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Abstract

Because of digitalization, many organizations possess large datasets. Further-
more, measurement data are often not normally distributed. However, when
samples are sufficiently large, the central limit theorem may be used for the sam-
ple means. In this article, we evaluate the use of the central limit theorem for
various distributions and sample sizes, as well as its effects on the performance
of a Shewhart control chart for these large non-normally distributed datasets.
To this end, we use the sample means as individual observations and a She-
whart control chart for individual observations to monitor processes. We study
the unconditional performance, expressed as the expectation of the in-control
average run length (ARL), as well as the conditional performance, expressed as
the probability that the control chart based on estimated parameters will have a
lower in-control ARL than a specified desired in-control ARL. We use recently
developed factors to correct the control limits to obtain a specified conditional
or unconditional in-control performance. The results in this paper indicate that
the X̄ control chart should be applied with caution, even with large sample sizes.
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1 INTRODUCTION

Shewhart control charts are commonly used to monitor
process data. Typically, the performance of such control
charts is heavily dependent on the assumption of normally
distributed data. In practice, this assumption is often vio-
lated. For example, Alwan1 analyzed 235 real datasets and
concluded that most of these datasets do not meet the
assumptions underlying the traditional control charts.

Since recent advances have led to an increase in the
amount of available information, one way to work around
the violation of the normality assumptions is to gather
larger datasets and use subgroup averages instead of indi-

vidual observations. Because averages are normally dis-
tributed under certain conditions, according to the central
limit theorem (CLT), this should largely resolve the issue
of non-normally distributed data (cf Billingsley2).

While the approach of using averages instead of individ-
ual observations is suitable for many statistical techniques,
the major difference with many other statistical techniques
is that in statistical process monitoring (SPM) we are inter-
ested in the long tail behavior of the distribution. This
means that, even when the statistic is almost normally dis-
tributed, small deviations at the long tails can lead to a
bad control chart performance in terms of the false alarm
rate and the average run length (ARL). In this paper, we
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therefore investigate the performance of Shewhart-type X̄
control charts for large non-normally distributed datasets
using the convolutions of the distributions. To the best of
our knowledge, the performance of Shewhart X̄ control
charts in this setting has not been investigated thus far.

The paper is structured as follows. In the next section,
we briefly describe the model and control charts consid-
ered in this paper. Subsequently, in Section 3, the CLT
is summarized followed by the convolutions of various
probability distributions. In Section 4, we investigate the
differences between the normal and non-normal convo-
lutions. Next, Section 5 describes the performance of the
Shewhart control chart based on large non-normally dis-
tributed datasets. Finally, Section 6 provides some con-
cluding remarks.

2 THE CLASSICAL SHEWHART
CONTROL CHART

Because of the increase in data supply and storage, nowa-
days organizations often possess large datasets. As the CLT
states that under certain conditions the sample means are
normally distributed when the samples are sufficiently
large, we could treat the sample means as individual obser-
vations and use a Shewhart control chart for individual
observations under normal theory. To construct such a
chart, m samples of size n are collected when the process
is assumed to be in control. On the basis of these data, the
process mean 𝜇 is estimated by

X = 1
m

m∑
i=1

X̄i =
1
m

m∑
i=1

(
1
n

n∑
𝑗=1

Xi𝑗

)
, (1)

where Xij is the j-th observation in the i-th subgroup (i =
1, 2, … ,m and j = 1, 2, … ,n), and the process standard
deviation 𝜎 is estimated from the standard deviation of the
sample means X̄i

S =

(
1

m − 1

m∑
i=1

(X̄i − X)2

)1∕2

. (2)

An unbiased estimator of the standard deviation of
the sample means (𝜎∕

√
n) is S∕c4(m), where c4(m) is

defined by

c4(m) =
( 2

m − 1

)1∕2 Γ(m∕2)
Γ((m − 1)∕2)

.

The choice of the estimator of the standard deviation of
the sample means is based on Cryer and Ryan.3 We have
also evaluated the alternative and more traditional estima-
tor based on moving ranges (which was also used by Roes

Correction added on 19 June 2018, after first online publication: the
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et al4). However, the use of this estimator has not improved
the performance of the Shewhart X̄ control chart, which
confirms the result of Cryer and Ryan.3 The control limits
based on estimated parameters are given by

ÛCL = X + kS∕c4(m), L̂CL = X − kS∕c4(m), (3)

with ÛCL and L̂CL the respective upper and lower control
chart limits and k the factor used to achieve the desired
in-control performance. When the process parameters are
known, k is commonly set equal to 3, which yields a false
alarm rate of 0.0027 or equivalently an ARL of 370.4.
However, when process parameters are unknown, other
values can be chosen to match a certain desired perfor-
mance. Obtaining a desired control chart performance for
practitioners in expectation represents the unconditional
performance of the control chart. Recently, factors ku have
been derived to ensure that the in-control ARL in expec-
tation (EARL) is equal to a specified value (EARL0) (see
Goedhart et al5).

Another recent development is to evaluate control chart
design on the variation of the in-control ARLs of the indi-
vidually estimated, also called conditional control charts.
Saleh et al6 investigated the conditional performance of
the traditional control charts based on estimated parame-
ters. They show that for estimated control chart limits for
k = 3 the probability of ending up with an estimated chart
that has an in-control conditional ARL (CARL) lower than
370.4 is considerable. Goedhart et al7 developed new cor-
rection factors kc for control charts in order to ensure that
the probability (PE) that a design delivers an estimated con-
trol chart with an in-control CARL lower than a specified
value (CARL0) is at most a specified probability (p).

In this article, we study both the unconditional and con-
ditional performance of the control chart constructed with
(3) including the newly developed factors, for the cases
where the data are non-normally distributed and vari-
ous sample sizes (n = 5, 30, 50, 100, 250, 1000). With this
model, we can investigate whether the CLT works well and
whether the newly developed correction factors are appli-
cable to large non-normal datasets as well. We consider
the normal distribution, the standard uniform distribu-
tion, heavy tailed symmetrical distributions (Student's t4
and t10 and the logistic distribution), and skewed distri-
butions (the lognormal, Gamma(5, 1), Gamma( 5

2
, 2) ∼ 𝜒2

5
and 𝜒2

20 distributions).
The distribution of the sample means for any one of

these non-normal distributions can be found using the
convolution of that non-normal distribution, ie,

X̄ = 1
n

n∑
i=1

Xi =
1
n

Cn,

where Cn is the convolution of n i.i.d. random vari-
ables with distribution F. In the next section we pro-
duce the distribution of Cn for the considered non-normal
distributions.
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3 THE DISTRIBUTION OF THE
SAMPLE MEAN

Let X1,X2, … ,Xn be n i.i.d. observations drawn from F,
with E[Xi] = 𝜇 and Var[Xi] = 𝜎2 < ∞. Then as n tends
to infinity, the random variables

√
n(X̄ − 𝜇) converge in

distribution to a normal N(0, 𝜎2) (cf Billingsley2), ie,√
n
(( 1

n
Cn

)
− 𝜇

) d
−→N(0, 𝜎2).

Hence the asymptotic distribution of the sample means
is normal under the above restrictions. The exact distribu-
tion for finite values of n can be obtained by evaluating
the convolution. To assess the performance of the She-
whart control chart for sample means of non-normally
distributed samples, we need the distributional properties
of the convolution of these samples: Cn =

∑n
i=1 Xi. The con-

volutions will allow an investigation of the distribution of
the sample means of non-normal distributions and a com-
parison with the asymptotic normal distribution according
to the CLT.

The convolutions are given below; further details on the
derivations and approximations are given in the appendix.

3.1 The convolutions
3.1.1 The normal distribution
The convolution of i.i.d. normal random variables is just a
normal distribution, with mean n𝜇 and variance n𝜎2

Cn ∼ N(n𝜇,n𝜎2).

3.1.2 The uniform distribution
The convolution of i.i.d. standard uniform random vari-
ables has an Irwin-Hall (IH) distribution, which has a
piecewise polynomial probability density function with
parameter n (see Hall8):

Cn ∼ IH(n).

3.1.3 The Student's tv distribution with 𝜈
degrees of freedom
For 𝜈 = 1, t1 is equal to a standard Cauchy distribution and
its convolution Cn will have a Cauchy distribution as well
(see Blyth9):

Cn ∼ Cauch𝑦(0,n),
where 0 and n denote the location and scale parameters
of the Cauchy distribution respectively. Note that the con-
ditions needed to apply the CLT do not hold for this case,
as the Cauchy distribution has no finite mean and vari-
ance. For 𝜈 > 1, we use an approximation based on the
numerical inversion of the characteristic function.

3.1.4 The logistic distribution
The standardized version of the sum of i.i.d. logistically
distributed random variables with 𝜇 = 0 and s = 1 can
be approximated by a Student's t𝜈 distributed random vari-
able with 𝜈 = 5n + 4 degrees of freedom (George and
Mudholkar10):

Cn ∼̇ t5n+4.

3.1.5 The lognormal distribution
The distribution of the convolution Cn of the lognormal
distribution can be approximated using 2 methods: the
Fenton-Wilkinson approximation by Fenton11 or the Pear-
son IV approximation by Nie and Chen.12 The performance
of the Pearson IV approximation turns out to be more
accurate than the Fenton-Wilkinson approximation as it
matches 2 more moments (see Section 3.2). In the sequel,
we will use the Pearson IV approximation

Cn ∼̇PearsonIV (𝜆, 𝛼,m, 𝜈),

with location parameter 𝜆, scale parameter 𝛼 > 0, and
shape parameters m > 1

2
, 𝜈 ≠ 0.

3.1.6 The gamma Γ(𝛼, 𝛽) distribution
with parameters 𝛼 and 𝛽

If Xi is gamma distributed Xi ∼ Γ(𝛼, 𝛽), with parameters
𝛼 and 𝛽, then its convolution is gamma distributed with
parameters n𝛼 and 𝛽

Cn ∼ Γ(n𝛼, 𝛽).

3.1.7 The chi-squared 𝜒2
𝜈 distribution

with 𝜈 degrees of freedom
The convolution distribution of the sum of n i.i.d.
chi-squared random variables with 𝜈 degrees of freedom
is again a chi-squared distribution with n𝜈 degrees of free-
dom:

Cn ∼ 𝜒2
n𝜈.

3.2 Accuracy of the approximated
distributions
As reported in the previous section, the convolutions of
the Student's t𝜈 with 𝜈 > 1, logistic and lognormal distri-
butions have to be approximated. In the graphs in the left
column of Figure 1, the approximated densities of the con-
volutions for the t10, t4, logistic and lognormal distributions
are plotted and compared with the empirical distribution
based on 6 million samples. The graphs in the middle
and right columns of Figure 1 zoom in on the 0.135th
and 99.865th percentiles of the distributions. The graphs



982 HUBERTS ET AL.

FIGURE 1 Approximated versus empirical densities for n = 30 [Colour figure can be viewed at wileyonlinelibrary.com]

show that the approximated t10, t4, and logistic convolu-
tions are accurate. For the lognormal approximations, we
find that the Pearson IV approximation is closer to the

empirical distribution than the Fenton-Wilkinson approx-
imation. Thus, we will use the Pearson IV approximation
in the sequel.

http://wileyonlinelibrary.com
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FIGURE 2 Densities of non-normal convolutions versus normal distributions for n = 5 and 𝛼 = 0.0027 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 3 Densities of non-normal convolutions versus normal distributions for n = 30 and 𝛼 = 0.0027 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 4 Densities of non-normal convolutions versus normal distributions for n = 250 and 𝛼 = 0.0027 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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4 EVALUATION OF THE CENTRAL
LIMIT THEOREM

To investigate the differences between the actual distri-
bution of the sample mean and the appropriate normal
distribution, we have plotted both distributions and the tail
behaviors. In Figures 2 to 4, we have used n = 5, 30, 250
and 𝛼 = 0.0027 to investigate the tail behaviors. The graphs
on the left give the densities, while the graphs in the mid-
dle and on the right zoom in on the 0.135th and 99.865th
percentiles of the distributions.

The graphs show that, for a sample size of n = 30 or
larger, the convolutions of the uniform, t10 and logistic
distributions, do not deviate much from the normal dis-
tribution. The distribution of the t4 convolution, however,
clearly has wider tails than the normal distribution.

The overall distribution of the Gamma convolution is
quite close to normal, with gamma( 5

2
, 2) ∼ 𝜒2

5 closer
to normal than gamma(5,1). When we zoom in on the
tail behavior, the gamma distributions show skewed tail
behavior with narrower tails on the left and wider tails on
the right than the normal distribution.

The 𝜒2
20 convolution deviates a little from the normal

distribution, but less so than the 𝜒2
5 convolution.

The lognormal convolution shows the largest difference
with the normal distribution. The distribution of the log-
normal convolution is still strongly skewed for large values
of n (n = 250).

Note that when we consider a relatively small sample
size (n = 5), there are large differences for all distributions.
This indicates that the normal approximation is not good
enough for small sample sizes.

5 CONTROL CHART
PERFORMANCE

5.1 Simulation procedure
To evaluate the control chart performance, we conduct
10 000 simulation runs for each parameter combination.
For each simulation run

1. A dataset consisting of m samples of size n is gener-
ated. On the basis of these data,𝜇 is estimated by X and
𝜎∕

√
n is estimated by S∕c4(m), using (1) and (2). Next,

ÛCL and L̂CL can be determined using (3). Factor ku
is based on Goedhart et al5 and factor kc on Goedhart
et al.7

2. For each dataset, the conditional false alarm rate
(CFAR) is calculated as CFAR = 1 − P(L̂CL < X̄ <

ÛCL) = 1 − P(nL̂CL < Cn < nÛCL) using the
convolutions of Section 3.1. The CARL is given by
1∕CFAR.

When we perform the above procedure, we end up with
10 000 CARLs of individually estimated control charts.
When ku is used, the EARL is estimated by averaging the
10 000 CARLs of the simulated control charts. When kc is
used, the exceedance probability (PE) is obtained by deter-
mining the percentage of CARLs lower than a specified
value (CARL0). Both the unconditional and conditional
results were verified using the empirical distribution of the
non-normal distributions.

We expect that the higher EARL0 or CARL0, the larger
the sample size should be to ensure that the performance
of the control charts is as desired. This is because the
higher these values are, the more our interest moves
towards the long tail of the distribution of the sample
means, where minor deviations from the normal approx-
imation have more impact on the performance. For this
reason, we consider various values for EARL0 and CARL0,
namely, 1000, 370.4, and 100.

Finally, as we expect that the correction factors are more
accurate when the sample size (n) is larger, we consider a
broad range of values, namely, n = 5, 30, 50, 100, 250, 1000.
For the amount of samples m, we take values m = 30, 50,
100, 200.

5.2 Unconditional performance
In this section, we present the simulation results of the
control charts based on (3) and ku as defined in Goedhart
et al.5 Tables 1 to 3 present the results for an EARL0 equal
to 1000, 370.4, and 100, respectively. Each table presents
the EARL and 5th, 50th and 95th percentiles of the CARL
distribution.

Each table shows that the larger the sample size (n),
the closer the EARL is to its desired value EARL0 and so
the more applicable is the correction factor. Increasing the
number of samples (m) also reduces the deviation in per-
formance with respect to the case of normally distributed
data, but the impact of m is less strong than the impact of n,
as was to be expected. Also, the value of EARL0 is of influ-
ence: the higher EARL0, the larger the sample size should
be to obtain a performance that resembles the performance
under normality. This can be explained as the relative dif-
ference between the distributions of the means based on
the non-normal and normal distributions is the largest
in the tails of the distributions. To give an example, for
the case EARL0 = 1000, the t10 and logistic distributions
require a sample size of 100 or larger in order to obtain
a reasonable in-control performance with the use of the
given correction factors while, for the case EARL0 = 100,
a sample size of 30 is sufficient to obtain the desired EARL
values.

As discussed in Section 4, the uniform distribution is the
only distribution that has a convolution distribution with
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thinner tails than the normal distribution on both sides.
This produces extremely large EARL values for small n.
Furthermore, as the uniform distribution is bounded by
an interval, conditional control limits have been generated

that produce a CFAR of zero for small values of n giving
an infinite CARL. Tables 1 to 3 show the amount of infi-
nite values we found for the uniform distribution within
the second parentheses.

TABLE 1 EARL (5th, 50th, 95th percentile of CARL) with EARL0 = 1000

n Distribution m = 30 m = 50 m = 100 m = 200

5 Normal 871 (47,300,3216) 996 (98,478,3207) 1005 (206,690,2816) 1009 (344,832,2256)
Uniforma 1.9*1012 (60,656, 4.5*109 (155,1554, 9.2*109 (434,3284, 81054 (995,4941,

83126)(4837) 113257)(3213) 102822)(1036) 58812)(95)
t10 448 (42,213,1516) 500 (79,305,1535) 536 (151,422,1295) 550 (232,486,1082)
t4 157 (31,101,395) 169 (48,127,388) 185 (77,155,360) 187 (102,170,312)
Logistic 409 (41,201,1377) 452 (79,295,1292) 495 (147,392,1195) 506 (216,451,985)
Lognormal 98 (16,48,233) 90 (23,56,204) 82 (32,64,172) 82 (40,69,146)
Gamma(5, 1) 431 (40,200,1490) 441 (73,275,1321) 429 (127,341,1014) 427 (187,378,835)
Gamma( 5

2
, 2) ∼ 𝜒2

5 289 (35,149,941) 298 (59,198,850) 297 (97,241,684) 290 (134,262,544)
𝜒2

20 589 (43,235,2024) 584 (82,347,1814) 592 (157,451,1503) 588 (235,514,1190)

30 Normal 978 (47,307,3430) 996 (101,479,3263) 1001 (203,682,2886) 998 (341,823,2215)
Uniform 1136 (48,334,4000)(0) 1252 (104,549,4260)(0) 1205 (230,792,3490)(0) 1206 (386,965,2829)(0)
t10 748 (49,280,2648) 857 (94,439,2812) 866 (195,620,2332) 876 (316,748,1881)
t4 312 (41,180,911) 363 (72,255,946) 396 (132,326,845) 401 (191,367,718)
Logistic 715 (45,269,2544) 861 (94,433,2798) 850 (194,606,2314) 858 (311,723,1842)
Lognormal 121 (25,77,315) 127 (38,93,293) 124 (54,106,244) 128 (70,115,212)
Gamma(5, 1) 722 (47,270,2581) 805 (96,424,2508) 793 (183,568,2113) 800 (289,679,1700)
Gamma( 5

2
, 2) ∼ 𝜒2

5 637 (46,252,2241) 682 (92,386,2142) 681 (169,510,1784) 678 (264,582,1405)

𝜒2
20 847 (48,281,2773) 884 (96,441,2973) 891 (197,633,2368) 884 (313,743,1911)

50 Normal 911 (48,296,3256) 1040 (100,475,3233) 999 (211,694,2745) 995 (341,823,2222)
Uniform 996 (48,307,3385)(0) 1159 (103,510,3742)(0) 1087 (216,738,3078)(0) 1088 (359,895,2446)(0)
t10 832 (48,293,2886) 881 (96,452,2939) 924 (195,651,2597) 912 (318,763,2013)
t4 378 (43,208,1230) 427 (83,294,1201) 471 (147,384,1048) 491 (224,445,916)
logistic 788 (46,287,2783) 886 (97,447,2990) 898 (190,643,2388) 914 (322,765,2007)
Lognormal 148 (28,90,403) 151 (43,112,358) 159 (63,130,303) 155 (83,140,259)
Gamma(5, 1) 818 (47,288,2987) 858 (95,438,2886) 884 (199,626,2374) 866 (312,725,1895)
Gamma( 5

2
, 2) ∼ 𝜒2

5 797 (46,265,2556) 766 (91,412,2403) 782 (182,554,2103) 785 (291,669,1664)
𝜒2

20 850 (48,291,2930) 926 (99,457,3136) 925 (193,660,2563) 941 (323,783,2098)

100 Normal 974 (48,304,3349) 932 (97,475,3080) 992 (205,693,2746) 1009 (342,846,2234)
Uniform 992 (49,305,3339)(0) 1003 (100,490,3393)(0) 1052 (215,715,2901)(0) 1056 (352,871,2360)(0)
t10 920 (47,295,3145) 950 (101,482,3130) 960 (201,666,2644) 969 (333,812,2143)
t4 473 (44,235,1599) 554 (90,353,1670) 592 (165,464,1396) 622 (258,553,1241)
logistic 970 (46,287,2953) 922 (99,459,3090) 947 (207,660,2573) 956 (330,795,2076)
Lognormal 394 (32,115,562) 205 (51,149,515) 209 (82,179,425) 211 (109,192,361)
Gamma(5, 1) 841 (49,289,3049) 898 (96,460,2939) 928 (200,657,2516) 939 (322,778,2077)
Gamma( 5

2
, 2) ∼ 𝜒2

5 822 (47,287,2858) 874 (96,453,2937) 865 (192,625,2280) 864 (314,728,1882)

𝜒2
20 864 (49,293,3217) 949 (100,471,3186) 959 (205,666,2614) 957 (332,801,2102)

250 Normal 947 (48,300,3168) 1003 (97,477,3285) 996 (203,695,2782) 1004 (338,832,2233)
Uniform 945 (47,299,3524)(0) 987 (99,477,3258)(0) 1000 (210,701,2827)(0) 1018 (342,839,2285)(0)
t10 876 (48,294,3282) 939 (101,485,3180) 996 (203,685,2795) 977 (334,819,2145)
t4 605 (46,270,2204) 699 (91,407,2192) 759 (182,571,1960) 770 (293,663,1583)
logistic 906 (47,295,3170) 970 (100,478,3229) 975 (204,681,2660) 983 (335,808,2170)
Lognormal 372 (37,165,1011) 334 (68,225,929) 363 (112,281,771) 342 (162,312,621)
Gamma(5, 1) 900 (48,297,3030) 954 (97,472,3135) 984 (205,676,2680) 972 (334,814,2123)
Gamma( 5

2
, 2) ∼ 𝜒2

5 925 (48,293,3086) 933 (99,467,2989) 940 (199,663,2567) 955 (335,799,2089)
𝜒2

20 877 (48,299,3002) 976 (102,472,3167) 1002 (205,681,2783) 985 (338,818,2171)

(Continues)
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TABLE 1 (Continued)

n Distribution m = 30 m = 50 m = 100 m = 200
1000 Normal 1122 (47,299,3286) 996 (99,476,3170) 1002 (206,690,2789) 1002 (340,830,2227)

Uniform 914 (49,294,3172)(0) 985 (102,482,3304)(0) 1006 (210,701,2787)(0) 977 (338,829,2226)(0)
t10 852 (48,301,3291) 979 (102,489,3187) 978 (204,683,2691) 1001 (345,837,2210)
t4 812 (47,289,2927) 852 (96,445,2892) 907 (200,644,2425) 913 (332,772,1983)
logistic 925 (47,300,3082) 976 (99,476,3302) 1000 (213,689,2784) 991 (334,830,2195)
Lognormal 596 (43,240,2014) 632 (88,365,1969) 646 (163,482,1640) 647 (257,564,1304)
Gamma(5, 1) 929 (49,301,3246) 1028 (101,487,3305) 983 (207,684,2746) 998 (340,831,2227)
Gamma( 5

2
, 2) ∼ 𝜒2

5 889 (47,295,3191) 991 (98,470,3345) 990 (203,683,2783) 981 (338,822,2180)

𝜒2
20 974 (48,300,3222) 1057 (98,477,3392) 1007 (202,695,2796) 991 (336,821,2169)

aThe amount of infinite CARL values we found is indicated within the second parentheses.

In Section 4, we already indicated large differences
between the normal distribution and the distributions of
the lognormal and t4 convolutions and small deviations
compared with the uniform, t10, logistic, Gamma(5, 1),
Gamma( 5

2
, 2) ∼ 𝜒2

5 , and 𝜒2
20 convolutions. The EARL

results confirm these hypotheses, as for all values of n
and m the lognormal EARL values are consistently far
below the desired EARL0, indicating the strong skewness
as observed in the analysis of the convolutions.

5.3 Conditional performance
In this section, we present the results of the control charts
based on (3) with kc such that the probability of having an
in-control CARL lower than a specified value (CARL0) is
equal to p (cf Goedhart et al7). We set p = 10%. Tables 4
to 6 present the realized exceedance probabilities PE for
a specified CARL0 of 1000, 370.4, and 100, respectively.
Each table presents the results for various sample sizes
(n = 5, 30, 50, 100, 250, 1000), various numbers of samples
(m = 30, 50, 100, 200), and various distributions (normal,
uniform, t10, t4, logistic with 𝜇 = 0 and s = 1, lognormal
with 𝜇 = 0 and 𝜎 = 1, Gamma(5, 1), Gamma( 5

2
, 2) ∼ 𝜒2

5
and 𝜒2

20).
As for the unconditional case, the tables show that the

larger the sample size (n), the closer PE is to its desired
value p(10%), and so the better the applicability of the con-
trol charts. Also, the value for CARL0 has an impact: the
lower the CARL0, the closer the control chart performance
is to the desired performance. This can be explained by
the increase in relative difference further in the tails of the
distributions.

The normal approximation is worst in the case of the
lognormal distribution, as we see that the deviation of PE
with respect to p = 10% is the largest. A very large sample
size (n) is needed to guarantee a desired conditional perfor-
mance. In the case of CARL0 = 100, a sample size of 1000
gives reasonable PE values, also for the lognormal distribu-
tion, while for CARL0 = 1000 and 370.4 even a sample size

of 1000 is not large enough to ensure the right exceedance
probabilities.

Interestingly, increasing m actually increases PE for the
non-normal distributions in most situations. For example,
the t4 distribution for CARL0 = 370.4 and n = 50 has a PE
of 17.2% for m = 30. With m increased to 200, for t4 now
40.3% of the CARLs are below the desired CARL0 = 370.4.
This can be explained by a decrease in parameter estimate
variation and thus a decrease in the constant kc, causing
tighter control limits.

6 SUMMARY AND CONCLUDING
REMARKS

In this paper, we have studied the applicability of the CLT
to large non-normal datasets. According to the CLT, suffi-
ciently large samples should lead to normally distributed
sample averages. However, since SPM is concerned with
the far tail of the distribution, it was unclear whether the
convergence to normality would be sufficient.

In this research, we have thus investigated whether the
charting constants that are designed for normally dis-
tributed data can also be applied to large non-normal
datasets. In particular, we have applied the Shewhart con-
trol chart for individual observations to monitor the sam-
ple means of non-normally distributed datasets.

The study demonstrates that the appropriateness of
the control charting constants, also for non-normally dis-
tributed data, depends on various factors. These factors
include the sample size (n), the number of samples (m),
the specified desired performance of the control chart, and
the degree of the deviation from normality. When the devi-
ation from normality is moderate (as is the case for the
uniform, t10, logistic, Gamma(5, 1), Gamma( 5

2
) ∼ 𝜒2

5 , and
𝜒2

20 distributions), a sample size of 100 is large enough to
ensure appropriate use of the correction factors.

However, when the deviation from normality is substan-
tial due to heavy tails (t4) or substantial skewness (lognor-
mal), the correction factors are not applicable even when
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TABLE 2 EARL (5th, 50th, 95th percentile of CARL) with EARL0 = 370.4

n Distribution m = 30 m = 50 m = 100 m = 200

5 Normal 378 (32,155,1224) 365 (56,217,1142) 375 (103,283,945) 368 (148,321,737)
Uniforma 271351 (36,251,7283)(2202) 15844 (74,430,6530)(679) 3061 (157,663,5127)(32) 1292 (279,827,3571)(0)
t10 224 (28,121,727) 245 (49,165,693) 246 (81,202,561) 252 (118,228,469)
t4 128 (22,70,276) 113 (34,85,258) 119 (51,102,226) 121 (66,109,197)
Logistic 211 (28,117,683) 225 (47,155,623) 230 (80,190,506) 238 (113,217,434)
Lognormal 75 (14,39,177) 67 (19,45,169) 64 (26,51,132) 63 (33,55,114)
Gamma(5, 1) 236 (29,123,786) 229 (47,156,642) 224 (77,185,498) 224 (107,204,410)
Gamma( 5

2
, 2) ∼ 𝜒2

5 171 (26,101,523) 174 (42,124,462) 170 (63,143,363) 167 (84,154,294)
𝜒2

20 292 (30,138,966) 284 (51,177,854) 278 (86,222,656) 278 (126,249,529)
30 Normal 344 (32,155,1167) 366 (57,219,1123) 366 (101,282,907) 368 (150,322,746)

Uniform 406 (31,167,1413)(0) 430 (58,239,1355)(0) 417 (109,310,1073)(0) 418 (166,357,874)(0)
t10 324 (31,149,1085) 340 (54,206,1047) 340 (94,264,836) 340 (145,299,675)
t4 193 (27,111,543) 197 (48,144,510) 209 (75,174,440) 212 (106,193,367)
Logistic 338 (31,145,1052) 323 (55,204,986) 336 (96,263,817) 338 (145,297,669)
Lognormal 89 (20,59,230) 92 (29,70,210) 89 (40,77,170) 90 (51,83,149)
Gamma(5, 1) 318 (30,147,1059) 328 (56,202,958) 331 (95,262,793) 331 (141,294,645)
Gamma( 5

2
, 2) ∼ 𝜒2

5 302 (31,144,1042) 304 (54,193,906) 302 (90,241,715) 301 (132,266,586)

𝜒2
20 349 (31,151,1166) 344 (56,208,1035) 352 (99,271,871) 347 (146,304,690)

50 Normal 336 (31,152,1112) 370 (56,220,1127) 366 (101,282,905) 368 (151,322,744)
Uniform 373 (31,156,1244)(0) 407 (58,226,1237)(0) 389 (105,295,984)(0) 390 (157,339,788)(0)
t10 366 (30,148,1096) 352 (57,213,1065) 349 (98,273,867) 349 (148,306,694)
t4 213 (29,120,639) 225 (49,159,591) 236 (80,195,500) 243 (116,220,434)
Logistic 327 (31,149,1127) 344 (55,210,1051) 344 (97,269,835) 352 (149,308,695)
Lognormal 130 (21,67,272) 104 (32,79,240) 105 (46,91,204) 104 (58,97,172)
Gamma(5, 1) 350 (31,147,1187) 342 (56,206,1043) 345 (100,267,841) 348 (145,309,691)
Gamma( 5

2
, 2) ∼ 𝜒2

5 334 (31,145,1119) 324 (55,204,980) 329 (96,256,785) 323 (137,286,630)
𝜒2

20 358 (32,152,1197) 352 (55,212,1083) 356 (99,274,876) 358 (147,314,719)
100 Normal 371 (31,153,1233) 367 (56,215,1127) 369 (102,282,927) 367 (149,323,739)

Uniform 373 (32,156,1247)(0) 371 (56,221,1152)(0) 382 (105,290,948)(0) 384 (156,334,774)(0)
t10 349 (30,154,1245) 356 (56,215,1057) 364 (101,279,897) 358 (149,312,711)
t4 253 (29,129,758) 271 (50,182,755) 279 (88,225,623) 282 (128,253,529)
Logistic 334 (31,153,1157) 346 (56,209,1073) 361 (101,275,907) 359 (147,317,716)
Lognormal 147 (24,83,377) 134 (36,98,331) 131 (54,114,261) 133 (72,123,222)
Gamma(5, 1) 372 (31,156,1275) 361 (55,211,1067) 359 (102,277,896) 360 (149,317,713)
Gamma( 5

2
, 2) ∼ 𝜒2

5 338 (31,149,1153) 356 (55,212,1088) 348 (98,269,856) 347 (146,304,694)

𝜒2
20 366 (31,152,1164) 364 (56,216,1134) 367 (102,281,909) 362 (148,315,726)

250 Normal 372 (32,154,1227) 371 (55,220,1152) 370 (103,283,924) 371 (153,325,740)
Uniform 364 (31,154,1314)(0) 368 (56,216,1119)(0) 370 (103,286,935)(0) 374 (152,326,759)(0)
t10 361 (31,154,1232) 357 (56,214,1089) 373 (102,286,918) 365 (151,321,731)
t4 295 (30,141,956) 308 (54,197,904) 313 (94,253,735) 317 (137,282,607)
Logistic 362 (33,154,1201) 357 (54,217,1084) 366 (101,279,923) 365 (150,319,730)
Lognormal 206 (27,106,580) 187 (44,134,491) 191 (70,159,409) 191 (95,175,334)
Gamma(5, 1) 365 (31,160,1258) 362 (58,213,1122) 367 (100,282,905) 367 (150,320,747)
Gamma( 5

2
, 2) ∼ 𝜒2

5 359 (31,157,1220) 364 (55,215,1092) 361 (100,280,889) 359 (149,314,721)
𝜒2

20 360 (32,156,1220) 360 (56,217,1120) 364 (98,278,905) 368 (153,320,746)
1000 Normal 376 (32,151,1235) 358 (56,215,1100) 372 (102,285,947) 367 (153,322,730)

Uniform 356 (32,152,1199)(0) 368 (57,219,1199)(0) 373 (103,287,926)(0) 369 (151,323,745)(0)
t10 367 (32,154,1220) 368 (56,218,1141) 365 (101,278,914) 369 (152,321,744)
t4 323 (32,150,1150) 339 (56,210,1013) 357 (100,276,876) 353 (148,310,706)
Logistic 347 (31,153,1155) 363 (56,215,1125) 371 (100,286,904) 365 (150,319,735)
Lognormal 282 (29,135,926) 290 (52,184,845) 288 (88,230,671) 287 (127,258,544)
Gamma(5, 1) 367 (31,154,1189) 369 (58,217,1165) 373 (103,281,923) 367 (151,321,747)
Gamma( 5

2
, 2) ∼ 𝜒2

5 341 (31,153,1190) 371 (57,222,1149) 369 (101,284,911) 369 (150,322,750)

𝜒2
20 357 (31,155,1225) 361 (56,213,1110) 374 (100,280,959) 367 (149,319,736)

aThe amount of infinite CARL values we found is indicated within the second parentheses.
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TABLE 3 EARL (5th, 50th, 95th percentile of CARL) with EARL0 = 100

n Distribution m = 30 m = 50 m = 100 m = 200

5 Normal 100 (16,59,305) 101 (25,73,261) 99 (39,85,206) 100 (51,92,176)
Uniforma 187 (18,73,585)(151) 165 (29,96,480)(2) 155 (47,119,382)(0) 150 (67,131,299)(0)
t10 80 (16,53,226) 83 (24,64,212) 83 (35,73,165) 83 (46,78,138)
t4 59 (14,39,142) 60 (20,46,129) 60 (27,52,112) 60 (35,55,95)
Logistic 78 (16,51,219) 78 (23,61,193) 80 (34,70,159) 81 (45,76,133)
Lognormal 48 (11,29,127) 104 (14,33,111) 46 (19,36,89) 44 (24,38,75)
Gamma(5, 1) 92 (16,56,267) 89 (24,66,221) 87 (36,75,176) 87 (46,81,148)
Gamma( 5

2
, 2) ∼ 𝜒2

5 81 (16,53,236) 79 (23,61,196) 76 (33,67,150) 76 (43,72,124)
𝜒2

20 96 (17,59,284) 93 (25,70,234) 93 (37,80,192) 94 (50,87,161)
30 Normal 99 (17,58,297) 102 (26,74,261) 101 (38,86,214) 101 (52,93,175)

Uniform 105 (17,62,326)(0) 108 (26,77,287)(0) 105 (40,89,226)(0) 106 (54,97,189)(0)
t10 97 (17,59,287) 96 (25,72,244) 97 (38,83,200) 96 (50,89,165)
t4 80 (16,51,207) 85 (23,61,180) 79 (34,69,152) 80 (45,74,130)
Logistic 93 (16,58,280) 94 (25,69,237) 94 (37,82,194) 96 (51,89,164)
Lognormal 57 (14,38,143) 54 (19,43,122) 55 (25,47,101) 53 (31,49,85)
Gamma(5, 1) 97 (17,59,295) 97 (25,71,249) 97 (38,83,204) 98 (51,91,170)
Gamma( 5

2
, 2) ∼ 𝜒2

5 97 (17,59,287) 95 (25,70,246) 96 (38,83,199) 95 (50,88,163)

𝜒2
20 100 (17,58,309) 99 (26,72,260) 99 (39,85,207) 99 (52,91,170)

50 Normal 102 (17,59,301) 97 (26,72,244) 99 (39,85,206) 101 (52,93,174)
Uniform 101 (17,59,300)(0) 105 (26,74,273)(0) 102 (39,87,216)(0) 102 (53,94,177)(0)
t10 99 (17,59,301) 98 (25,71,257) 97 (38,84,203) 98 (51,90,169)
t4 88 (16,53,225) 85 (24,64,197) 84 (35,72,163) 85 (47,78,140)
Logistic 96 (17,57,292) 96 (25,70,253) 97 (39,83,199) 97 (51,90,165)
Lognormal 65 (15,41,149) 64 (20,46,133) 58 (27,51,106) 57 (34,54,92)
Gamma(5, 1) 96 (17,58,292) 100 (26,73,266) 98 (38,84,204) 99 (51,91,171)
Gamma( 5

2
, 2) ∼ 𝜒2

5 106 (16,59,304) 98 (25,72,255) 98 (39,83,203) 97 (50,90,168)
𝜒2

20 99 (17,58,308) 99 (26,72,262) 99 (39,85,207) 99 (51,92,173)
100 Normal 97 (17,58,298) 98 (25,73,252) 99 (38,84,208) 100 (52,92,175)

Uniform 101 (17,60,305)(0) 100 (25,73,262)(0) 101 (40,86,212)(0) 102 (53,94,177)(0)
t10 96 (17,58,283) 98 (25,73,254) 99 (38,84,210) 99 (52,92,171)
t4 93 (16,55,248) 88 (25,66,216) 91 (37,78,182) 91 (48,84,155)
Logistic 100 (17,59,304) 99 (25,72,263) 98 (39,84,205) 99 (51,91,173)
Lognormal 73 (15,44,181) 66 (21,52,150) 76 (30,58,124) 65 (38,61,104)
Gamma(5, 1) 101 (17,59,293) 101 (26,73,268) 99 (38,84,209) 99 (52,92,171)
Gamma( 5

2
, 2) ∼ 𝜒2

5 98 (16,58,295) 100 (26,73,260) 99 (39,85,204) 99 (51,92,170)

𝜒2
20 99 (17,59,303) 99 (26,72,259) 100 (39,85,208) 100 (52,93,171)

250 Normal 99 (17,59,299) 102 (25,74,263) 100 (38,85,212) 100 (52,92,175)
Uniform 101 (16,59,319)(0) 100 (25,72,258)(0) 100 (39,86,212)(0) 100 (52,92,176)(0)
t10 100 (17,59,302) 99 (25,72,258) 100 (39,86,211) 99 (52,92,172)
t4 93 (17,58,284) 100 (24,69,232) 96 (38,81,192) 95 (50,87,163)
Logistic 102 (17,60,312) 101 (25,73,257) 100 (38,85,212) 99 (51,92,173)
Lognormal 95 (15,50,223) 79 (23,60,190) 78 (34,68,155) 77 (43,72,126)
Gamma(5, 1) 99 (17,60,307) 99 (26,74,257) 99 (39,85,207) 100 (52,92,177)
Gamma( 5

2
, 2) ∼ 𝜒2

5 101 (16,60,308) 99 (25,73,259) 100 (39,84,216) 98 (52,91,171)
𝜒2

20 101 (17,59,315) 100 (25,73,259) 100 (39,85,209) 100 (52,93,176)
1000 Normal 102 (17,60,312) 101 (25,72,264) 100 (39,85,211) 101 (52,92,176)

Uniform 99 (17,59,299)(0) 100 (26,73,262)(0) 101 (39,86,211)(0) 100 (52,92,174)(0)
t10 103 (17,59,310) 101 (26,74,266) 100 (39,85,209) 100 (52,93,173)
t4 98 (16,59,298) 99 (25,72,254) 98 (39,84,205) 98 (51,91,170)
Logistic 98 (17,59,305) 100 (25,73,255) 100 (38,85,209) 100 (52,93,172)
Lognormal 91 (16,56,261) 93 (25,68,241) 92 (38,79,189) 92 (49,85,158)
Gamma(5, 1) 104 (17,60,316) 98 (26,72,262) 99 (39,85,208) 101 (52,93,173)
Gamma( 5

2
, 2) ∼ 𝜒2

5 100 (17,60,307) 99 (25,73,259) 100 (38,85,205) 99 (51,92,171)

𝜒2
20 99 (17,58,296) 99 (25,73,251) 100 (39,86,211) 100 (52,92,173)

aThe amount of infinite ARL values we found is indicated within the second parentheses
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TABLE 4 PE with CARL0 = 1000 and p = 10%

n Distribution m = 30 m = 50 m = 100 m = 200

5 Normal 8.9 9.5 9.4 9.3
Uniform 2.9 1.6 0.7 0
t10 18.8 22.4 31.7 45.2
t4 83.7 93.5 98.7 99.6
Logistic 20.2 25.2 35.8 52.6
Lognormal 97.6 99 99.7 99.9
Gamma(5, 1) 28.3 36.8 53.4 73.6
Gamma( 5

2
, 2) ∼ 𝜒2

5 44 57.9 78.2 94.3
𝜒2

20 18.6 23.7 31.8 45.5
30 Normal 9 9.1 9.7 9.5

Uniform 8.9 7.9 6.5 5.7
t10 10.6 11.3 12.5 13.3
t4 31.2 42.5 61.8 82.2
Logistic 10.9 11.1 12.1 14.9
Lognormal 92.3 97.2 99.6 100
Gamma(5, 1) 12.8 14.2 16 19.5
Gamma( 5

2
, 2) ∼ 𝜒2

5 15.3 18.2 24.2 32.3

𝜒2
20 11 11.3 12.5 14.3

50 Normal 9 9.4 9 9.4
Uniform 9.3 8.9 8.2 7.8
t10 9.8 10.3 10.9 11.8
t4 21.7 30 42.6 62.3
Logistic 10.1 10.5 11.5 12.2
Lognormal 85.8 94.3 99.3 99.9
Gamma(5, 1) 11.3 11.8 13.4 15.5
Gamma( 5

2
, 2) ∼ 𝜒2

5 12.6 14.8 17.9 22.2
𝜒2

20 10 10.2 12.1 12.5
100 Normal 9.4 9.2 9.5 9.6

Uniform 9.2 9.5 9 8.4
t10 9.1 9.7 10.1 10.9
t4 16.1 19.4 26.7 37
Logistic 9.5 9.6 10.2 10.9
Lognormal 67.5 82.5 95.9 99.8
Gamma(5, 1) 9.5 10.3 11.7 12
Gamma( 5

2
, 2) ∼ 𝜒2

5 11 11.5 13.6 16.1

𝜒2
20 9.7 9.9 10.5 11.4

250 Normal 9.5 9.8 8.8 9.4
Uniform 9.8 10.1 9.5 9.5
t10 8.9 9.2 9.4 10.2
t4 12.1 13.3 16.2 20
Logistic 9 9.4 9.5 10
Lognormal 37.4 49.9 70.8 89.2
Gamma(5, 1) 9.1 10 10.6 11
Gamma( 5

2
, 2) ∼ 𝜒2

5 9.8 10.6 9.8 11.8
𝜒2

20 9.6 9.8 9.8 10
1000 Normal 8.8 9.4 9.3 9.6

Uniform 10.5 8.8 9.1 10.3
t10 9.2 9.5 9.7 9.6
t4 10 10.5 11.5 12.8
Logistic 9.2 9.2 9.6 10
Lognormal 15.5 19.2 25.1 34.5
Gamma(5, 1) 9.2 9.4 9.7 9
Gamma( 5

2
, 2) ∼ 𝜒2

5 8.6 9.4 9.3 10.1

𝜒2
20 9.6 9.3 8.7 9.8
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TABLE 5 PE with CARL0 = 370.4 and p = 10%

n Distribution m = 30 m = 50 m = 100 m = 200

5 Normal 8.9 9.6 9.2 9.8
Uniform 4 2.6 1.3 0.3
t10 15.5 18.6 24.8 34.1
t4 62.1 78 91.6 97.9
Logistic 16.9 21.7 27.6 39.6
Lognormal 93.4 96.7 98.7 99.7
Gamma(5, 1) 22.6 27.9 39.4 54.4
Gamma( 5

2
, 2) ∼ 𝜒2

5 34.6 44.3 63.6 82.3
𝜒2

20 15.8 18.6 23.6 30.3
30 Normal 9.3 9.4 9.7 9.6

Uniform 9.3 8.2 7.1 6.4
t10 10 10.3 11.5 12.6
t4 22.4 28.1 40.6 57.3
Logistic 10.1 11.1 11.5 14.2
Lognormal 80.9 90.7 97.7 99.6
Gamma(5, 1) 11.5 12 13.4 15.5
Gamma( 5

2
, 2) ∼ 𝜒2

5 13.1 14.5 19.4 22.2

𝜒2
20 10 10.9 11.2 12.3

50 Normal 8.8 9.5 9.7 9.7
Uniform 9.5 9.2 8.8 8.5
t10 9.6 10.4 10.8 10.6
t4 17.2 21.3 28.3 40.3
Logistic 9.9 10.3 10.6 11.2
Lognormal 71 83.8 95.7 99.4
Gamma(5, 1) 9.9 11 12.4 13.6
Gamma( 5

2
, 2) ∼ 𝜒2

5 11.7 12.6 15.3 16.9
𝜒2

20 10.3 10.1 11 11.2
100 Normal 9.1 9.3 9.7 10

Uniform 9.3 9.7 9.2 8.7
t10 9.1 9.6 10.3 10.8
t4 13.2 15.6 19.6 25.9
Logistic 9.2 9.8 10.5 10.2
Lognormal 52.2 66.4 84.8 96.3
Gamma(5, 1) 9.5 10.3 10 11.1
Gamma( 5

2
, 2) ∼ 𝜒2

5 9.9 11.4 12 12.9

𝜒2
20 9.1 9.4 10.4 9.8

250 Normal 8.8 9.5 9.8 9.5
Uniform 9.9 10.1 9.6 9.7
t10 9.3 9.3 9.3 10.1
t4 11.6 12.4 13.8 15.8
Logistic 9 9.9 10.1 9.5
Lognormal 28 37.2 52.8 71
Gamma(5, 1) 9.1 9.6 10 10
Gamma( 5

2
, 2) ∼ 𝜒2

5 9.6 9.6 10.3 11
𝜒2

20 9.4 9.1 9.9 10.1
1000 Normal 9.7 9 9.5 10.1

Uniform 10.5 8.9 9.1 10.3
t10 8.9 8.9 9.5 9.4
t4 9.2 10.1 10.7 11.5
Logistic 9.3 9.1 9.3 9.8
Lognormal 13.7 16.6 19.3 24.4
Gamma(5, 1) 9.5 9.2 9.6 10
Gamma( 5

2
, 2) ∼ 𝜒2

5 9.3 9.5 9.5 9.8

𝜒2
20 8.9 9.2 9.3 9.7
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TABLE 6 PE with CARL0 = 100 and p = 10%

n Distribution m = 30 m = 50 m = 100 m = 200

5 Normal 9.3 9.8 9.2 9.7
Uniform 5.9 4.4 3 1.5
t10 13.6 14.3 17.9 22.9
t4 35.6 45.3 60.9 76.5
Logistic 14.5 16.7 19.6 26.5
Lognormal 77 83.6 91.5 95.9
Gamma(5, 1) 15.9 17.1 20.3 25.4
Gamma( 5

2
, 2) ∼ 𝜒2

5 22.8 25.6 34.6 44.6
𝜒2

20 12 12.5 14.2 16.1
30 Normal 9.1 9.2 9.5 10.4

Uniform 9.7 8.9 7.8 7.6
t10 9.4 9.9 11 11.2
t4 15.5 17.9 22.5 29.5
Logistic 9.9 10.1 10.8 12
Lognormal 52 63.1 77.8 91.1
Gamma(5, 1) 9.9 10.2 11.2 11.5
Gamma( 5

2
, 2) ∼ 𝜒2

5 10.9 12.1 12.6 13.6

𝜒2
20 9.5 9.8 10.2 10.8

50 Normal 9.2 9.2 10 9.6
Uniform 9.8 9.7 9.5 9
t10 9.3 9.8 10.5 10.4
t4 13.8 15.1 17.8 22.1
Logistic 10.1 10 9.8 11.5
Lognormal 41.3 53 68.6 84.1
Gamma(5, 1) 9.2 9.5 10.1 11.1
Gamma( 5

2
, 2) ∼ 𝜒2

5 10.4 11.3 11.3 12
𝜒2

20 9.9 9.9 9.5 9.9
100 Normal 9.1 9.2 9.5 9.3

Uniform 9.5 9.9 9.4 9.1
t10 9.1 9.7 10 9.8
t4 11.8 11.5 14.2 16.4
Logistic 9.7 9.8 10.7 9.8
Lognormal 29.2 36.9 49.6 66.5
Gamma(5, 1) 9.5 9.6 9.7 10.4
Gamma( 5

2
, 2) ∼ 𝜒2

5 9.5 9.9 9.9 10.5

𝜒2
20 9.7 9.5 9.5 9.8

250 Normal 9 9.5 9.3 9.5
Uniform 10 10.2 9.8 9.9
t10 9.2 9.5 9.4 10
t4 10.5 10.8 12 13.4
Logistic 9 9 9.3 9.5
Lognormal 18 21.4 28.1 35.9
Gamma(5, 1) 9.3 9.9 9.8 9.8
Gamma( 5

2
, 2) ∼ 𝜒2

5 8.9 9.5 9.5 10
𝜒2

20 9.3 9.4 9.3 10
1000 Normal 9.4 10 9.3 9.4

Uniform 10.6 8.9 9.1 10.3
t10 9.2 10 9.3 10.3
t4 9.5 10.1 10.3 10.3
Logistic 8.7 9.4 9.1 10.2
Lognormal 11.6 12.6 14.3 16.2
Gamma(5, 1) 9 8.8 9.7 9.8
Gamma( 5

2
, 2) ∼ 𝜒2

5 9 9.8 9.2 9.7

𝜒2
20 9.4 9.3 9.7 9.3
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the sample size (n) is 1000. The implications are especially
relevant within the field of SPM, where estimation of accu-
rate tail behavior is important. The results indicate that the
X̄ control chart under normal theory should be used with
caution, even with relatively large datasets.
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APPENDIX A

Below, we give further details on the derivations of the
convolutions given in Section 3.1.

https://doi.org/10.1002/qre.2287
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A.1 The normal distribution
The convolution of i.i.d. normal random variables can be
found using the moment generating function approach.
The moment generating function of a convolution of nor-
mally distributed variables X ∼ N(𝜇, 𝜎2) is

MCn(t) =
n∏

i=1
MXi(t) =

n∏
i=1

exp

(
𝜇it +

𝜎2
i t2

2

)

= exp

( n∑
i=1

𝜇it +
n∑

i=1

𝜎2
i t2

2

)
which is just the moment generating function of a normal
distribution, with mean n𝜇 and variance n𝜎2 and hence

Cn ∼ N(n𝜇,n𝜎2).

A.2 The uniform distribution
As shown by Hall,8 the convolution of i.i.d. standard uni-
form random variables has a piecewise polynomial proba-
bility density function of degree n − 1

𝑓X (x;n) = 1
2(n − 1)!

n∑
k=0

(−1)k(n
k)(x − k)n−1sgn(x − k),

which we denote as the IH(n) distribution.

A.3 The Student's t𝜈 distribution with 𝜈
degrees of freedom
There is no closed form of the convolution of Student's
t𝜈 distributed random variables X ∼ t𝜈 for 𝜈 > 1(see
Walker and Saw13), but approximations do exist. We use
an approximation based on the numerical inversion of
the characteristic function given by Witkovsky.14 The char-
acteristic function of the sum of Student's t𝜈 distributed
random variables, Cn, equals 𝜙Cn(t) = 𝜙n

X (t), where the
characteristic function of a single Student's t𝜈 distributed
random variable equals

𝜙X (t) =
1

2
𝜈

2
−1𝛾( 𝜈

2
)

(
𝜈1∕2|𝜆t|)𝜈∕2K𝜈∕2{𝜈1∕2|𝜆t|},

in which K𝛼{z} denotes the modified Bessel function of the
second kind. The distribution function FCn = Pr{Cn ≤ x}
of Cn is found using the inversion formula of Gil-Pelaez15

FCn(x) =
1
2
+ 1

𝜋 ∫
∞

0

sin(tx)𝜙Cn(t)
t

dt.

A.4 The logistic distribution
Now assume a logistic distribution for the random vari-
able: X ∼ logistic(𝜇 = 0, s = 1). The standardized version

of the sum of Xi can be written as

Z =
n∑

i=1

Xi − 𝜇

𝜎
=

n∑
i=1

Xi√
n𝜋2

3

=
√

3
n

Cn

𝜋
,

which distribution can be approximated by

Z ∼
√

𝜈 − 2
𝜈

t𝜈,

with 𝜈 = 5n + 4 degrees of freedom. For more details on
this approximation see George and Mudholkar.10

A.5 The lognormal distribution
The characteristic and moment generating function of the
lognormal distribution are undefined. The distribution of
the convolution Cn can be approximated by 2 methods.
In the first place, the Fenton-Wilkinson approximation
will be used, as it is said to perform well in the tails of
a lognormal distribution (see Mehta et al16). Secondly, an
approximation based on the type IV Pearson distribution
will be used.

A.6 The Fenton-Wilkinson
approximation
Consider the sum of lognormal (LN) random variables Xi,
where each Xi ∼ LN(𝜇, 𝜎2) with the expectation E(Xi) =
exp(𝜇+0.5𝜎2) and variance Var(Xi) = (exp(𝜎2)−1)exp(2𝜇+
𝜎2). The expectation and variance of Cn are E(Cn) = nE(Xi)
and Var(Cn) = nVar(Xi). The Fenton-Wilkinson approxi-
mation is a lognormal PDF with parameters 𝜇Cn and 𝜎2

Cn

such that ex𝑝(𝜇Cn + 0.5𝜎2
Cn
) = nE(Xi) and (ex𝑝(𝜎2

Cn
) −

1)ex𝑝(2𝜇Cn + 𝜎2
Cn
) = nVar(Xi). Solving for 𝜇Cn and 𝜎2

Cn
results in a lognormal distribution for the sum: Cn ∼
LN(𝜇Cn , 𝜎

2
Cn
).

A.7 The type IV Pearson approximation
The type IV Pearson approximation was developed by
Nie and Chen12 and equates the first 4 central moments
(𝜇1, 𝜇2, 𝜇3, 𝜇4) of the sum of lognormal distributions to the
4 parameters of the Pearson IV distribution. Denote the
sum of lognormal random variables by Cn, where each
Xi ∼ LN(𝜇, 𝜎2).

Where the Fenton-Wilkinson approximation only uses
the first 2 moments as parameters for a lognormal distribu-
tion to represent the sum of lognormal random variables
Cn, the Pearson IV method uses 4 moments to approximate
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Cn. The Pearson IV distribution is given by

𝑓Cn(x) =

||||Γ(m+ 𝜈

2
i)

Γ(m)

||||
2

𝛼B(m − 1
2
, 1

2
)

[
1 + (x − 𝜆

𝛼
)2
]−m

e−𝜈arctan( x−𝜆
𝛼
),

with location parameter 𝜆, scale parameter 𝛼 > 0 and
shape parameters m > 1

2
, 𝜈 ≠ 0. These 4 parameters can

be found using the first 4 central moments of the sum of
lognormal random variables Cn.

A.8 The gamma Γ(𝛼, 𝛽) distribution
with parameters 𝛼 and 𝛽

If X is gamma distributed Xi ∼ Γ(𝛼i, 𝛽), then the moment
generating function approach can be used to find the dis-
tribution of the convolution

MCn(t) =
n∏

i=1
MXi(t) =

n∏
i=1

(
1

1 − 𝛽

)𝛼i

=
(

1
1 − 𝛽

) n∑
i=1

𝛼i

,

which is the moment generating function of a Γ(
∑n

i=1 𝛼i, 𝛽)
distributed random variable. Therefore, Cn ∼ Γ(n𝛼, 𝛽).

A.9 The chi-squared 𝜒2
𝜈 distribution

with 𝜈 degrees of freedom
Now assume that the distribution of X is chi-squared with
𝜈 degrees of freedom: X ∼ 𝜒2

𝜈 . The moment generating
function of the chi-squared distribution can be used to find
the convolution distribution of the sum of n i.i.d. random
samples of X

MCn(t) =
n∏

i=1
MXi (t) =

n∏
i=1

(1 − 2t)−
𝜈

2 = (1 − 2t)

n∑
i=1

𝜈i∕2

,

which is the moment generating function of a 𝜒2
n𝜈 distribu-

tion, and therefore Cn ∼ 𝜒2
n𝜈 .
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