1)/(2 * (−-
((sqrt(n) * delta)/sigma)+ (Z/sqrt(m))+ k * Q)^2)

ARL2=(exp(2 * (−(−(sqrt(n) * delta)/sigma)− (Z/sqrt(m))+ k *Q) * (h * Q+1.166))− 2 * (−(−(sqrt(n) * delta)/sigma)− (Z/sqrt(m))+ k * Q) * (h * Q+1.166)− 1)/(2 -
* (−(−(sqrt(n) * delta)/sigma)− (Z/sqrt(m))+ k * Q)^2)

((1/ARL1)+ (1/ARL2))^−1} # CARL for the two-sided CUSUM (Van Dobben de Bruyn, 1968)

Simulation of the distribution of the CARL

Given that (k= 0.50,h= 4.172, = 0,m=800,n= 5), run the following statement

CARLD= replicate(3000,CARL(1,k= 0.50,h=4.172,delta= 0,m=800,n=5))

where h= xcusum.crit(k= 0.50,ARL0=200,sided= “two”) and CARL(br= 1,k= 0.50,h=4.172,delta= 0,m=800,n= 5) is a random CARL
value, which is calculated either by the Markov Chain approach or the modified Siegmund approach. The 3000 CARL values are stored in the vector
CARLD.

The ordered (ascending) CARLD values and their associated relative frequency constitute an empirical CARL distribution, denoted by FN.

Code to Calculate AARLIN by integrating the modified Siegmund formula

library(cubature)
AARL= function(k,h,delta,m,n){
if (n > 1) {ab= c(1,m * (n− 1))} else
{M= function(m){
(0.8264 *m−1.082)/(m−1)^2}
r= function(m){
(−2+2 * sqrt(1+ 2 *M(m)))^−1}
t= function(m){
M(m)+1/(16 * r(m)^3)}
bb= function(m){
(−2+2 * sqrt(1+ 2 * t(m)))^−1}
aa= function(m){
1+ (1/(4 * bb(m)))+(1/(32 * bb(m)^2))− (5/(128 * bb(m)^3))}
ab= c(aa(m),bb(m))} # calculates the constants a and b as a function of m and n

CARL1= function(x){(exp(2 * (−((sqrt(n) * delta)/sigma)+ (x[1]/sqrt(m))+ k * (ab[1] * sqrt(x[2]/(ab[2])))) * (h * (ab[1] * sqrt(x[2]/(ab[2])))+ 1.166))− 2 * (−((sqrt(n) * -
delta)/sigma)+ (x[1]/sqrt(m))+ k * (ab[1] * sqrt(x[2]/(ab[2])))) * (h * (ab[1] * sqrt(x[2]/(ab[2])))+ 1.166)− 1)/(2 * (−((sqrt(n) * delta)/sigma)+ (x[1]/sqrt(m))+ k * (ab
[1] * sqrt(x[2]/(ab[2]))))^2)}

CARL2= function(x){
(exp(2 * (−(−(sqrt(n) * delta)/sigma)− (x[1]/sqrt(m))+ k * (ab[1] * sqrt(x[2]/(ab[2])))) * (h * (ab[1] * sqrt(x[2]/(ab[2])))+ 1.166))− 2 * (−(−(sqrt(n) * delta)/sigma)− (-
x[1]/sqrt(m))+ k * (ab[1] * sqrt(x[2]/(ab[2])))) * (h * (ab[1] * sqrt(x[2]/(ab[2])))+ 1.166)− 1)/(2 * (−(−(sqrt(n) * delta)/sigma)− (x[1]/sqrt(m))+ k * (ab[1] * sqrt(x[2]/
(ab[2]))))^2)}

CARL= function(x){ (((1/CARL1(x))+ (1/CARL2(x)))^−1)}
ARL= function(x){CARL(x) * dnorm(x[1],0,1) * dchisq(x[2],ab[2])}
b=qchisq(0.99999,ab[2])
adaptIntegrate(ARL,c(−100,0),c(100,b),tol= 1e−10)[[1]]}

For example, running AARL(k= 0.25,h= 6.854,delta= 0,m=1000,n= 5) gives the answer 194

Appendix B. Algorithm for finding the CARLIN,p and %RE

Step 1: Fix m, n, k, h, p0 and ARL0.
Step 2: Generate the empirical distribution of CARLIN (See Appendix A).
Step 3: Calculate the 100pth percentile CARLIN p, of FN.
Step 4: Calculate PD, see Eq. (14).
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Step 5: Interpret PD. A negative RE% value means that <CARL ARLIN p, 0 by PD percentage points. A positive PD value means that
>CARL ARLIN p, 0 by PD percentage points.

Appendix C. A step by step algorithm for finding the minimum m required to design a two-sided Phase II CUSUM control chart according
to exceedance probability criterion

Step 1: Fix p ARL h n k, , , , ,0 and a starting value of m.
Step 2: Generate FN the empirical distribution of CARLIN (See Appendix A).
Step 3: Calculate CARLIN p, .
Step 4: If >CARL ARL 1( )IN p, 0 stop and use the current value of m otherwise increment m and return to step 2.

Appendix D. A step by step algorithm for finding a suitable h via our method

Step 1: Specify p ARL m n k, , , , ,0 and a search interval for h. The lower bound of the search interval should be the value of h when the
parameters are known (Case K), (See also Table 1.).
Step 2: Generate the empirical distribution of CARLIN (See Appendix A).
Step 3: Calculate CARLIN p, .
Step 4: If >CARL ARL (1 )IN p, 0 stop and use the current h as an adjusted limit otherwise increment h by 0.1 and return to step 2.

Appendix E. A step by step algorithm for finding a suitable h via parametric bootstrapping

Step 1: Specify p ARL m n k, , , , ,0 and a search interval for h.
Step 2: Generate m samples of size n from N µ( , )0 0 .
Step 3: Calculate µ0 and g0 .
Step 4: Generate m samples of size n from N µ( , )g0 0 .
Step 5: Calculate µ0 and g0 the same way as µ0 and g0 .
Step 6: For each value of h in the specified interval of h, use Markov Chains to calculate CARLIN. Assume that the chart limits are constructed from
the Phase I estimates µ( , )0 0 and that the in-control distribution of X̄i is N µ n( , )g0 0 .
Step 7: Select the value of h (say h ) that satisfies the condition =CARL ARLIN 0.
Step 8: Repeat the Steps (4) to (7) B times (e.g. B=1000 times).
Step 9: Order the h values in ascending order.
Step 10: The adjusted limit is the (1 − p)th percentile of the ordered h values.

Appendix F. The R code for the search algorithm of h

m=25 # number of subgroups
n= 5 # sample size
ICARL=200 # in-control average runlength
epc= 0.10 # exceedance probability
e= 0 # percentage relative error
k= 0.50 # depends on anticipated shift
h= seq(from=6.64, to=1000, by= 0.01) # search interval with lower bound 6.64
for(i in 1:length(h)){
dd= replicate(500,000,CARL(1,k,h[i],0,m,n)) # the function CARL is given in Appendix A
QQ=quantile(dd,p= c(epc))
if (QQ > ICARL-e*ICARL) break
}
h[i]

Appendix G. Acronyms

Abbreviation Description

ARLIN in-control average run length
ARL0 nominal in-control average run length
CARL conditional average run length
CARLIN conditional in-control average run length
AARLIN unconditional in-control average run length
SDARLIN standard deviation of the conditional in-control average run length
CARLIN,p 100pth percentile of the conditional in-control average run length
RE relative error
PD percentage difference
m Number of Phase I subgroups of size n
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