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Guaranteed In-Control Performance for

the Shewhart X and X Control Charts
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When in-control parameters are unknown, they have to be estimated using a reference sample. Due
to the use of di↵erent reference samples in phase I, the control chart performance in phase II will vary
across practitioners. This variation is especially large for small sample sizes. To prevent low in-control
average run lengths, new corrections for Shewhart control charts are proposed that guarantee a minimum
in-control performance with a specified probability. However, a minimum in-control performance guarantee
generally lowers the out-of-control performance. To balance the tradeo↵ between in-control and out-of-
control performance, the minimum performance threshold and specified probability can be adjusted as
desired. The corrections are given in a closed form so that the bootstrap method, which has recently been
suggested, is no longer required. The performance of our proposed correction is illustrated by simulating
some practical situations. Furthermore, a comparison is made with tolerance intervals and self-starting
control charts.

Key Words: Average Run Length; Conditional Distribution; Parameter Estimation; Self-Starting Control Charts; Statistical
Process Control; Tolerance Intervals.

1. Introduction

THE SHEWHART X- and X-charts are commonly
used to monitor the process mean. Because the

in-control values of the process mean and variance are
generally unknown, they have to be estimated using a
reference sample. However, due to the use of di↵erent
phase-I data, the estimated control limits vary across
practitioners. Consequently, the performance of the
chart in phase II will vary across practitioners as well.
This may result in a low in-control average run length
(ARL) or high false alarm rate (FAR) because of an
insu�cient amount of phase-I data. The practitioner-
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to-practitioner variability has already been pointed
out by multiple researchers. See, e.g., Quesenberry
(1993) and Chen (1997), who investigated the aver-
age ARL when parameters are estimated, and Saleh
et al. (2015a) who consider this problem more gen-
erally. An extensive overview of the current litera-
ture on the e↵ects of parameter estimation is given
in Jensen et al. (2006) and Psarakis et al. (2014).

In order to take the uncertainty of estimation into
account, several researchers (e.g., Nedumaran and
Pignatiello (2001), Albers and Kallenberg (2004a,
2004b, 2005), Tsai et al. (2004, 2005) and, more re-
cently, Gandy and Kvaløy (2013)) have suggested ap-
plying corrections to the control-chart limits. These
corrections are intended to make sure that the per-
formance of the control chart satisfies a minimum
requirement, which is relevant for practitioners. Gen-
erally, this performance is measured in terms of the
ARL, FAR, or by matching specific percentiles of
the run-length distribution. Related to these mea-
sures, Albers and Kallenberg (2004a, 2004b) intro-
duced the exceedance probability criterion. This cri-
terion aims to correct the control limits such that a
certain value of an in-control performance character-
istic (e.g., FAR, ARL) is guaranteed with a specified
probability. In other words, the performance of a con-
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trol chart is at least equal to a certain value with a
specified probability.

This exceedance probability criterion is of great
interest in current SPC literature and similar ap-
proaches are recommended by Jones and Steiner
(2012), Gandy and Kvaløy (2013), and Saleh et al.
(2015a, 2015b). While Albers and Kallenberg (2005)
give relatively simple closed-form correction terms
for di↵erent performance measures, a bootstrap ap-
proach to determine the required correction factors
is becoming more common (cf., Jones and Steiner
(2012), Gandy and Kvaløy (2013), and Saleh et al.
(2015a, 2015b)).

In this study, we do not use the bootstrap method
but determine an analytical correction term for the
Shewhart X- and X-charts under normal theory in
a very general setup. Our proposed term is applica-
ble to both one- and two-sided control charts and
can make use of di↵erent estimators for location and
spread. Also, the specifications of the correction can
be adjusted by specifying the parameters. This gives
the freedom to adapt the correction to the circum-
stances as desired by the practitioner. It turns out
that our corrections perform better than the correc-
tion terms of Albers and Kallenberg (2005). Next to
that, because our correction terms are analytical ex-
pressions, the computation time is negligible.

Furthermore, we compare our approach with the
construction of two-sided tolerance intervals for nor-
mal populations. This problem has a long his-
tory of academic interest (cf., Wald and Wolfowitz
(1946), Weissberg and Beatty (1960), Gardiner and
Hull (1966), Howe (1969), and Krishnamoorthy and
Mathews (2009)). In those publications, various ap-
proximations and practical guidelines were devel-
oped along with rigorous justification for the guar-
antee of tolerance probability. Finally, we compare
our limits with self-starting control charts introduced
by Hawkins (1989) and Quesenberry (1991), which
also guarantee the conditional and unconditional in-
control performance in an exact way. In all compar-
isons, we show that our corrections perform much
better and/or are more general than the existing
ones.

In the next section, we present our model and
approach, which includes some baseline terminology
and derivations. In Section 3, we derive our pro-
posed correction terms, illustrate the performance,
and compare the results with the case of uncorrected
limits. In Section 4, we address the out-of-control

performance of the proposed method. In Section 5,
we illustrate the performance and consequences of
the proposed correction terms, compared with exist-
ing methods. Concluding remarks and recommenda-
tions are given in Section 6.

2. Model and Approach

In phase I, we have m samples of size n, so
that sample i, for i = 1, . . . ,m, consists of the ob-
servations Xi1, . . . ,Xin. Let Xij be i.i.d. N(µ,�)-
distributed random variables. In phase II, the av-
erage of a subsample (Xm+1, Xm+2, etc) is used to
determine whether the process is in-control or not.
Note that Xm+1 is distributed as N(µ,�2/n). We
consider a standard Shewhart X control chart with
both an upper control limit (UCL) and a lower con-
trol limit (LCL), as well as the inviduals Shewhart
X chart for the case n = 1. If the parameters µ and
� are known, the control limits equal

UCL = µ + K↵
�p
n

LCL = µ�K↵
�p
n

, (1)

where ↵ is the desired FAR and K↵ = ��1(1�↵/2)
(henceforth K↵ = K), where ��1(x) denotes the in-
verse of the standard normal CDF. In practice, how-
ever, parameters are generally unknown and need to
be estimated. Using unbiased estimators µ̂ and �̂ for
µ and �, respectively, estimated control limits dUCL
and dLCL equal

dUCL = µ̂ + K
�̂p
n

dLCL = µ̂�K
�̂p
n

(2)

and are unbiased estimators of UCL and LCL, re-
spectively. The true probability of a false alarm is a
function of these estimated control limits and is thus
dependent on K, m, n, µ̂, and �̂. Given the estima-
tors µ̂ and �̂, it is possible to calculate the true FAR
conditional on these estimators. This FAR, denoted
as Pmn(K; µ̂, �̂), is equal to

Pmn(K; µ̂, �̂)

= 1� P
⇣dLCL <Xm+1< dUCL

⌘

= 1� P

✓
Xm+1< µ̂ + K

�̂p
n

◆

+ P

✓
Xm+1< µ̂�K

�̂p
n

◆
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= 1� �
✓

µ̂� µ

�/
p

n
+ K

�̂

�

◆
+ �

✓
µ̂� µ

�/
p

n
�K

�̂

�

◆
.

where �(x) denotes the standard normal cumula-
tive distribution function (CDF). Pmn(K; µ̂, �̂) can
be rewritten as

Pmn(K;Z,W )

= 1� �
✓

Zp
m

+ KW

◆
+ �

✓
Zp
m
�KW

◆
, (3)

where Z = (µ̂ � µ)/(�/
p

mn) and W = �̂/�. Note
that Z and W are random variables, of which the dis-
tributions depend on the estimators µ̂ and �̂, respec-
tively. Consequently, the unconditional FAR (i.e., be-
fore µ̂ and �̂ are obtained) is a random variable as
well. Because practitioners use di↵erent phase-I sam-
ples, their estimations will vary, resulting in a di↵er-
ent FAR for their control charts. This variation is
known as practitioner-to-practitioner variability; cf.,
Saleh et al. (2015a).

Quesenberry (1993) and Chen (1997) already il-
lustrated the e↵ect of estimated limits for X and X
control charts by means of the ARL and the standard
deviation of the run length. We consider the prac-
titioner variability by considering the average ARL
(AARL), which is the average ARL over all practi-
tioners, and its variation. Note that, conditional on
the FAR, the run length follows a geometric distribu-
tion with parameter FAR, such that the ARL equals
1/FAR. The AARL then equals the unconditional ex-
pectation of the ARL. As illustrated by Quesenberry
(1993), Chen (1997), and others, this unconditional
expectation of the ARL using estimated parameters
generally does not equal the desired value of 1/↵.
To deal with this, the use of correction terms for
the control limits is suggested; cf., Nedumaran and
Pignatiello (2001), Albers and Kallenberg (2004a,
2004b), and Tsai et al. (2004, 2005).

If the distribution of µ̂ is symmetric (such as

is the case for µ̂ =X= (1/m)
Pm

i=1 Xi= (1/mn)Pm
i=1

Pn
j=1 Xij), the corrections for one-sided con-

trol charts with either a UCL or an LCL are identi-
cal. However, one cannot simply apply these correc-
tions separately to two-sided control charts. For the
equivalence of the one-sided corrections, note that
the FAR, when using only a UCL, is equal to the
first part of Equation (3) and can be written as

1� �
✓

Zp
m

+ KW

◆
= �

✓
� Zp

m
�KW

◆
. (4)

If µ̂ follows a symmetric distribution around µ, con-
sequently this also holds for Z around 0. That means

that the distribution of Equation (4) is in that case
equal to that of �(Z/

p
m�KW ), which is the FAR

for a control chart using an LCL only. Therefore,
both one-sided charts require the same correction.
However, applying this one-sided correction to both
sides of a two-sided chart is essentially the same as
correcting for twice the FAR of one side, which is
distributed as

2�
✓

Zp
m
�KW

◆

= 1� �
✓
� Zp

m
+ KW

◆
+ �

✓
Zp
m
�KW

◆
.(5)

Note that the expression in Equation (5) is quite
di↵erent from the actual two-sided FAR as defined
in Equation (3). The intuition behind it is that, in
the two-sided case, an underestimation of the mean
increases P (Xm+1> dUCL), but at the same time
decreases P (Xm+1< dLCL) (and vice versa for an
overestimation of the mean). This e↵ect is not taken
into account when one simply applies one-sided cor-
rections to a two-sided control chart. For this rea-
son, one-sided and two-sided control charts should
be treated separately.

We consider a correction term c that is added
to K. This changes our estimated control limits of
Equation (2) into

dUCL = µ̂ + (K + c)
�̂p
n

dLCL = µ̂� (K + c)
�̂p
n

. (6)

If we denote K̃ = K + c, then our conditional FAR
when using the correction term c is calculated by
Pmn(K̃; µ̂, �̂). A common choice is to correct the
control-chart limits such that the expectation of a
chosen performance measure (e.g., FAR or ARL) is
equal to a desired value. This would ensure that
the control chart performs as it should on average
over all practitioners. However, this does not take
the variability between practitioners into account.
We suggest a correction term that is based on the
exceedance probability criterion, introduced by Al-
bers and Kallenberg (2004b) and which is also used
in some recent research (e.g., Gandy and Kvaløy
(2013)). The approach aims to correct the control-
chart limits such that at least a specified minimum
in-control performance is obtained with a specified
probability. More specifically, for the FAR, the cor-
rection term aims to obtain a FAR that is equal to
(1+✏)↵ or smaller with a probability of 1�p. Here, ✏
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determines our minimum threshold, proportional to
the nominal level, while p represents the probability
of obtaining a control-chart performance lower than
the specified minimum. In our view, p should be small
(e.g., 0.05 or 0.10) and ✏ may be slightly larger (e.g.,
0.2 to 0.5). This is because 1�p represents the prob-
ability for the practitioners with which the minimum
performance is satisfied, while ✏ determines our min-
imum performance threshold. Our choices of p and ✏
are the same as in recent research (e.g., Albers and
Kallenberg (2005)) and for ✏ = 0 (see also Saleh et al.
(2015b)). Hence, for the FAR, we derive a correction
term such that

P
⇣
Pmn(K̃;Z,W ) < (1 + ✏)↵

⌘
= 1� p. (7)

Note that, for the ARL in the in-control situation,
large ARLs are preferred. The criterion would then
be

P

✓
1

Pmn(K̃;Z,W )
> (1� ✏)

1
↵

◆
= 1� p. (8)

The required correction term for the ARL can be
obtained through solving the term for the FAR while
replacing ✏ by ✏̃ = ✏/(1� ✏). This is because the left-
hand side of Equation (8) is equivalent to

P

✓
Pmn(K̃;Z,W ) <

1
1� ✏

↵

◆

= P

✓
Pmn(K̃;Z,W ) <

✓
1 +

✏

1� ✏

◆
↵

◆

= P
⇣
Pmn(K̃;Z,W ) < (1 + ✏̃)↵

⌘
.

Because of this equivalence, our further derivations
are based on the FAR.

In order to determine the correction term c,
we require information on the distribution of
Pmn(K̃;Z,W ), as we need to find the value c for
which the 1 � p percentile of the distribution of
Pmn(K̃;Z,W ) equals (1 + ✏)↵. Although the exact
distribution of Pmn(K;Z,W ) for an arbitrary K is
unknown, it is possible to calculate its moments us-
ing integrals, similar to Chen (1997). The first and
second moment can be calculated as by

E (Pmn(K;Z,W ))

=
Z 1

�1

Z 1

0
Pmn(K; z, w)f(z)f(w)dwdz (9)

and

E(P 2
mn(K;Z,W ))

=
Z 1

�1

Z 1

0
P 2

mn(K; z, w)f(z)f(w)dwdz, (10)

respectively. Here, f(z) equals the probability den-
sity of Z = (µ̂ � µ)/(�/

p
mn) and f(w) is the

probability density of W = �̂/�. The variance of
Pmn(K;Z,W ) can be calculated through

Var(Pmn(K;Z,W ))
= E(P 2

mn(K;Z,W ))�E2(Pmn(K;Z,W )). (11)

Using these moments, we approximate the distribu-
tion of Pmn(K;Z,W ) by a a�2

b/b distribution (for
a detailed motivation, we refer to Appendix A). Be-
cause E(a�2

b/b) = a and Var(a�2
b/b) = 2a2/b, we

have
a = E(Pmn(K;Z,W )) (12)

and

b =
2a2

Var(Pmn(K;Z,W ))
=

2E2(Pmn(K;Z,W ))
Var(Pmn(K;Z,W ))

.

(13)
Note that both the expectation and variance depend
on K and, consequently, after implementing the cor-
rection term through K̃ = K + c, also on c.

3. Correction Terms

3.1. Two-sided Control Limits

As mentioned in the previous section, both a and
b, as in Equations (12) and (13), depend on K. This
means that changing K to K̃ = K + c changes the
a�2

b/b distribution as well. The correction factor c
has to be determined such that, for K̃ = K + c,
the (1 � p)’th percentile of this distribution lies at
(1 + ✏)↵.

If we denote the expectation and variance of
Pmn(K;Z,W ) in Equations (9) and (11) by E and
V , respectively, and their derivatives with respect to
K by dE/dK and dV /dK, respectively, then the cor-
rection term can be expressed by

c =
��1(1� p)� Y (K)

Y 0(K)
, (14)

where

Y (K) = 3
p

(1 + ✏)↵
3E2/3

p
V

� 3Ep
V

+
p

V

3E
(15)

Y 0(K) = 3
p

(1 + ✏)↵
2E�1/3

p
V dE

dK � 3E2/3

2
p

V
dV
dK

V

�
3 dE

dK

p
V � 3E

2
p

V
dV
dK

V

+
3E

2
p

V
dV
dK � 3 dE

dK

p
V

9E2
(16)
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and where
dE

dK
=
Z 1

�1

Z 1

0

dPmn(K; z, w)
dK

f(z)f(w)dwdz

=
Z 1

�1

Z 1

0
�w


�

✓
zp
m

+ Kw

◆

+ �

✓
zp
m
�Kw

◆�

⇥ f(z)f(w)dwdz (17)
dV

dK
=

d(E2)
dK

� 2E
dE

dK
(18)

with

d(E2)
dK

=
Z 1

�1

Z 1

0

dP 2
mn(K; z, w)

dK
f(z)f(w)dwdz

= �2
Z 1

�1

Z 1

0
wPmn(K; z, w)

⇥

�

✓
zp
m

+ Kw

◆

+ �

✓
zp
m
�Kw

◆�

⇥ f(z)f(w)dwdz. (19)

For a detailed derivation of the correction term, we
refer to Appendix B.

Note that, instead of a minimum performance
threshold that is relative (through ✏) to ↵ (or 1/↵),
one could also chose to specify an absolute minimum
performance threshold. This can be done by setting
↵ = FAR0 = 1/ARL0 and ✏ = 0, where FAR0 and
ARL0 are the desired threshold values for the FAR
or ARL, respectively. However, in order to make a
better comparison between the corrected and uncor-
rected charts, we consider relative thresholds. The
same approach has been used by other authors (e.g.,
Albers and Kallenberg (2005)).

We use simulation to evaluate the performance
of the proposed correction term. In order to do
this, we need to define our estimators and deter-
mine the corresponding distributions f(z) and f(w)
of Z = (µ̂�µ)/(�/

p
mn) and W = �̂/�, respectively.

We consider µ̂ =X as the estimator for location, in
which case f(z) equals the standard normal proba-
bility density. For the spread, we consider two esti-
mators. The first estimator, which we use in the case
that n > 1 (groups), is based on the pooled standard
deviation (sp) and is equal to

�̂1 =
sp

c4(m(n� 1) + 1)
, (20)

where c4(m(n�1)+1) is such that �̂1 is an unbiased
estimator of �. For this estimator, W = �̂1/� is dis-
tributed as ⌧�⌫/

p
⌫ with ⌧ = 1/c4(m(n�1)+1) and

⌫ = m(n� 1). The probability density of ⌧�⌫/
p

⌫ is
then

f(w; ⌧, ⌫)

=
✓

2
⌧

◆
(⌫/2)⌫/2

�(⌫/2)

⇣w

⌧

⌘⌫�1
exp

✓
�⌫

2

⇣w

⌧

⌘2
◆

(21)

(see also Chen (1997)). The second estimator, which
is used in the case n = 1 (individuals), is based on
the average moving range MR and is equal to

�̂2 =
MR
d2(2)

, (22)

where d2(2) = 2/
p

⇡, which yields that �̂2 is an un-
biased estimator of �. Although the exact distribu-
tion of MR is not easy to obtain, the distribution of
W = �̂2/� can be approximated by ���/

p
�, where

� =
p

Var(W ) + 1

� =
1
2

✓
1 +

1
Var(W )

◆
. (23)

See for example Roes et al. (1993) for this approx-
imation, or Patnaik (1950) for a similar one. The
variance of W = �̂2/� is investigated by Cryer and
Ryan (1990) and can be approximated by

Var
✓

�̂2

�

◆
=

0.8264m� 1.082

(m� 1)2

�
. (24)

Note that it is possible to use any other estimator for
location and spread by applying their correspond-
ing probability functions f(z) and f(w). In Table
1 and Table 2, several estimators for µ and �, re-
spectively, are listed. For the estimators of µ, the
(approximated) probability density function f(z) is
tabulated. For the mean, we have an exact distribu-
tion and, for the median, the distribution has been
approximated (cf., Johnson and Kotz (1970)). For es-

TABLE 1. Estimators for Location, Including the
(Approximated) Probability Density Function f (z) of

Z = (µ̂ � µ)/(�/
p

mn)

Estimator f(z)

Average (X)
1p
2⇡

exp
✓
�1

2
z2

◆

Median (X̃)
1
⇡

exp
✓
�z2

⇡

◆
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TABLE 2. Estimators for Spread, Including the (Approximated) Probability Density Function f (w) of W = �̂/�

Estimator ⇣ and � var(W )

Individuals (n = 1)

Average moving range, �̂ =
MR(X)
d2(2)

⇣ =
p

Var(W ) + 1, � =
1
2

✓
1 +

1
Var(W )

◆
0.8264m� 1.082

(m� 1)2

Interquartile range �̂ =
IQR(X)
1.349

⇣ =
p

Var(W ) + 1, � =
1
2

✓
1 +

1
Var(W )

◆
2.46

1.820m

Sample standard deviation �̂ =
s

c4(m)
⇣ = 1/c4(m), � = m� 1

1� c2
4(m)

c2
4(m)

Groups (n > 1)

Average sample standard deviation ⇣ =
p

Var(W ) + 1, � =
1
2

✓
1 +

1
Var(W )

◆
1� c2

4(n)
mc2

4(n)

�̂ =
s̄

c4(n)

Pooled sample standard deviation ⇣ =
1

c4(m(n� 1) + 1)
, � = m(n� 1)

1� c2
4(m(n� 1) + 1)

c2
4(m(n� 1) + 1)

�̂ =
sp

c4(m(n� 1 + 1))

timators of �, the distribution of W = �̂/� is either
exact or approximated by a ⇣��/

p
� distribution, so

that f(w) is given by Equation (21). The approxi-
mation is similar to that of MR, by determining the
corresponding values of ⇣ and �. The required values
of ⇣ and � for the considered estimators are listed in
Table 2. We refer to Roes et al. (1993) for the ap-
proximations and to Albers and Kallenberg (2005)
for explicit expressions of the listed estimators of �.

As the ARL is the most commonly used perfor-
mance measure of control charts, we evaluate the per-
formance of our proposed correction terms based on
that. The corresponding criterion function is given
in Equation (8). To calculate the required correction
terms, we use the model as described in the previous
section, thus replacing ✏ by ✏̃ = ✏/(1� ✏) in the cor-
rection terms for the FAR. We have calculated the
correction terms and simulated their performance for
a wide range of parameter values. For each combina-
tion of parameter values 1,000,000 simulation runs
are performed. The relative standard errors of all re-
ported AARL values in Tables 3–8 are less than 1%.
Table 3 and Table 4 illustrate, for multiple combina-

tions of n and m, the correction term and its perfor-
mance compared with an uncorrected chart, each for
a di↵erent set of p, ✏, and ↵. The performance is mea-
sured by the exceedance probability as in Equation
(8) while, for the comparisons, the AARLs are also
given. The results illustrate that, after implementing
our suggested correction term, the exceedance prob-
ability is very close to the desired level. Especially for
small sample sizes, the di↵erences between the cor-
rected and the uncorrected chart are large. Note that
this is in agreement with the sample size recommen-
dations by, e.g., Quesenberry (1993), which states
that about 400/(n�1) samples of size n are required
in phase I for the X chart to behave properly on av-
erage. Furthermore, Saleh et al. (2015a) show that
far larger amounts of phase-I data are required when
also taking the practitioner-to-practitioner variabil-
ity into account. As more data are available in phase
I, the required correction becomes smaller. At some
point, the exceedance probability of the uncorrected
chart is already below the desired level, meaning that
the correction term becomes negative to increase the
exceedance probability. The use of a negative correc-
tion term in this case is questionable, as it will de-
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TABLE 3. Correction Terms c for the X-Chart, Including the Corresponding Exceedance Probability and AARL for
the Corrected (Cor) and Uncorrected (Unc) Control Limits. Parameter values are ↵ = 0.0027, p = 0.05, and ✏ = 0.2

m n Correction c Exc. Pr. (cor) Exc. Pr. (unc) AARL (cor) AARL (unc)

25 3 0.5687 0.0516 0.4836 7261 569
5 0.3970 0.0478 0.4715 1890 418
9 0.2822 0.0473 0.4534 984 364

50 3 0.3532 0.0483 0.4275 1721 449
5 0.2311 0.0494 0.3956 879 389
9 0.1541 0.0501 0.3595 610 362

75 3 0.2615 0.0495 0.3908 1078 418
5 0.1651 0.0507 0.3451 674 382
9 0.1034 0.0512 0.2922 514 364

100 3 0.2097 0.0501 0.3617 850 405
5 0.1302 0.0511 0.3132 585 376
9 0.0756 0.0519 0.2434 469 365

150 3 0.1540 0.0504 0.3239 662 389
5 0.0884 0.0521 0.2555 503 374
9 0.0447 0.0519 0.1752 425 366

200 3 0.1202 0.0512 0.2893 579 384
5 0.0647 0.0520 0.2120 463 373
9 0.0274 0.0522 0.1289 402 367

250 3 0.0980 0.0516 0.2600 531 381
5 0.0491 0.0521 0.1792 438 372
9 0.0160 0.0523 0.0971 388 368

crease the in-control performance in that situation.
However, the out-of-control performance im proves
while keeping the in-control performance at a desired
level.

As mentioned earlier, this correction term is appli-
cable for any estimator. Previously, we have shown
the results for the X-chart using an estimator for �
based on the pooled standard deviation (see Equa-
tion (20)). In this section, we also show the results
for the individuals X-chart, by using an unbiased
version of the average moving range as an estima-
tor of �, as in Equation (22). Similarly as for the
X-chart, Table 5 and Table 6 indicate the correction
term and its performance compared with the uncor-
rected chart for multiple values of m (and n = 1),
each for a di↵erent set of p, ✏, and ↵. Even though
we use an approximation of the density of �̂2, the cor-

rection term still performs well, with the exceedance
probabilities close to the desired level.

3.2. One-sided Control Limits

A fairly straightforward change in the previous
derivations leads to the correction term in case we
are dealing with either a UCL or an LCL only (one-
sided). As the correction term for the UCL and LCL
is the same, we consider the case of the UCL. The
main di↵erence lies in the change of Equation (3) to

Pkn(u;Z,W ) = 1� �
✓

zp
k

+ uw

◆
, (25)

where u is now equal to ��1(1�p). Then this formula
should be used to calculate the expectation and vari-
ance of Pkn(u;Z,W ) in Equations (9) and (11). The
expressions in Equations (17) and (19) will change
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TABLE 4. Correction Terms c for the X-Chart, Including the Corresponding Exceedance Probability and AARL for
the Corrected (Cor) and Uncorrected (Unc) Control Limits. Parameter values are ↵ = 0.01, p = 0.1, and ✏ = 0.4

m n c Exc. pr. (cor) Exc. pr. (unc) AARL (cor) AARL (unc)

25 3 0.2325 0.0975 0.3049 275 123
5 0.1216 0.0967 0.2352 151 104
9 0.0507 0.0946 0.1615 111 96

50 3 0.0875 0.0975 0.1956 144 110
5 0.0124 0.0987 0.1150 105 101
9 �0.0349 0.0988 0.0518 88 97

75 3 0.0289 0.0991 0.1347 116 106
5 �0.0305 0.0994 0.0601 92 101
9 �0.0688 0.1004 0.0172 80 98

100 3 �0.0040 0.0996 0.0946 103 104
5 �0.0529 0.1005 0.0337 86 100
9 �0.0875 0.1017 0.0059 77 98

150 3 �0.0390 0.1005 0.0511 91 102
5 �0.0802 0.1008 0.0103 79 100
9 �0.1081 0.1027 0.0007 73 99

200 3 �0.0606 0.1005 0.0272 85 102
5 �0.0957 0.1016 0.0033 76 100
9 �0.1197 0.1032 0.0001 71 99

250 3 �0.0749 0.1012 0.0152 82 101
5 �0.1060 0.1020 0.0011 74 100
9 �0.1273 0.1035 0.0000 69 99

as
dE

du
=
Z 1

�1

Z 1

0

dPkn(u; z, w)
du

f(z)f(w)dwdz

=
Z 1

�1

Z 1

0
�w�

✓
zp
k

+ uw

◆
f(z)f(w)dwdz

(26)
d(E2)

du
=
Z 1

�1

Z 1

0

dP 2
kn(u; z, w)

du
f(z)f(w)dwdz

= �2
Z 1

�1

Z 1

0
wPkn(u; z, w)�

✓
zp
k

+ uw

◆

⇥ f(z)f(w)dwdz, (27)

which can be used to obtain the corresponding ex-
pression in (18):

dV /du = d(E2)/du� 2E(dE/du). (28)

The corresponding correction term c in Equation (14)

for the one-sided control limit can be obtained by
implementing the resulting expressions in Equations
(15) and (16).

4. Out-of-Control Performance

Correcting the control-chart limits in order to
guarantee a minimum performance clearly has an ad-
vantage in the in-control situation. However, this in-
evitably leads to a deterioration of the out-of-control
performance. In the previous section, more specif-
ically in Tables 3–6, the AARLs of the corrected
and uncorrected charts are given. It can already be
seen that there is a large di↵erence between the cor-
rected and uncorrected control limits for small sam-
ple sizes. As more information becomes available,
and as a consequence the correction term becomes
smaller, this di↵erence becomes smaller. For the out-
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TABLE 5. Correction Terms c for the Individuals X-Chart, with the Corresponding Exceedance Probability and AARL for
the Corrected (Cor) and Uncorrected (Unc) Control Limits. Parameter values are ↵ = 0.0027, p = 0.05, and ✏ = 0.2

m c Exc. pr. (cor) Exc. pr. (unc) AARL (cor) AARL (unc)

50 0.6930 0.0563 0.4723 78,131 1,086
75 0.5510 0.0492 0.4492 9,902 697

100 0.4596 0.0471 0.4308 4,156 580
150 0.3495 0.0470 0.4041 1,916 491
200 0.2852 0.0475 0.3819 1,317 455
250 0.2425 0.0483 0.3633 1,053 436
500 0.1419 0.0502 0.2979 655 401

1,000 0.0760 0.0516 0.2191 498 385

of-control situation, this behavior is very similar. To
illustrate this, we have simulated the AARL of the
corrected and uncorrected X-charts for di↵erent sizes
of shifts. We consider p = 0.05, ✏ = 0.2, and ↵ =
0.0027 and have again simulated for a wide range of
values for m and n. For the out-of-control situation,
we consider a shift of X from a N(µ,�2/n) to a N(µ+
�(�/

p
n),�2/n) distribution, with � equal to 0.5, 1,

or 2. The results are listed in Table 7.

We find that, in this situation, for small sample
sizes, the di↵erences in AARLs between the corrected
and uncorrected charts are substantial. Note that we
have chosen a rather strict set of parameters, as we
guarantee an in-control ARL of at least 296 with a
probability of 90%. The out-of-control performance
becomes better as ↵, ✏, and p increase. More specif-
ically, increasing the value of ✏ and/or ↵ results in
a lower minimum in-control performance threshold
and, consequently, in a lower AARL. On the other
hand, a larger value of p means that we allow a larger
proportion of the in-control ARLs to be below the

minimum performance threshold. This has the con-
sequence that the AARL will be smaller. Thus, in-
creasing any of the parameters ↵, ✏, and/or p leads to
lower AARL values, which is beneficial for the out-of-
control situation, but of course not for the in-control
situation. This tradeo↵ between in-control and out-
of-control performance is inherent to control charts.
The advantage of our proposed method is that the
parameters can be easily adjusted in order to bal-
ance the performance of the chart as desired by the
practitioner. In addition, Table 8 illustrates the cor-
rections, exceedance probabilities, and AARL values
of the corrected and uncorrected charts for various
combinations of m and n, for ↵ = 0.01, ✏ = 0.2, and
p = 0.1.

5. Comparison with Existing Methods

In order to illustrate the performance of the pro-
posed correction term, a comparison is made with
the existing methods. First, we make a comparison
with the methods of Albers and Kallenberg (2005)

TABLE 6. Correction Terms c for the Individuals X-Chart, with the Corresponding Exceedance Probability and AARL for
the Corrected (Cor) and Uncorrected (Unc) Control Limits. Parameter values are ↵ = 0.01, p = 0.1, and ✏ = 0.4

m c Exc. pr. (cor) Exc. pr. (unc) AARL (cor) AARL (unc)

50 0.3176 0.0979 0.3279 658 174
75 0.2127 0.0959 0.2773 301 140

100 0.1512 0.0959 0.2393 212 127
150 0.0808 0.0966 0.1837 151 117
200 0.0407 0.0970 0.1440 127 112
250 0.0142 0.0984 0.1156 114 109
500 �0.0483 0.0993 0.0409 91 105

1,000 �0.0898 0.1011 0.0066 79 102
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TABLE 7. Out-of-Control Performance of the X-Chart for Shifts in the Mean of Size �/
p

n, for Both
the Corrected (Cor) and Uncorrected (Unc) Control Limits. Parameter values are ↵ = 0.0027, p = 0.05, and ✏ = 0.2

Size of shift �

0.5 1 2

m n AARL (cor) AARL (unc) AARL (cor) AARL (unc) AARL (cor) AARL (unc)

25 3 143 69 42 23 6 4
5 84 60 27 21 5 4
9 64 56 22 20 4 4

50 3 74 58 24 20 4 4
5 57 55 19 19 4 4
9 48 53 17 18 3 4

75 3 60 56 20 19 4 4
5 49 53 17 18 4 4
9 44 52 16 18 3 4

100 3 53 54 18 19 4 4
5 46 52 16 18 3 4
9 41 52 15 18 3 4

150 3 47 52 17 18 3 4
5 42 51 15 18 3 4
9 39 51 14 18 3 4

200 3 44 52 16 18 3 4
5 40 51 15 18 3 4
9 38 51 14 18 3 4

250 3 43 51 15 18 3 4
5 39 51 14 18 3 4
9 37 51 14 18 3 4

and Gandy and Kvaløy (2013). Next, we compare
the proposed X chart with tolerance intervals for a
normal distribution because these use an equivalent
criterion for n = 1. Finally, we compare the proposed
control chart with the self-starting Q chart of Que-
senberry (1993).

5.1. Comparison of Shewhart X and X

Control Charts

We consider the two-sided case, with µ̂ =X and
�̂ as in Equation (20) for n > 1 and Equation (22)
for n = 1. For this situation, Albers and Kallenberg
(2005) proposed control limits of the form

dUCLAK =X +K(�̂/
p

n)(1 + cAK)

dLCLAK =X �K(�̂/
p

n)(1 + cAK), (29)

where

cAK =
��1(1� p)✓p

mn
� ✏

K2
, (30)

where ✓2 = limmn!1[mnvar(�̂/(E�̂))]. For the esti-
mators �̂ as in Equations (20) and (22), the value of
✓2 equals n/[2(n� 1)] and 0.826, respectively. Note
that their proposed correction (cAK) only depends
on the initial phase-I sample through its size (m and
n). This is in line with our proposed correction. For
the bootstrap approach of Gandy and Kvaløy (2013),
this is di↵erent, as the actual correction depends on
the sample estimates. Therefore, in the comparison,
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TABLE 8. Out-of-Control Performance of the X-Chart for Shifts in the Mean of Size �/
p

n, for Both
the Corrected (Cor) and Uncorrected (Unc) Control Limits. Parameter values are ↵ = 0.01, p = 0.1, and ✏ = 0.4.

Size of shift �

0.5 1 2

m n AARL (cor) AARL (unc) AARL (cor) AARL (unc) AARL (cor) AARL (unc)

25 3 143 69 42 23 6 4
5 84 60 27 21 5 4
9 64 56 22 20 4 4

50 3 74 58 24 20 4 4
5 57 55 19 19 4 4
9 48 53 17 18 3 4

75 3 60 56 20 19 4 4
5 49 53 17 18 4 4
9 44 52 16 18 3 4

100 3 53 54 18 19 4 4
5 46 52 16 18 3 4
9 41 52 15 18 3 4

150 3 47 52 17 18 3 4
5 42 51 15 18 3 4
9 39 51 14 18 3 4

200 3 44 52 16 18 3 4
5 40 51 15 18 3 4
9 38 51 14 18 3 4

250 3 43 51 15 18 3 4
5 39 51 14 18 3 4
9 37 51 14 18 3 4

only the realized exceedance probabilities are shown.
For the explicit bootstrapping procedure, we refer to
Saleh et al. (2015b), who provide a simplification of
the computations in Gandy and Kvaløy’s (2013) ap-
proach for the Shewhart control chart. We performed
the bootstrap procedure (based on 1001 bootstraps)
for 10,000 simulated phase-I samples, in order to cal-
culate the exceedance probability. The considered pa-
rameter values are p = 0.1, ✏ = 0, and ↵ = 0.0027.
The results of the simulations are listed in Table 9
for di↵erent values of m and n = 5. Results for other
values of n are similar. It is clear that our proposed
correction performs much better than the correction
of Albers and Kallenberg (2005), as it is closer to the
desired level of p = 0.1. The bootstrap procedure

of Gandy and Kvaløy (2013) also has good perfor-
mance. There is no real di↵erence with our proposed
method in the sense of performance. Also, the per-
formance of our proposed method and the bootstrap
method appears to be less sensitive to the value of
✏, as becomes clear when changing its value. This is
shown in Table 10, which indicates the performance
of the three methods when implementing ✏ = 0.2
while leaving the other parameters as before.

To illustrate the performance and consequences of
the proposed methods graphically, the distributions
of the ARLs of the di↵erent methods in the in-control
(� = 0) and out-of-control situation (� = 1) are
shown in Figures 1 and 2, respectively, for m = 50,
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TABLE 9. Exceedance Probabilities of the Proposed
Correction, Albers and Kallenberg (2005) (AK) Correction

and Gandy and Kvaløy (2013) (bootstrap) Method for
Di↵erent Values of m. Parameter values are

n = 5, ↵ = 0.0027, p = 0.1. and ✏ = 0

m Proposed AK Bootstrap

25 0.0916 0.1822 0.1046
50 0.0934 0.1580 0.0993
75 0.0957 0.1462 0.0989

100 0.0947 0.1440 0.1010
150 0.0967 0.1350 0.1054
200 0.0989 0.1318 0.0983
250 0.0998 0.1263 0.1021

n = 5, p = 0.1, ✏ = 0.2, and ↵ = 0.0027. The vertical
line represents the desired threshold of the 100p’th
(in this case 10th) percentile of the in-control ARL
distribution. The desired threshold with ↵ = 0.0027
and ✏ = 0.2 is equal to 296. As can also be seen in
Table 10, our proposed correction and the bootstrap
method perform best, with the 10th percentile close
to the desired level. It is gratifying to note that, with
our correction term, no extensive bootstrapping is
needed for the Shewhart control charts for location.

The tradeo↵ between in-control and out-of-control
performance of the control chart also becomes clear
from these figures, if we compare the proposed meth-
ods with the uncorrected chart. The corrected charts
correspond with better in-control performance, but
have a slower detection in the out-of-control situa-
tion.

TABLE 10. Exceedance Probabilities of the Proposed
Correction, Albers and Kallenberg (2005) (AK) Correction

and Gandy and Kvaløy (2013) (bootstrap) Method for
Di↵erent Values of m. Parameter values are
n = 5, ↵ = 0.0027, p = 0.1, and ✏ = 0.2

m Proposed AK Bootstrap

25 0.0921 0.1918 0.1044
50 0.0936 0.1739 0.0992
75 0.0973 0.1649 0.0989

100 0.0982 0.1673 0.1010
150 0.1008 0.1665 0.1054
200 0.0999 0.1662 0.0983
250 0.1004 0.1708 0.1022

5.2 Tolerance Intervals

The literature of tolerance intervals considers a
criterion that is closely related to the proposed cor-
rections in this paper. From Krishnamoorthy and
Mathew (2009), we cite “a tolerance interval is ex-
pected to capture a certain proportion or more of
the population, with a given confidence”. The toler-
ance intervals are based on the sample average (X)
and the sample standard deviation (s) and are in the
form of X ±k2s, where k2 is determined such that

P (P (X �k2s  X X +k2s |X, s) � 1�↵) = 1�p.
(31)

Using the tolerance limits as control limits guaran-
tees an in-control FAR (ARL) that is smaller (larger)
than ↵ (1/↵) with probability 1�p. Thus, k2 is equiv-
alent to our K̃ in the case that ✏ = 0 and n = 1, when

FIGURE 1. In-Control ARL Distribution when m = 50, n = 5, ↵ = 0.0027, p = 0.1, and ✏ = 0.2. The boxplots indicate the
5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the distributions. The vertical line represents the desired threshold
level of the ARL (296).
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FIGURE 2. Out-of-Control ARL Distribution for � = 1 when m = 50, n = 5, ↵ = 0.0027, p = 0.1, and ✏ = 0.2. The
boxplots indicate the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the distributions.

using X and s as phase-I estimators. Only in this
case, the objective is exactly identical to our ap-
proach. Note that the tolerance limit approach can
be applied when n > 1, by treating X as an in-
dividual variable. However, this would mean that
standard deviation of X should be used to estimate
� rather than the standard deviation of X. This
means that the within-subgroup variation is ignored
in the estimation. The performance of the tolerance-
interval approach is then equal to the performance
when n = 1. Because our approach does consider
the within-subgroup variation, it has less uncertainty
in parameter estimation, leading to less variation in
ARLs for n > 1.

Because of the arguments mentioned above, we
have compared our proposed corrections with the ap-
proximated tolerance factors as in Krishnamoorthy
and Mathew (2009) for the case n = 1. Although
they provide tolerance factors KKM instead of cor-
rections cKM, we can determine their ‘correction’ by
subtracting K from KKM. We consider X as esti-
mator of µ and s as estimator of �. Their proposed
correction cKM then equals

cKM =

 
(n� 1)�2

[1,1�↵](1/n)
�2

[n�1,p]

!1/2

�K, (32)

where �2
[d,q] represents the q-quantile of a chi-squared

distribution with d degrees of freedom, and �2
[d,q](✓)

represents the q-quantile of a noncentral chi-squared
distribution with d degrees of freedom and noncen-
trality parameter ✓.

For di↵erent combinations of ↵ and p, we have cal-
culated the corrections and their performance. The
results are shown in Table 11 for ↵ = 0.0027 and
p = 0.05 and in Table 12 for ↵ = 0.01 and p = 0.1.

As can be seen, there appears to be no significant
di↵erence in performance because the resulting ex-
ceedance probabilities are close to the desired value
p for both approximations. Note that, for other es-
timators of � for n = 1, like the average moving
range, the results of Krishnamoorthy and Mathew
(2009) are not straightforward. Furthermore, note
that, for one-sided control charts, for normally dis-
tributed data, exact solutions are available for the
tolerance bounds.

5.3. Self-Starting Control Charts

There are also other control chart designs that
lead to a desirable in-control performance. In par-
ticular, for normally distributed data, self-starting
control charts by Hawkins (1987) and Quesenberry
(1991) can guarantee a good in-control performance

TABLE 11. Corrections and Exceedance Probabilities
of the Proposed Correction and the Approximated

Tolerance from Krishnamoorthy and Mathew (2009)
for Di↵erent Values of m and n = 1 (individuals).

Parameter values are ↵ = 0.0027, p = 0.05, and ✏ = 0

Exc. pr. Exc. pr.
m c (c) cKM (cKM)

50 0.6286 0.0507 0.6403 0.0484
75 0.4990 0.0514 0.4966 0.0521

100 0.4215 0.0503 0.4174 0.0519
150 0.3322 0.0473 0.3293 0.0486
200 0.2812 0.0458 0.2794 0.0469
250 0.2475 0.0505 0.2465 0.0514
500 0.1683 0.0515 0.1686 0.0512

1,000 0.1159 0.0529 0.1165 0.0523
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TABLE 12. Corrections and Exceedance Probabilities
of the Proposed Correction and the Approximated

Tolerance from Krishnamoorthy and Mathew (2009)
for Di↵erent Values of m and n = 1 (individuals).

Parameter values are ↵ = 0.01, p = 0.1, and ✏ = 0

Exc. pr. Exc. pr.
m c (c) cKM (cKM)

50 0.4130 0.1013 0.4249 0.0957
75 0.3257 0.1071 0.3304 0.1032

100 0.2753 0.1026 0.2781 0.1006
150 0.2179 0.0997 0.2196 0.0984
200 0.1851 0.1010 0.1865 0.0982
250 0.1634 0.1067 0.1646 0.1044
500 0.1118 0.1000 0.1127 0.0981

1,000 0.0773 0.0996 0.0779 0.0979

in the long run as well. However, the major drawback
is that, because of the continuous updating of the
control chart limits, there is a risk that out-of-control
data influence the process estimates. A small change
in the process mean can therefore slowly change the
control limits with it, making the out-of-control sit-
uations harder to detect. This can result in larger
out-of-control ARLs. To illustrate this, we have sim-
ulated ARLs for both the self-starting Q chart in
Quesenberry (1991) and our proposed corrections
for both the in-control and out-of-control situations
(with � = 1). As can be observed in Figure 3, the
self-starting Q chart indeed has a long out-of-control
ARL, much longer than the proposed corrections.
Next to that, although the in-control performance
of the Q chart is very stable, our proposed correc-

tion yields a much longer in-control ARL, which is
highly beneficial for practitioners.

6. Concluding Remarks and
Recommendations

To deal with the e↵ect of parameter estimation,
we propose new correction terms for the Shewhart X
and X control charts. As model parameters are gen-
erally unknown, they have to be estimated using a
reference sample. Because di↵erent practitioners use
di↵erent samples, their control chart limits and, con-
sequently, their control-chart performance, will vary.
The newly proposed correction terms are in line with
the idea introduced by Albers and Kallenberg (2004),
which corrects the control limits to guarantee a spec-
ified minimum performance of the control chart with
a specified probability. The new correction terms are
shown to be very accurate in achieving this. The
performance of the proposed method is much bet-
ter than Albers and Kallenberg (2005) and similar to
the bootstrap method of Gandy and Kvaløy (2013).
However, no bootstrapping is required, as the pro-
posed correction only depends on the initial phase-
I sample through its size rather than its parame-
ter estimates. In this paper, also comparisons are
made with tolerance intervals and self-starting con-
trol charts. The conclusions are that our corrections
behave very well for the individuals Shewhart X con-
trol chart and outperform the self-starting control
chart in both in- and out-of-control situations.

Because of the guarantee of minimum perfor-
mance, the corrected chart performs better than an
uncorrected chart in the in-control situation. This in-
evitably leads to a deterioration of the out-of-control

FIGURE 3. In-Control (� = 0) and Out-of-Control (� = 1) ARL Distribution of the Self-Starting Q Chart in Quesenberry
(1991) and Our Proposed Correction when m = 50, n = 5, ↵ = 0.0027, p = 0.1, and ✏ = 0. The boxplots indicate the 5th,
10th, 25th, 50th, 75th, 90th, and 95th percentiles of the distributions.

Journal of Quality Technology Vol. 49, No. 2, April 2017



mss # 2156.tex; art. # 01; 49(2)

GUARANTEED IN-CONTROL PERFORMANCE FOR THE SHEWHART X AND X CONTROL CHARTS 169

performance. However, the strictness of the correc-
tion can be easily adapted by changing ↵, ✏, and p
as desired. The choice of parameters should be based
on the context. As costs of a false alarm and costs
of running a process out-of-control are very depen-
dent on the application, it is recommended to take
this into account when making the tradeo↵ between
in-control and out-of-control performance. An advan-
tage of the proposed method is that this tradeo↵ can
be taken into account when setting up the control
limits rather than being disregarded.

The present paper considers the Shewhart X and
X control charts under normal theory. In other set-
tings (e.g., the CUSUM and EWMA control charts
or autocorrelated processes), alternative methods to
guarantee a minimum performance to practitioners
are the subject for further investigation.

Appendix A

First note that Pmn(K;Z,W ) can be written ac-
cording to Equation (3). This can be rewritten as

Pmn(K; µ̂, �̂) = �̄(K + �1(K)) + �̄(K + �2(K)),
(A.1)

with �̄(x) = 1� �(x) and

�1(K) =
µ̂� µ

�/
p

n
+ K

✓
�̂

�
� 1
◆

(A.2)

and

�2(K) = � µ̂� µ

�/
p

n
+ K

✓
�̂

�
� 1
◆

. (A.3)

Hence, for any function g(↵), we can write

g(Pmn(K; µ̂, �̂)) = h(K + �1(K),K + �2(K))
= h(x, y). (A.4)

Using a two-step Taylor expansion, this is approxi-
mately equal to

g(Pmn) = h(K + �1(K),K + �2(K))
⇡ h(K,K) + hx(K,K)�1(K)

+ hy(K,K)�2(K)

+
1
2
[hxx(K,K)�2

1(K)

+ 2hxy(K,K)�1(K)�2(K)
+ hyy(K,K)�2

2(K)], (A.5)

where hx(K,K) and hy(K,K) are the first-order
partial derivatives of h(x, y) with respect to x and
y, respectively, hxx(K,K) and hyy(K,K) are the
second-order partial derivatives of h(x, y) with re-
spect to x and y, respectively, and hxy(K,K) equals

the cross partial derivative of h(x, y) with respect
to x and y. Note that hx(K,K) = hy(K,K) and
hxx(K,K) = hyy(K,K). Taking this into account,
we can simplify (A.5) into

g(Pmn) ⇡ h(K,K) + hx(K,K) [�1(K) + �2(K)]

+
1
2
hxx(K,K)

⇥
�2

1(K) + �2
2(K)

⇤
+ hxy(K,K)�1(K)�2(K). (A.6)

Using Equations (A.2) and (A.3), we can rewrite this
into

g(Pmn) ⇡ h(K,K) + hx(K,K)2K
✓

�̂

�
� 1
◆

+ (hxx(K,K)� hxy(K,K))
✓

µ̂� µ

�/
p

n

◆2

+ (hxx(K,K) + hxy(K,K))K2

✓
�̂

�
� 1
◆2

.

(A.7)

For Xij i.i.d. N(µ,�)-distributed random variables

and µ̂ =X, we know that✓
µ̂� µ

�/
p

mn

◆2

has a chi-squared distribution. Common estimators
of the standard deviation, such as the (pooled) sam-
ple standard deviation, follow a scaled chi distribu-
tion, while even the distribution of the average mov-
ing range can be approximated as such (cf., Roes et
al. (1993)). This means that �̂/� and �̂2/�2 gener-
ally follow a scaled chi and scaled chi-squared distri-
bution, respectively. Hence, we may conclude that
Pmn(K;Z,W ) is approximately a combination of
scaled chi and chi-squared distributed random vari-
ables. Note that the distribution of Pmn(K;Z,W )
should be approximated such that it not only gives
an accurate description but also such that it is pos-
sible to obtain the required correction term. The dif-
ficulty in obtaining this correction term lies in the
sense that the correction term c not only changes
the expectation but also the variance of the distribu-
tion. As the currently obtained approximation is still
of rather complicated form and, because the scaled
chi-squared part appears to be dominant, we approx-
imate the distribution of Pmn(K;Z,W ) by a a�2

b/b
distribution, where we use the first two central mo-
ments of Pmn(K;Z,W ) to identify a and b.

Appendix B

In order to obtain the required correction term,
we use the Wilson–Hilferty transformation (Wilson
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and Hilferty (1931)), which states that, for X ⇠ �2
b ,

we have
3
p

X/b
approx⇠ N(1� 2/(9b), 2/(9b)).

This transformation is quite accurate, which was
shown recently by Inglot (2010). Henceforth, we ab-
breviate Pmn(K;Z,W ) as Pmn. Then, in our case,
when

Pmn
approx⇠ a�2

b/b

or similarly
b

a
Pmn

approx⇠ �2
b ,

we obtain

3

r
Pmn

a
approx⇠ N(1� 2/(9b), 2/(9b)).

This is equivalent to

3
q

Pmn
a � 1 + 2

9bq
2
9b

approx⇠ N(0, 1).

We want to have P (Pmn < (1 + ✏)↵) = 1 � p (cf.
Equation (7)). This is equivalent to

P (Pmn < (1 + ✏)↵)

= P

0
@ 3
q

Pmn
a � 1 + 2

9bq
2
9b

<

3
q

(1+✏)↵
a � 1 + 2

9bq
2
9b

1
A

⇡ �

0
@ 3
q

(1+✏)↵
a � 1 + 2

9bq
2
9b

1
A = 1� p, (B.1)

which in turn, by using the inverse of the standard
normal CDF (denoted ��1), leads to the following
equation that needs to be solved:

3
q

(1+✏)↵
a � 1 + 2

9bq
2
9b

= ��1(1� p). (B.2)

Note again that both a and b are functions of K.
Given the values of m, n, ↵, and ✏, the left-hand side
of Equation (B.2) is a function of K only, say Y (K).
Using Equations (12) and (13), we can write Y (K)
as

Y (K) = 3
p

(1 + ✏)↵
3E(Pmn)2/3p

Var(Pmn)

� 3E(Pmn)p
Var(Pmn)

+
p

Var(Pmn)
3E(Pmn)

(B.3)

In order to solve Equation (B.2,) we need to find
c such that, for K̃ = K + c, there holds Y (K̃) =

��1(1�p). This value of c is found by a linear approx-
imation of Y (K̃) as Y (K̃) ⇡ Y (K) + c(dY (K)/dK).

If we denote the derivatives of E(Pmn) and
V (Pmn) with respect to K by dE/dK and dV /dK,
respectively, and E(Pmn) and V (Pmn) by E and V ,
respectively, we have

Y 0(K) =
dY (K)

dK

=
2E�1/3

p
V dE

dK � 3E2/3

2
p

V
dV
dK

V

�
3 dE

dK

p
V � 3E

2
p

V
dV
dK

V

+
3E

2
p

V
dV
dK � 3 dE

dK

p
V

9E2
. (B.4)

The values of dE/dK and dV /dK can be calculated
(as can be seen from Equations (9), (11), and (10))
as

dE

dK
=
Z 1

�1

Z 1

0

dPmn(z, w)
dK

f(z)f(w)dwdz

=
Z 1

�1

Z 1

0
�w


�

✓
zp
m

+ Kw

◆

+�

✓
zp
m
�Kw

◆�

⇥ f(z)f(w)dwdz (B.5)

and

dV /dK = d(E2)/dK � 2E(dE/dK), (B.6)

where
d(E2)
dK

=
Z 1

�1

Z 1

0

dP 2
mn(K; z, w)

dK
f(z)f(w)dwdz

= �2
Z 1

�1

Z 1

0
wPmn(K; z, w)

⇥

�

✓
zp
m

+ Kw

◆

+�

✓
zp
m
�Kw

◆�

⇥ f(z)f(w)dwdz. (B.7)

Getting back to the approximation Y (K̃) ⇡ Y (K) +
c(dY (K)/dK) = Y (K) + cY 0(K), we thus obtain

c = [��1(1� p)� Y (K)]/Y 0(K). (B.8)
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