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ABSTRACT
Implementation of the Shewhart, CUSUM, and EWMA charts requires estimates of the in-control pro-
cess parameters. Many researchers have shown that estimation error strongly influences the perfor-
mance of these charts. However, a given amount of estimation error may differ in effect across charts.
Therefore, we perform a pairwise comparison of the effect of estimation error across these charts. We
conclude that the Shewhart chart is more strongly affected by estimation error than the CUSUM and
EWMA charts. Furthermore, we show that the general belief that the CUSUM and EWMA charts have
similar performance no longer holds under estimated parameters.

Introduction

The Shewhart chart is known for its ease of imple-
mentation and its ability to detect large process shifts.
A major disadvantage of a Shewhart chart is that it is
relatively insensitive to small process shifts. Two well-
known and effective alternatives to the Shewhart chart
for detecting small sustained shifts are the cumulative
sum (CUSUM) chart and the exponentially weighted
moving average (EWMA) chart (Montgomery 2013).
Recently, Hawkins andWu (2014) compared these two
charts and concluded that depending on the shift size
either the CUSUM chart or the EWMA chart can pro-
vide quicker detection. The general consensus seems
to be that the performance of the CUSUM and the
EWMA charts is quite similar.

Most comparison studies, as the ones by Lucas and
Saccucci (1990) andHawkins andWu (2014), are based
on the assumption of known in-control process param-
eters. However, the implementation of control charts
requires the estimates of in-control process parameters,
obtained from an initial Phase I sample. The perfor-
mance of a control chart based on Phase I estimates will
be conditional on the Phase I sample obtained. Hence,
control charts will show varying performance in Phase
II, depending on the obtained Phase I sample.

CONTACT Inez M. Zwetsloot I.M.Zwetsloot@uva.nl Institute for Business and Industrial Statistics, Department of Operations Management, Amsterdam
Business School, University of Amsterdam, Plantage Muidergracht , Amsterdam  TV, The Netherlands.

We study the effect of baseline (Phase I) data on
the ongoing monitoring performed in Phase II. We
assume that the Phase I data come from a stable pro-
cess. We do not discount in any way, however, the
importance of Phase I. In fact, Phase I investigations
can bemore informative andmore likely to lead to pro-
cess improvement than the monitoring done in Phase
II. Jones-Farmer et al. (2014) and Woodall (2016) dis-
cussed some of the issues and methods associated with
Phase I data collection and analysis. It is interesting to
note that the focus of Shewhart (1939) was on Phase I
analysis, not Phase II.

The effect of Phase I estimation on the performance
of control charts has received a great deal of attention in
the literature. For two reviews on this topic, see Jensen
et al. (2006) and Psarakis, Vyniou, and Castagliola
(2014). The general conclusion is that the use of param-
eter estimates results in control charts with less pre-
dictable performance than those with known parame-
ters. For the effect of estimation error on the Shewhart
chart see, for example, Saleh et al. (2015b). For the effect
of estimation error on the CUSUM chart see, for exam-
ple, Gandy and Kvaløy (2013) or Saleh et al. (2016). For
the effect of estimation error on the EWMA chart see,
for example, Jones, Champ, and Rigdon (2001) or Saleh
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et al. (2015a). Although many studies have been con-
ducted to evaluate the effect of estimation error on a
specific control chart, none have compared the effect
of estimation error across these three types of charts.

In this article, we compare the effect of estima-
tion error across the Shewhart, CUSUM, and EWMA
control charts. It is well known that estimation error
strongly influences the performance of these control
charts individually. However, the question that we
address is how the effect of a given amount of estima-
tion error differs across the Shewhart, CUSUM, and
EWMA control charts. We study this question by con-
sidering both the overall (marginal) as well as the con-
ditional ARL performance. We study the in-control
conditional average run length (ARL) performance of
control charts in Phase II, conditioning on the Phase
I in-control parameter estimates. This metric should
be distinguished from the conditional expected delay
(CED) metric for which the conditioning is on a pro-
cess shift occurring at a particular time in Phase II. For
more information on the CED, see Fraker, Woodall,
and Mousavi (2008) or Kenett and Pollack (2012). In
our article we consider only in-control Phase II perfor-
mance.

In this article, we show that the similarity in in-
control Phase II performance of the CUSUM and
EWMA chart under known parameters does not hold
under estimated parameters.

Defining the Shewhart, CUSUM, and EWMA
control charts

Throughout, we assume the process observations to be
independent and normally distributed with in-control
mean μ0 and in-control standard deviation σ0. We
observe the process in samples of size n ≥ 1 and denote
the samplemean at time i by X̄i. For ease of comparison,
we denote the information from the process at time i of
Phase II by the standardized value

Yi = X̄i − μ̂0

σ̂0/
√
n

, [1]

where μ̂0 and σ̂0 are the estimates of the in-control
process parameters μ0 and σ0, respectively. These esti-
mates are computed from a Phase I sample of m
subgroups of n observations. Considerable work has
been published on appropriate estimators for Phase
I. In the case of Shewhart charts, see for example,
Schoonhoven et al. (2011); for the CUSUM chart, see

Nazir et al. (2013); and for the EWMA chart, see
Zwetsloot, Schoonhoven, and Does (2014). Further-
more, Mahmoud et al. (2010) provided an overview
and comparison of estimators for the standard devia-
tion. Here we use, as estimator for μ0, the overall sam-
ple mean based on the Phase I data defined by

μ̂0 = 1
m

m∑
i = 1

X̄i. [2]

As an estimator for σ0 we use the moving range esti-
mator if n = 1

σ̂0 = 1
1.128 ∗ (m − 1)

m∑
i = 1

|Xi − Xi−1| , [3]

while if n > 1, we use the pooled sample standard
deviation as estimator for σ0:

σ̂0 = 1
c4 (m (n − 1) + 1)

√√√√ 1
m

m∑
i = 1

S2i . [4]

Here, S2i is the i-th Phase I sample variance and c4(.)
is a control charting constant which can be found in
Montgomery (2013) and elsewhere. In our simulation
study, we assume in-control Phase I samples so we do
not have to consider robustness issues.

Tomonitor the process mean, first consider the She-
whart chart, which is set up by plotting Yi together with
upper control limitC and lower control limit−C. Here,
C > 0 is a constant set such that the chart yields a pre-
specified in-control performance when the in-control
process parameter values are assumed to be known.
Whenever Yi > C or Yi < −C the chart signals an
out-of-control sample.

An alternative for monitoring the mean is the
two-sided CUSUM chart. This chart, for detect-
ing both increases and decreases in the process
mean, consists of plotting two statistics simul-
taneously: C+

i = max(0,C+
i−1 +Yi − K) and

C−
i = max(0,C−

i−1 +Yi + K). As starting values
we set C+

0 = C−
0 = 0. The reference value, K, is often

set equal to one-half the size of the smallest mean
shift, measured in units of the standard error, required
to be detected quickly (Hawkins and Wu 2014). An
out-of-control condition is signalled if C+

i > H or
C−
i < −H .
The EWMA chart consists of plotting the expo-

nentially weighted moving average at sampling stage i
defined as Zi = (1 − λ) Zi−1 + λYi, where 0 < λ ≤ 1
is a smoothing constant and depends on the shift size
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required to be detected quickly. The starting value Z0

is set equal to 0 in our paper. The EWMA chart gives
a signal whenever Zi falls outside of the control limits
±L√

λ/(2−λ). These are the so-called asymptotic control
limits. For the difference in performancewith the limits
based on the exact standard error, the reader is referred
to Steiner (1999).

Before these charts can be implemented several
design decisions have to be made. First, the CUSUM
and EWMA charts should be tuned, by settingK and λ,
to detect a specific shift size. We tune the CUSUM and
EWMA to detect shifts of one standard error quickly.
For the CUSUM chart this implies that K = 0.5. For
the EWMA chart, if a shift of one standard error needs
to be detected, λ = 0.1 is a commonly used value.

The in-control average run length, ARL0, was set at
200, a widely used choice. Assuming known process
parameters implies that for the Shewhart chart C =
�−1 (1 − 1

2 ARL0
) = 2.807, where�−1(.) is the inverse

of the cumulative distribution function of the standard
normal distribution. For the CUSUM chart we obtain
H = 4.17 and for the EWMA chart we set L = 2.454.
Both values were obtained with the package spc in R,
seeKnoth (2014), using the functions “xcusum.crit(0.5,
200, sided = “two”)” and “xewma.crit(0.1,200, sided =
“two”)”.

Performancemeasures

In this article we are interested in the difference in per-
formance of the Shewhart, CUSUM, and EWMA chart
when the charts are set up based on estimated param-
eters. We compare the charts when they are employed
to monitor a stable process. Hence, we are interested in
the frequency of false alarms, i.e., in the performance
under in-control data. For control charts based on
knownprocess parameters this in-control performance
can be controlled and remains constant. However for
charts based on estimated parameters the in-control
performance becomes a randomvariable dependent on
the Phase I sample. Therefore, we are also interested in
how the performance depends on the Phase I estimates
obtained.

Throughout this article we evaluate performance
with the commonly used average run length (ARL).
The in-controlARL equals the average number of plot-
ted statistics before the chart signals (a false alarm).
We distinguish between the conditional ARL and the
marginal or average ARL, as the ARL is a random vari-
able.

The conditional ARL is defined as the average run
length conditional on a specific Phase I sample. From
this sample, parameter estimates are obtained accord-
ing to Eqs. [2]–[4]. Based on these estimates the con-
trol charts can be set up and their performance can
be evaluated. This conditional ARL level will be differ-
ent for each Phase I sample. Recently, many researchers
have referred to this estimation error due to sam-
pling error as practitioner-to-practitioner variability.
To obtain an overall performance measure, indepen-
dent of the Phase I sample used, we will use the average
of the conditional ARLs, the AARL, averaging across
the Phase I sampling error. In order to also capture the
variability in the conditional ARL levels we also esti-
mate the standard deviation of the conditionalARL val-
ues, the SDARL.

Of course, different metrics can be used to oper-
ationalize the performance of control charts. Various
performance metrics, such as the ARL and the condi-
tional expected delay, have been proposed in the lit-
erature. One distinction that is made is the difference
between active and passive monitoring. Active moni-
toring implies taking action on the process and reset-
ting the monitoring statistic after a signal and hence
ARL is a relevant metric. In passive monitoring actions
to affect the process are less immediate and effective
and the monitoring statistic is not reset after a signal
(see, e.g., in public health surveillance). For an elabo-
rate discussion see Frisén (2003) or Kenett and Pollak
(2012). Throughout this article, we focus on the time
until the first false alarm under the assumption of a sta-
ble process. We do not consider what happens after an
alarm. Hence, the average time until a false alarm, as
measured by the in-control ARL, is a suitable metric to
evaluate performance.

Simulationmethod

In order to compute the conditional ARL, the AARL,
and the SDARL, it is helpful to rewrite Eq. [1] as in
Jones, Champ, and Rigdon (2001), i.e.,

Yi = 1
Q

(
vi − Z√

m

)
, [5]

where vi =√
n(X̄i−μ0)/σ0, is the standardized Phase II

samplemean at time i. The randomvariableQ = σ̂0/σ0

is the ratio of the estimated in-control standard devi-
ation, as defined in Eqs. [3] and [4], to the actual in-
control standard deviation. The random variable Z =
√
nm( μ̂0−μ0)/σ0 is the standardized difference between
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the estimated in-control mean, as defined in Eq. [2],
and the actual in-control mean. The random variables
Z andQ reflect the precision of the Phase I estimates of
the mean and standard deviation, respectively.

Computation of the conditional ARL for the She-
whart chart is straightforward; it is equal to the recip-
rocal of the probability of a signal given the realizations
of Z and Q. For the CUSUM and EWMA charts the
conditional ARL values are computed with a Markov
chain approximation, for details see Saleh et al. (2016,
Appendix A) and Saleh et al. (2015a, Appendix A). We
used 201 states for each Markov chain. Conditional
ARL values were obtained for 50,000 Phase I estimates
each based on m = 50 and 100 subgroups of size
n = 1 and n = 5 fromN(μ0, σ0), where we set μ0 = 0
and σ0 = 1 without loss of generality. To obtain the
AARL and SDARL metrics, integral equations were
set up and approximated using numerical integra-
tion. The functional forms of these equations can be
found in Saleh et al. (2015b, Appendix A), Saleh et al.
(2016, Appendix B), and Saleh et al. (2015a, Appendix
A) for the Shewhart, CUSUM, and EWMA charts,
respectively. Furthermore, the functional form for the
probability density function of Eq. [3] was obtained
from Goedhart, Schoonhoven, and Does (2016). The
results were validated with a Monte Carlo simulation
study. We recommend the reader, however, to use the
package SPC in R of Knoth (2014) to perform similar
ARL analysis when that is applicable.

Overall and conditional performance
comparison

Table 1 shows the AARL and SDARL values for the
three charts forARL0 = 200, form = 50 andm = 100,
and for n = 1 and n = 5. Furthermore, Figure 1 shows

Table . In-control AARL and SDARL values for the three charts
based on estimated parameters when m subgroups of size n are
used in Phase I.

m n Chart AARL SDARL

m = 50 n = 1 Shewhart  
CUSUM  
EWMA  

n = 5 Shewhart  
CUSUM  
EWMA  

m = 100 n = 1 Shewhart  
CUSUM  
EWMA  

n = 5 Shewhart  
CUSUM  
EWMA  

Figure . Conditional in-control ARL distribution for the three con-
trol charts based on estimated parameters when m = 50 sub-
groups of size n are used. The boxplots show th, th, th, th,
th, th, and th percentiles.

boxplots of the conditional in-control ARL values for
the three charts based on Phase I estimates form = 50
samples of size n = 1 and 5.

First consider the Shewhart chart. In Table 1, the
AARL values are above the pre-specified ARL0 value
of 200, although, as expected, the difference is smaller
for n = 5 than for n = 1. This shows that more data
in Phase I implies better estimates which leads to per-
formance closer to the desired in-control ARL value.
The SDARL values for the Shewhart chart show that
the effect of sampling variability is large. Especially for
n = 1 the SDARL values are very large; ranging from
66 for m = 100 and n = 5 to 1362 for m = 50 and
n = 1. This difference is confirmed by the boxplots
in Figure 1; for n = 1 the boxplot is a lot wider than
for n = 5. From Table 1 and Figure 1 it is clear that
more data in Phase I decreases the sampling variabil-
ity; the SDARL value is a lot larger for n = 1 than for
n = 5.

Next, consider the CUSUM chart. In Table 1, the
AARL values are larger than the desired value forn = 1.
However, they are smaller for n = 5. This surprising
result was also discussed in Saleh et al. (2016). The
SDARL values are smaller for the CUSUM chart than
for the Shewhart chart. Hence there is less variability in
the conditional performance of the CUSUM chart than
for the Shewhart chart. This is confirmed in Figure 1
where the boxplot for the CUSUM chart is more nar-
row than for the Shewhart chart.
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Figure. Conditional in-controlARLof theShewhart chart vs.Qbasedonm = 50 samplesof sizen. Chart is designed tohaveARL0 = 200
under known parameters.

Finally, consider the EWMA chart. It has the low-
est AARL values compared to the other two charts. It
also has the smallest variability in the in-control per-
formance as the SDARL values are the smallest and the
corresponding boxplots in Figure 1 are the most nar-
row compared to the Shewhart and CUSUM charts.

Comparing the CUSUM and EWMA charts,
Figure 1a shows that these two charts have quite
different conditional ARL distributions. The variability
for the CUSUM chart is larger than for the EWMA
chart, especially when n = 1. This is also reflected in
the AARL and SDARLmetrics as presented in Table 1.
Note that this difference in SDARL values is partly
explained by the increase in AARL values.

The CUSUM and EWMA charts have been com-
pared, with most researchers concluding that these
charts have similar performance. See, for example,
Hawkins and Wu (2014). Although this is true for
known process parameters, we have shown that this
conclusion does not translate to charts based on esti-
mated parameters when small sample sizes are used in
Phase I.

To obtain a better understanding of the difference
in the AARL and SDARL metrics, we studied the con-
ditional performance of the three charts. Figures 2–4
show the conditional ARL values vs. the standardized
Phase I value Q for each of the three charts. We show
the case of n = 1 in panels (a) and n = 5 in panels (b).
For readability the y-axis is on a logarithmic scale. Fur-
thermore, panels are categorized by the error in the
mean estimate (Z).

Unsurprisingly, the higher the value of Q the larger
the in-control ARL value will be for each of the three
charts. Note that the x-axis has a different scale for n =
5 than for n = 1 because the value for Q will lie closer
to 1 as more data are available in Phase I.

Perhaps more surprising, the Shewhart chart’s con-
ditional ARL is primarily determined by the value of
Q; the value of Z has nearly no influence on the con-
ditional in-control ARL. Contrarily, for the CUSUM
and EWMA chart the value of Z does have an influ-
ence on the conditional ARL. The larger the error in
the mean estimate, the lower the conditional ARL will
be. Intuitively, as the CUSUM and EWMA charts are

Figure . Conditional in-control ARL of the CUSUM chart vs.Q based onm = 50 samples of size n. Chart is designed to haveARL0 = 200
under known parameters.
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Figure . Conditional in-control ARL of the EWMA chart vs.Q based onm = 50 samples of size n. Chart is designed to haveARL0 = 200
under known parameters.

designed to detect small changes in the location param-
eter, a small error in the estimate of the mean will have
a greater impact in lowering the in-control ARL value.

Pairwise comparison of the conditional
performance

In order to compare the conditional performance head-
to-head across the three charts, we plotted conditional
ARL results pairwise. Figures 5–7 show these results.
Each figure is a pair-wise comparison of two control
charts, categorized by the error in the mean estimate
(Z). The dotted lines show the diagonal for reference as
well as the ARL0 = 200 line. If the effect of estimation
error were the same for two charts, all values would lie
along the diagonal. Note that the x-axis has a different
scale for n = 1 and n = 5.

Figure 5 shows the conditional ARL values of the
Shewhart chart vs. the conditional ARL values of the
CUSUM chart. Each dot in the scatter plot represents
a Phase I sample (i.e., combination of Z and Q). The
first apparent feature of Figure 5 is that nearly all Phase

I samples result in a Shewhart control chart which has
a higher ARL value than the corresponding CUSUM
chart, even though both are based on the same Phase I
estimates. Furthermore, Figure 5 shows a smooth edge
on the top of the point cloud. This represents the case
where the mean is estimated most precisely (Z = 0).
That this line runs from the left bottom to the top right
shows that both the Shewhart and CUSUM chart have
very variable ARL values. Therefore, a large part of the
variability in the ARL values must be caused by the
valueQ (the error of the standard deviation estimator).
This was already evident in Figures 2 and 3. Further-
more, the difference in performance between the She-
whart and CUSUM chart is caused to a larger extent
by the value of Z. For Z = 0 the two charts have nearly
equivalent conditional ARL values. For Z > 0 the con-
ditional ARL of the CUSUM chart decreases compared
to the conditional ARL of the Shewhart chart. This
is unsurprising as the CUSUM chart is designed to
detect small sustained changes in the mean, and an
error in the estimate of the in-control mean value will
be detected as a shift in the mean.

Figure . Conditional in-control ARL of the CUSUM chart vs. the Shewhart chart. Both charts are based on estimated parameters when
m = 50 subgroups of size n are used.
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Figure . Conditional in-control ARL of the EWMA chart vs. the Shewhart chart. Both charts are based on estimated parameters when
m = 50 subgroups of size n are used.

Figure 6 shows the conditional ARL performance of
the Shewhart chart vs. the EWMA chart. This compar-
ison shows a similar pattern to Figure 5. An apparent
difference is that the conditional ARL of the EWMA
chart stays a little lower; it only runs up to 1,000 for
n = 1 and 700 for n = 5. While the Shewhart chart in-
control ARL values go up to 2,500 and 1,000, respec-
tively. As the desired value is ARL0 = 200, the EWMA
chart shows performance which lies closer to this pre-
specified value.

Perhaps more surprising are the results displayed in
Figure 7. This figure shows that the CUSUM charts
have ARL values which are nearly always substantially
higher than those of the corresponding EWMA charts.
The EWMA chart ARL values therefore tend to be
closer to the desired value of ARL0 than the CUSUM
chart. For n = 5 this effect is a little smaller than for
n = 1.

To determine that the conditional in-control ARL
performance of the one type of chart is better than the
other type of chart, we first need a definition of what
we mean by “better performance”. As starting point we
take that in-control performance should be close to

the desired level ARL0. Hence, a control chart with an
in-control ARL = 300 performance is better than a
chart with an in-control ARL = 400, given that the
desired value is ARL0 = 200. A chart with an ARL =
150 shows better performance than a chart with an
ARL = 100. Furthermore, given that one chart has an
ARL above the desired level ARL0 and the other is
below ARL0, the former shows better performance in
order to avoid an unacceptable rate of false alarms.
Apart from defining better and worse, it is also
important to consider equivalent performance. Obvi-
ously two charts have (near) equivalent performance
whenever their conditional ARL values lie very close
together. To operationalize ‘close together’ we set a
somewhat arbitrarily selected difference of 5% ∗ ARL0
as a neglectable difference. This leads to the definition
featured next.

Definition 1: Better conditional performance

Denote by ARLX (z, q) the conditional in-control ARL
of control chart X based on Phase I estimates (z, q)
and by ARLY (z, q) the conditional in-control ARL of

Figure . Conditional in-control ARLof the EWMAchart vs. theCUSUMchart. Both charts arebasedonestimatedparameterswhenm = 50
subgroups of size n are used.
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Figure . Illustration of Definition .

control chart Y based on Phase I estimates (z, q). We
define the performance of chart X as equivalent to the
performance of chartY , iff

|ARLX (z, q) − ARLY (z, q)| ≤ 0.05 ∗ ARL0.

Otherwise, we define the performance of chart X as
better than the performance of chartY , iff

I. ARLX (z, q) < ARLY (z, q) when ARLX (z, q)
> ARL0 and ARLY (z, q) > ARL0

II. ARLX (z, q) > ARLY (z, q) when ARLX (z, q)
< ARL0 and ARLY (z, q) < ARL0

III. ARLX (z, q) > ARL0 and ARLY (z, q) < ARL0

Figure 8 illustrates this definition by showing the in-
control ARL of chart X on the horizontal axis and the
in-control ARL of chart Y on the vertical axis. In the
graph all regions are marked according to the above
definition.

Using this definition it is possible to qualify a
chart’s performance as better, equivalent, or worse than
another chart’s performance. Tables 2 and 3 show the
percentages of charts (from the 50,000 simulation runs)
that fall into the regions as indicated in Figure 8,
i.e., giving the percentage of charts with performance
equivalent, better, or worse, compared to the chart in
the columns. From Table 2 it is clear that the Shewhart
chart shows equivalent performance to the CUSUM
chart for 37.6% of the obtained Phase I estimates when
Phase I consists ofm = 50 samples of size n = 1. Gen-
erally, the CUSUM and EWMA charts have better
overall performance than the Shewhart chart whenn =

1 and worse when n = 5. The CUSUM chart has better
performance than the EWMA chart when n = 1 and
worse performance when n = 5.

Previous comparison studies of the EWMA and
CUSUM charts based on the assumption of known
parameters have all shown near equivalent perfor-
mance for the two charts. Figure 7 and Table 3
show that this is a strong assumption and that under
estimated parameters the CUSUM chart often has

Table  Percentage of Shewhart charts according to the condi-
tional ARL performance compared to CUSUM and EWMA chart.

Compared to CUSUM chart Compared to EWMA chart

Shewhart
n = 1
m = 50

n = 5
m = 50

n = 1
m = 50

n = 5
m = 50

Worse
performance

.% .% .% .%

Equivalent .% .% .% .%
Better
performance

.% .% .% .%

I) % % % %
II) .% .% .% .%
III) .% .% .% .%

Table . Percentage of CUSUM charts according to the conditional
ARL performance compared to the EWMA chart.

Compared to EWMA chart

CUSUM n = 1,m = 50 n = 5,m = 50

Worse performance .% .%
Equivalent .% .%
Better performance .% .%
I) % %
II) .% .%
III) .% .%
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ARL values that are considerably larger than the pre-
specified ARL compared to the ARL values of the
EWMA chart, for the same Phase I data. The percent-
age of CUSUM charts with a worse performance than
the EWMA chart is 45.3% for n = 1 and decreases to
23.7% for n = 5. The sample size n in Phase I influ-
ences considerately the effect of estimation error on the
relative Phase II performance.

Discussion

The choice of λ and K influences the effect of estima-
tion error on the in-control performance. The smaller
the shift size for which the charts are tuned, the more
likely the chart is to react to estimation error in the
mean. Generally, the EWMA chart has lower ARL val-
ues than the CUSUM chart for shift sizes smaller than
the shift size for which both are designed to detect
quickly (Lucas and Saccucci 1990). Furthermore, as we
have set λ = 0.1 it is tuned to detect a slightly smaller
shift that the CUSUM chart with K = 0.5 (Hawkins
andWu2014). Therefore, the difference in effect of esti-
mation error could be influenced to some extent by this
choice.

In this study we have only considered single estima-
tors for μ0 and for σ0. For other estimators the pat-
terns in conditionalARLs could be somewhat different,
although we have no reason to suspect that this choice
influences the general conclusions. Furthermore, the
effect of estimation will become smaller as more data
become available in Phase I.

Conclusion

The effect of Phase I parameter estimation on control
charts is known to be significant. Generally it can lead
to more frequent false alarms and a loss in the abil-
ity to detect shifts quickly. This is well documented in
the literature for the Shewhart, CUSUM, and EWMA
control charts separately. Our work has evaluated and
compared the effect of estimation across these three
charts by evaluating the conditional in-control perfor-
mance for all charts pairwise for a specific set of Phase
I estimates.

Our simulation study showed that the effect of esti-
mated parameters on performance variation is a lot
larger for the Shewhart chart than for the CUSUM or
EWMA charts. However, somewhat unexpectedly, it
also shows that the EWMA and CUSUM charts behave

quite differently. The conditional in-control ARL of the
CUSUM chart is generally higher than the conditional
in-control ARL of the EWMA chart. Furthermore, the
relative performance depends on the sample size in
Phase I. We believe that in comparing control charts
and control chart performance, it is advisable to con-
sider the conditional performance.
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