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ABSTRACT
Several recent studies have shown that the number of Phase I samples required for a Phase II control chart
with estimated parameters to perform properly may be prohibitively high. Looking for a more practical
alternative, adjusting the control limits has been considered in the literature. We consider this problem for
the classic Shewhart charts for process dispersion under normality and present an analytical method to
determine the adjusted control limits. Furthermore, we examine the performance of the resulting chart at
signaling increases in the process dispersion. The proposed adjustment ensures that a minimum in-control
performance of the control chart is guaranteedwith a specified probability. This performance is indicated in
terms of the false alarm rate or, equivalently, the in-control average run length. We also discuss the tradeoff
between the in-control and out-of-control performance. Since our adjustment is based on exact analytical
derivations, the recently suggestedbootstrapmethod is no longer necessary. A real-life example is provided
in order to illustrate the proposed methodology.

1. Introduction

The limits of a control chart depend on the in-control value(s)
of the parameter(s) of the process. In the more typical situa-
tion where these parameter values are unknown, estimates are
obtained from an in-control Phase I sample and used in their
place. However, as Phase I samples vary across practitioners,
the estimated control limits also vary. This variation is referred
to as practitioner-to-practitioner variation. As a consequence,
chart performance differs across practitioners, even when the
same nominal in-control performance measure, such as the in-
control Average Run Length (ARL) value, is used in the con-
struction of the charts. The variation and degradation in chart
performance as a result of parameter estimation has been high-
lighted by several researchers. Until very recently, the perfor-
mance of a control chart was generally measured in terms of
the unconditional run length (RL) distribution and its associ-
ated attributes, such as the unconditional ARL or the uncondi-
tional False Alarm Rate (FAR). For reviews of work performed
up to 2006 see Jensen et al. (2006), and for more recent devel-
opments see Psarakis et al. (2014). One way to improve the per-
formance of a Phase II control chart is to increase the amount of
Phase I data. For example, in the context of standard deviation,
early research (Chen, 1998)) recommended the use of around 75
subgroups of size 5 in Phase I for Shewhart charts, whereasMar-
avelakis et al. (2002) recommended using 100 subgroups of size
greater than 20 or 200 subgroups of smaller size. However, these
results were based on unconditional performance measures
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and do not take into account the practitioner-to-practitioner
variability, as the unconditional formulation averages out such
effects.

Motivated by this observation, recent research has advocated
the use of the conditional RL distribution in the construction
and implementation of control charts. From this perspective,
Chakraborti (2006) and Saleh, Mahmoud, Keefe, and Woodall
(2015), for the case of the X chart, and Epprecht et al. (2015),
for the case of the S chart (where S is the sample’s standard devi-
ation), evaluated the effects of parameter estimation on the in-
control conditional RL distribution. Because the conditional RL
distribution is geometric, it can be characterized by the prob-
ability of success, the so-called Conditional False Alarm Rate
(CFAR), or its reciprocal, the in-control Conditional Average
Run Length (CARL). Since the CFAR (CARL) is a random vari-
able, Epprecht et al. (2015) proposed a prediction bound formu-
lation to determine the number of Phase I subgroups required
such that a minimum in-control performance based on the
CFAR or CARL of the one-sided S chart is guaranteed with a
pre-specified probability. However, it was seen that based on
this approach, the number of subgroups required to guaran-
tee a practically attractive in-control chart performance is in
the order of several hundreds or thousands, depending on the
choice of the estimators. These numbers are substantially higher
than the values recommended by previous authors based on
the unconditional in-control ARL. Saleh, Mahmoud, Keefe, and
Woodall (2015) reached similar conclusions with respect to the
X and X charts.
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This presents a dilemma for the practitioner. Working with
the conditional RL distribution and its various attributes (such
as the CFAR or the CARL) makes more sense from a practi-
tioner’s point of view. However, the amount of Phase I data
required is often huge, to the point of being almost imprac-
tical. Thus, from a practical standpoint, another approach is
necessary. One such recent proposal is to adjust the control
limits to guarantee a minimum in-control chart performance
based on the CFAR (or CARL; see, e.g., Albers and Kallen-
berg (2004), Gandy and Kvaløy (2013), and Goedhart et al.
(2017)) with a given probability. This is the idea pursued
in this article. Note that in this context, bootstrap methods
have already been proposed (e.g., Gandy and Kvaløy (2013),
Faraz et al. (2015), Salah, Mahmoud, Jones-Farmer, Zwet-
sloot, and Woodall (2015), and Saleh, Mahmoud, Keefe, and
Woodall (2015)) to find the adjusted control limits. Although
this computer-intensive method eventually leads to the desired
results and is more broadly applicable, analytical expressions
give more insight into the required adjustments and are, in gen-
eral, easier to implement.

The choice between analytical and bootstrap methods
depends on what assumptions one can reasonably make about
the underlying process distribution. Here we assume normal-
ity, as that is the most common assumption in practice. More-
over, since an increase in the process dispersion is deemedmore
important to detect (this indicates process degradation), we
consider the upper one-sided σ̂ chart (where σ̂ is the sample
charting statistic of dispersion), equivalent to Epprecht et al.
(2015) and derive the corresponding adjusted upper control
limits. These adjusted limits guarantee that the CFAR exceeds
a pre-specified tolerated bound with only a small probability,
for a given number of Phase I samples of a given size. The
adjusted control limits are obtained by replacing the coeffi-
cient of the traditional Phase I control limit by an adjusted
coefficient. This adjusted control limit coefficient is obtained
analytically, as opposed to using the bootstrap approach as
in Faraz et al. (2015), and its efficacy also depends on the
type of estimator used to estimate the in-control process dis-
persion from the given Phase I data. Our formulation and
derivations allow the use of different estimators for the pro-
cess dispersion.We illustrate the concepts using onewell-known
estimator of Phase I standard deviation, namely, the square
root of the pooled variances. Note further that the adjusted
control limit can also be obtained for control charts based on
monotone-increasing functions of the process dispersion σ̂ ,
such as σ̂ 2 or log(σ̂ ), by taking the corresponding monotone-
increasing function of the adjusted limit for the σ̂ chart. Fur-
thermore, our framework is applicable for the range charts. See
also the tutorial on estimating the standard deviation written by
Vardeman (1999).

After determining the adjustment coefficient, we examine the
impact of using the resulting adjusted control limits on charts’
out-of-control performances. To this end, performance compar-
isons are made between charts with the adjusted and the unad-
justed control limits for detecting increases in σ . As previously
mentioned, Faraz et al. (2015) also considered the problem of
adjusting the S and S2 chart control limits. They used the boot-
strapmethod of Gandy and Kvaløy (2013) to obtain the adjusted
coefficients. However, their out-of-control performance analysis
was restricted to a pair of boxplots of the distribution of a chart’s

out-of-control CARL with the adjusted and unadjusted control
limits.

Our contributions are as follows. We consider the problem
of adjusting the control limits for the Phase II control charts for
dispersion so that a minimum in-control chart performance (in
terms of CFAR or CARL) can be guaranteed with a pre-specified
probability. We provide an analytical solution that enables a
straightforward calculation of the adjusted control limit for any
combination of parameters, which include the number of avail-
able reference samples m, sample size n, a desired performance
threshold (to be defined later), and a specified probability of this
threshold being exceeded.We give tables of the adjustment coef-
ficients for a wide range of these parameter values. Also, we pro-
vide a formula for computing the out-of-control CARL of the
resulting chart for any increase in the process dispersion. This is
compared with the out-of-control CARL for the chart with the
unadjusted limits, in order to assess the impact of the adjustment
on the chart’s out-of-control performance. A practitioner has to
balance two things: controlling the in-control performance ver-
sus the deterioration in the out-of-control situation.We provide
some guidelines on how a practitioner can balance this trade-
off. Our derivations are based on Shewhart-type control charts
for dispersion. For a comparison of other control chart designs,
such as the CUSUM and the EWMA, we refer to Acosta-Mejia
et al. (1999).

This article is structured as follows.We present the analytical
derivations of the adjusted limits in Section 2 and of the resulting
chart’s power (the probability that the chart gives a true signal in
the case of an increase in process dispersion) in Section 3. Then
in Section 4, the adjusted limits, as well as the resulting power
and the out-of-control ARL of the resulting chart, are tabulated
for a comprehensive spectrum of cases and the results are dis-
cussed. In Section 5 we present and discuss a practical example
as an illustration. Finally, general conclusions are summarized
in Section 6.

2. Determination of the adjusted coefficients

Assume that after a Phase I analysis,m samples of size n each are
available to produce an estimate (σ̂0) of the in-control standard
deviation (σ0) and that the observations come from a N(μ, σ0)

distribution. In Phase II, samples of size n from a N(μ, σ ) dis-
tribution, where both parameters are assumed unknown, are
available and their standard deviations are monitored at each
time period i on the basis of a statistic σ̂i. Note that σ may
differ from the in-control value σ0. Our methodology works
for all monitoring statistics σ̂i (Phase II estimators of σ ) that
have a distribution either exactly or approximately proportional
to a chi-square distribution (where the approximation is based
on Patnaik (1950)). For example, we can take σ̂i = Si (i.e., the
ith Phase II sample’s standard deviation) and since it is well-
known that (n − 1)S2i /σ 2

i ∼ χ2
n−1 exactly, it follows that Si ∼

σ χn−1/
√
n − 1 (where ∼ denotes distributed as) exactly under

the normal distribution. On the other hand, if we consider
σ̂i = Ri/d2(n), then we approximate the distribution of σ̂i/σ by
a χb/

√
b based on the approach of Patnaik (1950).We elaborate

on this point later, in Section 2.4.
Note that when monitoring the process dispersion, it is

generally of interest to detect and signal increases, as these
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situations indicate process degradation.Hence, we consider only
an upper control limit, in line with other research (e.g., Epprecht
et al. (2015)).

2.1. Unadjusted control limit

In this section we discuss the traditional (unadjusted) α-
probability limits for the Phase II control chart for dispersion.
Consider a monitoring statistic σ̂ such that σ̂i/σ ∼ a χb/

√
b for

suitable values a > 0 and b > 0. This means that given a desired
nominal FAR α, the traditional estimated upper control limit
(ÛCL ) of the chart is set at

ÛCL = Lσ̂0, (1)

with

L =
√
a2χ2

[b,1−α]/b, (2)

where χ2
[ν,p] denotes the 100p-percentile of a chi-square distri-

bution with ν degrees of freedom, and σ̂0 is the estimator of
σ0, which is the standard deviation of the in-control process in
Phase I. Note that, for the specific case that σ̂ is equal to the sam-
ple’s standard deviation S, we know that a = 1 and b = n − 1, so
that Equation (2) corresponds to Montgomery ((2013), p. 267).
This standard control limit does not account for either param-
eter estimation or practitioner-to-practitioner variability and is
referred to as the unadjusted control limit.

Note that, as previously mentioned, one can consider vari-
ous estimators for σ̂0 that have a distribution proportional to the
chi-square distribution. We consider this general point of view
in our presentation. In order to find an expression for the prob-
ability of a signal, define the standard deviation ratio

γ = σ/σ0, (3)

where σ is the current (Phase II) process standard deviation.
When the process is in control, σ = σ0, so that γ = 1. When
special causes result in an increase in the process standard
deviation, σ > σ0 and consequently γ > 1. Similarly, with
a reduction in the standard deviation of a process, we have
γ < 1. However, we do not consider this latter case here, as the
meaning and usefulness of detecting decreases in the process
dispersion are totally different. Of course, one may consider
a lower control limit using the same methodology as in our
approach to study this behavior.

Next, define the error factor of the estimate σ̂0 as the ratio

W = σ̂0/σ0. (4)

As it is assumed that the data come from a normal distribution,
it is easy to see (Epprecht et al., 2015) that in Phase II, the Condi-
tional Probability of an Alarm (denoted CPA) of the upper one-
sided σ̂ chart is given by

CPA (γ , L) = P
(
σ̂i > ÛCL

) = P
(

bσ̂ 2
i

a2σ 2 >
W 2

γ 2

bL2

a2

)
= P

(
bσ̂ 2

i

σ 2 >
W 2

γ 2 χ2
[b,1−α]

)
= 1 − Fχ2

b

(
W 2

γ 2 χ2
[b,1−α]

)
, (5)

since bL2 = χ2
[b,1−α] from Equation (2), and where Fχ2

b
denotes

the cumulative distribution function (cdf) of the chi-square dis-
tribution with b degrees of freedom. Note that Equation (5)
holds for both the in-control case (γ = 1), in which case it
corresponds to CFAR, and in the out-of-control case (γ > 1),
where it represents theCPA of the chart, both in Phase II. Thus,

CFAR = CPA (1, L) = 1 − Fχ2
b

(
W 2χ2

[b,1−α]
)
. (6)

TheCPA of the σ̂ chart in Equation (5) is also theCPA of the σ̂ 2

chart with ÛCLσ̂ 2 equal to the square of the σ̂ chart’s ÛCL in
Equation (1). These two charts are equivalent: one will signal if
and only if the other signals. In this article, we use the σ̂ chart for
illustration, but all analyses, numerical results, and conclusions
equally apply to the σ̂ 2 chart. In fact, these observations hold for
any monotone-increasing function of σ̂ , such as log(σ̂ ), which
is sometimes used in practice. In summary, for any monotone-
increasing function g(σ̂ ) of σ̂ , P(σ̂i > ÛCL) is equivalent to
P(g(σ̂i) > g(ÛCL)). Therefore, the adjusted limits proposed for
the σ̂ chart can be applied to anymonotone-increasing function
g(σ̂ ) of σ̂ , by applying the same transformation g(ÛCL) to the
ÛCL obtained for the σ̂ chart.

The CFAR shown in Equation (6) is a function of the error
factor of the estimate W and, as a result, is also a random vari-
able. Thus, the value of the CFAR will be different for different
values of W, corresponding to different values of the estimator,
from different Phase I samples obtained by practitioners. This
is true unless W = 1, which is the case for consistent estima-
tors when the number of reference samples tends to infinity,
which implies the known parameter case. The finite sample
distribution ofW depends on the distribution of the estimator
σ̂0 used for σ0. In the case of normally distributed data, the
most common estimators of the standard deviation of a process
available in the literature follow, either exactly or approximately,
a scaled chi-square distribution. Thus, in a general formulation,
we consider estimators σ̂ such that σ̂ /σ ∼ a χb /

√
b either

exactly or approximately for suitable a and b. To distinguish
between Phase I and Phase II estimators, we use a0 and b0 for
Phase I and a and b for Phase II. This formulation allows a more
general and comprehensive treatment of Phase II monitoring of
σ , covering most common estimators of the standard deviation
used: (i) in the Phase I control limit and (ii) as a plotting statistic
in Phase II. For example, a commonly used estimator of σ0 in
the Phase I control limit is the square root of pooled variances
(also recommended by Mahmoud et al. (2010)), defined as

Sp =
√
S2p =

√∑m
i=1 (n − 1)S2i
m(n − 1)

=
√∑m

i=1 S2i
m

. (7)

Since it is well known that m(n − 1)S2p/σ 2
0 follows a chi-square

distribution with m(n − 1) degrees of freedom, it follows that
W = Sp/σ0 ∼ a0 χb0/

√
b0 exactly, where a0 = 1 and b0 =

m(n − 1). The plotting statistic for the Phase II S chart is the
sample’s standard deviation σ̂ = Si, and since it is well known
that (n − 1)S2i /σ 2 ∼ χ2

n−1, it follows that Si/σ ∼ a χb/
√
b,

again exactly, where a = 1 and b = n − 1. Other Phase I esti-
mators of σ0 such as S̄/c4, where S̄ = ∑Si/m and c4 is an unbi-
asing constant (see Montgomery (2013)) can be considered, but
we do not pursue this here and use the estimator Sp for illustra-
tion throughout this article. Note further that other monitoring
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statistics and charts, such as the R chart, can also be considered
under this framework. We make some comments about these
points later in Section 2.3.

As in Epprecht et al. (2015), the cdf of the CFAR (denoted
as FCFAR) of the upper one-sided σ̂ chart with the traditional
ÛCL as in Equations (1) and (2), set for a nominal FAR α, can
be shown to be equal to

FCFAR (t; L) = P
(
1 − Fχ2

b

(
W 2χ2

[b,1−α]
) ≤ t

)
= P

[
W 2 >

(
χ2
[b,1−t]

χ2
[b,1−α]

)]
, 0 < t < 1. (8)

Equation (8) thus implies that the cdf of the CFAR also depends
on the distribution of this estimator.

Epprecht et al. (2015) also showed that the CFAR has a non-
negligible probability of being much larger than the specified
nominal value α, unless the number of Phase I samples is pro-
hibitively high. Motivated by this observation, and with a prac-
tical point of view, we derive the adjusted control limit in order
to guarantee a minimum performance based on the CFAR with
a specified probability, for given values ofm and n.

2.2. Adjusted control limit

We are interested in finding an adjustment to the traditional
UCL in Equation (1), such that the probability that CFAR
exceeds a tolerated upper bound (αTOL) is controlled at a small
value p. Formally, we want to determine an adjusted coefficient
L∗ to be used to calculate the Phase I upper control limit ÛCL∗ =
L∗σ̂0 such that

1 − FCFAR
(
αTOL; L∗) = p, (9)

where

αTOL = (1 + ε) α, 0 < ε < 1. (10)

Equation (9) requires a little explanation. The formulation in
Equation (9), introduced in Epprecht et al. (2015), recognizes
parameter estimation and practitioner-to-practitioner variabil-
ity in working with the distribution of the random variable
CFAR. The adjusted coefficient L∗ that solves Equation (9)
guarantees that the CFAR is larger than the specified value
αTOL with probability p. Note that αTOL thus serves as a lower
bound to theCFAR where ε (0 ≤ ε < 1) is introduced to deter-
mine an appropriate value for αTOL. The traditional nominal
value α is obtained for ε = 0. Thus, practitioners can choose
their own ε—for example, 0.10 (10%) or 0.20 (20%)—to deter-
mine an appropriate minimum performance threshold αTOL,
in order to relax the demands on the in-control performance.
Thus, for example, if α = 0.005 and one chooses ε = 0.10, we
obtain αTOL = 0.0055. Note that Equation (9) can be rewritten
as P(CFAR(t, L∗) ≤ αTOL) = FCFAR(αTOL; L∗) = 1 − p, so that
the interval [0, αTOL] can be interpreted as a 100(1 −p)% pre-
diction interval for the CFAR. This interpretation may help in
better understanding the proposed formulation.

Note also that Equation (9) is equivalent to writing
P(CARLin-control < 1/αTOL) = p. Thus, solving Equation (9)
is equivalent to finding the L∗ that guarantees a minimum
in-control CARL equal to CARLtol = 1/αTOL, the minimum

in-controlCARL performance threshold, with a specified prob-
ability 1 − p. Due to this equivalence, our further derivations
are based on CFAR. Note that the interval [1/αTOL,∞) can
be interpreted as a 100(1 − p)% prediction interval for the
CARLin-control.

In order to determine L∗ from Equation (9), we need the cdf
ofCFAR. Similar to Equation (5), we can write theCFAR when
using the adjusted limits as

CFAR
(
L∗) = CPA

(
1, L∗) = P

(
bσ̂ 2

i

a2σ 2
0

> W 2 bL∗2

a2

)
= 1 − Fχ2

b

(
W 2 bL

∗2

a2

)
. (11)

Thus, the cdf is obtained, similar to Equation (8), for 0 < t < 1
as

FCFAR
(
t; L∗)

= P
(
1 − Fχ2

b

(
W 2 bL

∗2

a2

)
≤ t

)
= P

(
W 2 >

a2χ2
[b,1−t]

bL∗2

)

= P

(
b0
a20
W 2 >

b0
a20

a2χ2
[b,1−t]

bL∗2

)
= 1 − Fχ2

b0

(
b0
a20

a2χ2
[b,1−t]

bL∗2

)
,

(12)

since we assume that in general W ∼ a0 χb0 /
√
b0 so that

b0W 2/a20 ∼ χ2
b0 .

Now L∗ is determined so that

FCFAR
(
αTOL; L∗) = 1 − p. (13)

Hence, using Equation (12), we obtain

χ2
[b0,p] = b0

a20

a2χ2
[b,1−αTOL]

bL∗2 , (14)

which leads to the general solution

L∗ =
√√√√b0

b
a2

a20

χ2
[b,1−αTOL]

χ2
[b0,p]

. (15)

We emphasize that Equation (15) is a general expression for
the adjusted control limit coefficient that can be applied with
any Phase I estimator σ̂0 for whichW = σ̂0/σ0 ∼ a0 χb0/

√
b0

and for which the Phase II monitoring statistic satisfies σ̂ /σ ∼
a χb /

√
b. Note that, if one would be interested in the equivalent

correction for the L̂CL, the only changes required are to substi-
tute αTOL for 1 − αTOL and 1 − p for p in Equation (15).

2.3. Use of different estimators in Phase II

Until now we have considered general Phase I and Phase II esti-
mators σ̂0 and σ̂ , respectively. However, it is possible to use a
wide range of estimators in both Phase I and Phase II. Con-
sider, for example, the use of the pooled standard deviation
σ̂0 = Sp in Phase I and the standard deviation σ̂ = S in Phase
II.We then have a0 = 1, b0 = m(n − 1), a = 1, and b = n − 1.
Implementing these values in Equation (15) then gives us the
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Figure . Boxplots of  simulated values of in-control (γ = 1) CARL. Parameter
values arem = 50, n = 5, α = 0.005, ε = 0.1, and p = 0.1. The dashed verti-
cal line indicatesCARLtol = 1/αtol = 182, and the p-quantiles are indicatedwith an
added vertical line in the boxplots.

required control limit for this special case as

L∗ =
√√√√m

χ2
[n−1,1−αTOL]

χ2
[m(n−1),p]

. (16)

Note that this special case is equal to the result of Tietjen and
Johnson (1979), who determined tolerance intervals for this
specific example. However, our approach is more generally
applicable, as we allow awide range of estimators in both Phase I
and Phase II. For more information on estimators of dispersion,
we refer to Vardeman (1999).

To illustrate the application and the consequences of imple-
menting the adjusted control limits, Figures 1 and 2 show box-
plots of 1000 simulated CARL values for the in-control (γ =
1) and an out-of-control (γ = 1.5) situation, respectively, with
m = 50, n = 5, α = 0.005, ε = 0.1, and p = 0.1, so that
αTOL = 0.0055. We have used Sp as estimator of the Phase I
standard deviation and S as estimator in Phase II. In the in-
control situation (Fig. 1), CARLtol = 1/αtol = 1/0.0055 = 182.
For comparison purposes, the boxplots also show the results of
using the bootstrap method of Gandy and Kvaløy (2013) and
Faraz et al. (2015) and of the chart with unadjusted limits. The
minimum tolerated CARL of 182 is indicated with a vertical
dashed line, and the p-quantile of the CARL distribution is indi-
cated in each boxplot with an added short vertical line. As can
be seen, the p-quantile coincides with CARLTOL = 182 for the
adjusted control limits. Note that the difference between the pro-
posed method and the bootstrap approach is negligible. How-
ever, the proposed control limits are analytical expressions that
are easier to implement, and the required adjustments are found
more directly through the use of statistical distribution theory.
For additional insight into the effect of the choices of ε and p,

Figure . Boxplots of  simulated values of out-of-control (γ = 1.5) CARL.
Parameter values arem = 50, n = 5, α = 0.005, ε = 0.1 , and p = 0.1.

Figure . Boxplots of  simulated values of in-control (γ = 1) CARL. Parameter
values arem = 50, n = 5, α = 0.005, ε = 0, and p = 0.05. The dashed verti-
cal line indicates CARLtol = 1/αtol = 200, and the p-quantiles are indicated with
an added vertical line in the boxplots.

Figures 3 and 4 illustrate, equivalent to Figures 1 and 2, respec-
tively, this effect for ε = 0 and p = 0.05. There the p-quantile
coincides withCARLTOL = 200.

2.4. Distributions of different estimators of the standard
deviation

We have noted that in general we can consider any estimator σ̂0
such that W = σ̂0/σ0 ∼ a0 χb /

√
b0 either exactly or approxi-

mately. We make a few comments here in this direction. First,
the estimator used in Phase I usually dictates the chart to be
used in Phase II. Thus, if σ̂0 is estimated by a function of the
Phase I sample standard deviations, we use an S chart in Phase
II for consistency, whereas if σ̂0 is estimated by a function of the
Phase I sample ranges, we use an R chart in Phase II for moni-
toring the standard deviation. For some estimators such as Sp, as
shown above, this distribution theory is exact, but that is not the
case for all estimators that have been proposed in the literature
for the standard deviation of a normal distribution. However,
for many of the available estimators, their distribution can be
approximated. One common approach to do this is by equating
the first two moments of W with those of a0χb0/

√
b0 (see, for

example, Patnaik (1950)). We consider such an approximation
based on Patnaik (1950), as used in Roes et al. (1993). For an
estimator σ̂0 such that E[W ] = 1, so that σ̂0 is an unbiased esti-
mator of σ0, Roes et al. (1993) showed that the required values
of a0 and b0 must equal:

a0 =
√
V [W ] + 1, b0 = 1

2

(
1 + 1

V [W ]

)
, (17)

where V [W ] denotes the variance of W . Recognizing the fact
that practitioners might use other estimators of the standard
deviation, we summarize three popular estimators of the Phase
I standard deviation σ0 along with the corresponding values of

Figure . Boxplots of  simulated values of out-of-control (γ = 1.5) CARL.
Parameter values arem = 50, n = 5, α = 0.005, ε = 0 , and p = 0.05.
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Table . Required values of a and b (and a0 and b0) for different estimators σ̂0 used in the calculation of the adjusted control limit.

Phase II plotting statistic Values of a and b Phase I estimator σ̂0 Values of a0 and b0 V [W ]

σ̂i = Si a = 1,
b = n − 1

Pooled sample standard
deviation σ̂0 = Sp

a0 = 1
b0 = m(n − 1)

1 − c24(m(n − 1) + 1)

σ̂i = Si a = 1,
b = n − 1

Average sample standard
deviation σ̂0 = S̄

c4(n)

a0 = √
V [W ] + 1

b0 = 1
2 (1 + 1

V [W ] )

1−c24(n)

mc24(n)

σ̂i = Ri
d2(n)

a = √
mV [W ] + 1

b = 1
2 (1 + 1

mV [W ] )
Average sample range

σ̂0 = R̄
d2(n)

a0 = √
V [W ] + 1

b0 = 1
2 (1 + 1

V [W ] )

d23 (n)

md22 (n)

Note that the constants c4(n), d2(n), and d3(n) can be found in Appendix VI in Montgomery ().

a0 and b0 in Table 1. Of course, the same approach can be used
for the Phase II estimators. Note that we have also indicated the
corresponding Phase II plotting statistic and its corresponding
values of a and b in Table 1.

2.5. Deviations from the proposedmodel

The derivations as shown in this section are based on one-sided
control charts for dispersion under normality. In the case where
the normality assumption is violated, the adjustments are less
accurate in terms of providing a specified in-control perfor-
mance. However, a suitable alternative is to apply a Box–Cox
transformation (see Box and Cox (1964)) or a Johnson-type
transformation (see Chou et al. (1998)) to the data first and
determine the control limits afterwards using this transformed
data. Of course, the Phase II data need to be transformed in the
same way during the monitoring stage.

Another way to investigate deviations from normality is to
use robust estimators, in order to deal with contaminations.
However, this means that an investigation as in Schoonhoven
andDoes (2012) is required, whichmay be the subject of a future
study.

Whereas the problem with deviations from normality can be
addressed in practice by applying a Box–Cox transformation,
the proposed adjustments for the one-sided charts cannot be
generalized directly to the two-sided control charts for disper-
sion. A common first guess when implementing the two-sided
control chart is to calculate the upper and lower control lim-
its using α/2 instead of α. However, in that case the guaran-
teed in-control performance results provided for the one-sided
charts will no longer hold (see, for example, Goedhart et al.
(2017)), so that the two-sided case needs to be analyzed sepa-
rately. However, note that in practice, it is highly important to
detect increases in process dispersion. By focusing on control
charts with an upper control limit only, we provide control limits
that are more sensitive to detecting these increases. Two-sided
control charts would require a different approach, and their abil-
ity to detect increaseswould suffer from the addition of the lower
control limit, while the benefits (detecting decreases in varia-
tion) are of minor importance in practice.

3. Out-of-control performance of the chart

By analogy with the power of a hypothesis test, the power of a
control chart can be defined to be the probability that the chart
gives a true signal. As the conditional RL distribution of the
chart is geometric, the reciprocal of the conditional probability

of a true signal, theCPA (or the conditional power), is the con-
ditional out-of-control ARL, denotedCARL. As with theCFAR,
the power (and the reciprocal of this power, the out-of-control
CARL) of the σ̂ chart with the adjusted limit depends on the
realization (w) of the (unknown) error factor of the estimate,
the random variable W. Note that the same is also true for the
σ̂ (or some other similar) chart with the unadjusted limit (see
Equation (5)). The power of the chart in the unknown param-
eter case will be larger (smaller) than the power for the known
parameter case ifw < 1; that is, when σ0 is under-estimated (or
if w > 1, that is, when σ0 is over-estimated). The gain or loss
in the out-of-control performance of the chart due to the use of
the adjusted limit (relative to that of the chart using the unad-
justed limit) will thus vary based on the realization ofW . That is,
the gain/loss of an out-of-control performance is also a random
variable. See Zwetsloot (2016) for a more detailed comparison
of the effect of estimation error in control charts for dispersion.

In order to examine the implications of using the adjusted
limits on the out-of-control performance (power) of the chart,
we evaluate the chart performance for the case when the esti-
mation error is zero (w = 1; the known parameter case) and for
increases of 50% and 100% in the standard deviation σ (γ = 1.5
and γ = 2.0, respectively). This is because the conditional prob-
ability of an alarm depends only on the ratio between w and
γ and not on their absolute values (as can be seen from Equa-
tion (5)).

To calculate the out-of-control CARL, recall from
Equation (5) that the conditional probability of an alarm
(or a signal;CPA) with the adjusted limit is given by

CPA
(
γ , L∗) = P

(
bσ̂ 2

i

a2σ 2 >
W 2

γ 2

b L∗2

a2

)
, (18)

which, for the estimators σ̂0 = Sp and σ̂ = S equals, using Equa-
tion (16)

CPA
(
γ , L∗) = P

(
(n − 1) S2i

σ 2 >
Y
γ 2

χ2
[n−1,1−αTOL]

χ2
[m(n−1),p]

)

= 1 − Fχ2
n−1

(
Y
γ 2

χ2
[n−1,1−αTOL]

χ2
[m(n−1),p]

)
, (19)

where

Y = m (n − 1)
S2p
σ 2
0

∼ χ2
m(n−1).

The out-of-control (γ �= 1) CARL is the reciprocal of
CPA(γ , L∗) in Equation (18) in general and of Equation (19)
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in particular for the estimators σ̂0 = Sp and σ̂ = S . The prob-
ability in Equation (18) can be calculated for various values
(quantiles) from the distribution of Y and the out-of-control
performance can be examined. Thus, from Equation (18) it is
also possible to determine the distribution of theCPA for given
values of γ and L∗.

4. Results and discussion

4.1. Out-of-control performance evaluation

Tables 2 and 3 show, for several values of m and n, the values
of the adjusted control limit coefficient L∗ for the estimator Sp,
for a nominal FAR of α = 0.005, and the combinations of two
values of ε (0.10 and 0.20) and two values of p (0.05 and 0.10).
Table 2 corresponds to ε = 0.10 and Table 3 ε = 0.20. For each
value of n, the first row gives the values of L∗ and the second row
gives in italics the adjustment factor, which is the ratio between
these values and the unadjusted control limit coefficient L. Other
estimators of σ0 can be considered in a similar manner.

As can be seen, and as might be expected, the adjusted
limit converges to the unadjusted limit when n or m (or both)
increases. This happens due to the variance of the estima-
tors decreasing with the increase in the number of observa-
tions. Also, keeping m and n fixed, the adjusted limit decreases
(becoming closer to the unadjusted limit) with increases in ε and
p, which means a greater tolerance to FARs larger (or to CARL
values smaller) than the nominal.

Table . Control limit coefficients: Unadjusted and adjusted for Sp with ε = .
(α = 0.005). Every second row (in italics) gives the ratio between the adjusted and
the unadjusted limit.

L∗
L∗/L

p n L m=     

.  . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

.  . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

Table . Control limit coefficients: Unadjusted and adjusted for Sp with ε = .
(α = 0.005). Every second row (in italics) gives the ratio between the adjusted and
the unadjusted limit.

L∗
L∗/L

p n L m=     

.  . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

.  . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

 . . . . . .
. . . . .

Tables 4 and 5 give the out-of-controlCARLs of the charts for
γ = 1.5 and γ = 2.0, respectively. They correspond, as said in the
previous section, to the case w = 1. In these tables, the column
“Unadjusted” gives the out-of-control CARL of the chart with
the unadjusted control limit. The values indicate that, with the
traditionally recommended numbers of preliminary samples (m
between 25 and 75 samples) and the usual sample sizes (less than
10 observations), the adjustment made for the guaranteed in-
control performance entails substantial deterioration of the out-
of-control performance. For example, with less than 50 Phase
I subgroups each with a sample size of five, the out-of-control
CARLs of the chart with adjusted limits are 40% to 100% larger
than the ones of the chart with unadjusted limits. Even withm=
100, the out-of-control CARLs for γ = 1.5 and n = 3 are 30% to
50% larger than the ones for the chart with the unadjusted con-
trol limit. However, if the increase in the process standard devi-
ation that is relevant to detect quickly is a little bigger, γ = 2.0,
the increases in the out-of-controlCARLs due to the adjustment
become less substantial, except for the smaller values of n (three
andfive) andm (25 and 50; see Table 5).With larger sample sizes,
the CARL values are already close to one with or without the
adjustment. However, if the user considers, for example, 100 or
200 Phase I subgroups (a number much smaller and far more
practical than the several hundreds to thousands found to be
required in Epprecht et al. (2015)), the increase in theCARL (rel-
ative to the chart with unadjusted limits) is of the order of 25%or
less; that is, the adjustment yields, in this case, a good compro-
mise between the guaranteed in-control performance, the out-
of-control performance, and the number of Phase I subgroups.
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Table . Out-of-control CARL for γ = . of the S chart with and without the
adjusted limits, whenW=  (α = 0.005).

CARL

Adjusted with estimator Sp

ε p n Unadjusted m=     

. .  . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
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Note that Faraz et al. (2015, p. 4412) concluded that “adjust-
ing the S2 control limit did not have too much an effect on the
out-of-control performance of the chart.” By contrast, as we have
seen, this effect can be significant for small values of m and
n. Clearly, the user should seek a combination of a number of
preliminary samples, m, and a level of adjustment (through the
specification of the values of αTOL and p) that result in an appro-
priate compromise between the risk of a large FAR and a poor
out-of-control performance. The ideal compromise depends on
the particular situation. The tables in this article provide guid-
ance to the user’s decision, and the formulae in Sections 2 and
3 enable the calculation of the adjusted control limit and the of
the out-of-control CARL for any particular situation (for speci-
fied values ofm, n, ε, p, and α and for known γ ).

4.2. Balancing in-control and out-of-control
performances

The aim of the proposed correction is to guarantee a min-
imum in-control performance. However, the resulting out-
of-control performance should not be ignored, as detecting
out-of-control situations is still themain purpose behind the use
of control charts. To examine this issue, we define the cdf of the
CPA, which can be used to evaluate the out-of-control perfor-
mancemore closely. First, recall that theCPA as in Equation (18)

Table . Out–of-control CARL for γ = . of the S chart without and with adjusted
limits, whenW=  (α = 0.005).

CARL

Adjusted with estimator Sp

ε p n Unadjusted m=     
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can be rewritten as

CPA
(
γ , L∗) = P

(
bσ̂ 2

i

a2σ 2 >
W 2

γ 2

b L∗2

a2

)
= 1 − Fχ2

b

(
W 2

γ 2

bL∗2

a2

)
.

Consequently, in a similar way as in Equation (11), we can write
the cdf ofCPA(γ , L∗) as

FCPA
(
t; γ , L∗) = P

(
1 − Fχ2

b

(
W 2

γ 2

bL∗2

a2

)
≤ t

)
= P

(
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γ 2a2χ2
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)

= P

(
b0
a20
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b0
a20

γ 2a2χ2
[b,1−t]

bL∗2

)

= 1 − Fχ2
b0

(
b0
a20

γ 2a2χ2
[b,1−t]

bL∗2

)
.

Note that FCPA(t; 1, L∗) is equal to FCFAR(t; L∗) from Equa-
tion (12). In the out-of-control situation, it is desired to obtain
a signal as quickly as possible. This means that in the out-of-
control situation theCPA (CARL) is preferred to be large (small).
For a given increase in standard deviation γ and adjusted con-
trol limit coefficient L∗ one can use FCPA(t; γ , L∗) to determine
the probability of obtaining a CPA smaller than a specified value
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t. Of course, FCPA(t; γ , L∗) is desired to be small for γ > 1, as
this means that a low probability of an alarm (high CARL) is
unlikely in the out-of-control situation. Based on the situation
(e.g., what sizes of shifts may be desired to be detected), one
may arguewhether or not such an out-of-control performance is
sufficient.

For example, consider the case that m = 50 samples of size
n = 5 each are available in Phase I and that we use σ̂0 = Sp as
the Phase I estimator and σ̂i = Si as the plotting statistic. More-
over, considerα = 0.005, ε = 0.1 (such that αtol = 0.0055), and
p = 0.05. Finally, suppose that we are interested in detecting
changes in process dispersion such that γ = 1.5. The required
value of L∗ can be found to be equal to 2.086 (from Table 2 or
Equation (16)). This control limit coefficient guarantees that the
CFAR is less than αtol = 0.0055 (or the CARL is greater than
1/αtol = 182 when γ = 1) with probability 1 − p = 0.95. From
Table 4 we conclude that, in the absence of estimation error, the
CARL of this chart will be 9.8 when γ = 1.5. Of course, the
out-of-control CARL for practitioners depends on the estima-
tion error. Suppose that we are interested in the probability of
having CPA less than 0.067 (or, equivalently, CARL greater than
15) when γ = 1.5. For that specific case, one can calculate this
probability to be FCPA(0.067 ; 1.5, 2.086) = 0.091, which is an
indication of the out-of-control performance.

If the performance is not deemed sufficient, then two alter-
natives are possible. The first is to increase the amount of Phase
I data, and the second is to be more lenient on the guaranteed
in-control performance. Gathering more data will provide
more accurate estimates of the in-control process in Phase I,
which is incorporated in the adjusted control limits. As there
is less uncertainty to account for, the adjusted limit coefficient
will be smaller, resulting in lower out-of-control CARL values.
However, often this amount of data is not available or is costly
to collect. If increasing the amount of used Phase I data is not an
option, onemay have to choose to bemore lenient on the adjust-
ment. Using larger values of αTOL means that we choose a less
strict minimum performance threshold, whereas using a larger
value of p means that there is a larger probability obtaining
CARL values below the minimum threshold. Both of these lead
to lower adjusted control limit coefficients and consequently to
lower CARL values in both the in-control and out-of-control
situations. In the example discussed in the previous para-
graph, consider adjusting our values of p and ε to p = 0.1 and
ε = 0.2, while leaving the rest as before. This changes αtol to
0.006 and CARLtol to 1/0.006 = 167, which indicates a dete-
rioration in the in-control performance. We would then find
(from Table 2 or Equation (16)) that L∗ = 2.033, which results
in FCPA(0.067 ; 1.5, 2.033) = 0.030. This is substantially
smaller than the 0.091 obtained previously, which illustrates the
balancing of the in-control and out-of-control performance.

5. Application of the proposed control chart

In this section we illustrate how the proposed control limits
should be implemented in practice, by means of a practical
example.We consider a data set provided inMontgomery (2013)
that contains the inside diameters of forged automobile engine
piston rings. In Phase I, the control limits are constructed based
on m = 25 samples of size n = 5 each. These obtained limits
are then used for monitoring the process standard deviation in

Figure . Application of the proposed control chart to the piston ring data set. Both
the unadjusted and adjusted control limits are indicated.

Phase II. As an example, the application of the control chart is
illustrated usingm = 15 samples of size n = 5 each, obtained in
Phase II. The corresponding Phase I and Phase II data can be
found in Table 6.3 and Table 6E.8 of Montgomery (2013), pages
260 and 283, respectively.

Before the control limits are constructed, we check whether
the Phase I data used to calculate them follow a normal distribu-
tion. From the Shapiro–Wilk test for normality we find no rea-
son to reject the normality assumption, as the p-value is close to
0.9. This means that we can continue with the construction of
the control limits, which is done through the following steps:

1. First, we determine our parameters. We have m = 25
and n = 5, and we choose α = 0.005. p = 0.1, and ε =
0. Note that for this case αtol = (1 + ε)α = 0.005 and
consequently CARLtol = 1/αtol = 200. Combined with
p = 0.1, this means that a minimum in-control CARL
of at least 200 is guaranteed with 100(1 −p)% = 90%
probability.

2. Second, we need to determine our estimator and plotting
statistic and their corresponding values of a, b, a0, and b0.
We consider σ̂0 = Sp as the Phase I estimator and σ̂i =
Si as the plotting statistic, which means that we have a =
1, b = n − 1 = 4, a0 = 1, and b0 = m(n − 1) = 100.As
a Phase I estimate we find Sp = 0.0100.

3. The values from 1 and 2 are implemented in Equa-
tion (15) to obtain L∗ = 2.124. As a comparison, using
Equation (2) we find L = 1.928. We can now cal-
culate the adjusted and unadjusted control limits as
ÛCL∗ = L∗σ̂0 = 2.124 × 0.0100 = 0.0212 and ÛCL =
Lσ̂0 = 1.928 × 0.0100 = 0.0193, respectively.

The obtained limit ÛCL∗ can now be used to monitor the pro-
cess standard deviation, as is illustrated in Figure 5 for the pro-
vided Phase II data set. For comparison purposes, we have also
added the unadjusted control limit to this figure. As can be
seen in the figure, the adjusted limit is larger than the unad-
justed limit to prevent low in-control CARL values. Note that,
for this specific data, neither of the control limits indicate an
out-of-control situation, since all observations are below both
limits.

6. Conclusions

Not accounting for the effects of parameter estimation can cause
substantial deterioration in control chart performance, both in
the in-control and out-of-control cases. The in-control perfor-
mance at somenominal value is very importantwhen it comes to
implementing and using a control chart that can be relied upon.
A Phase I data set is typically required to estimate the unknown
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parameters, and as the Phase I data set will differ across prac-
titioners, so will the control chart limits and, consequently, the
control chart performance. Increasing the amount of available
Phase I data will improve the control chart performance and
decrease the performance variation among practitioners. How-
ever, the required amount of Phase I data to achieve a good
(close to nominal) in-control control chart performance is typi-
cally infeasible (see Epprecht et al. (2015)). Thus, for a practical
implementation, we propose the use of adjusted control chart
limits for Shewhart control charts for dispersion under nor-
mality adopting an alternative point of view. The idea is in line
with recent research (e.g., Faraz et al. (2015), Salah, Mahmoud,
Jones-Farmer, Zwetsloot, andWoodall (2015), Saleh,Mahmoud,
Keefe, and Woodall (2015), and Goedhart et al. (2017)). The
adjusted control limits are determined such that a minimum
in-control chart performance is guaranteed with a pre-specified
probability. However, whereas Faraz et al. (2015) use a bootstrap
approach following Gandy and Kvaløy (2013), we derive analyt-
ical expressions to determine the adjusted limits that are easier
to implement and give more insight in the required adjustment.
Our adjusted limits allow different available estimators of the
standard deviation to be used in the analysis and are easily
applicable to any monotone-increasing transformation of S.

Due to the formulation based on theCFAR, the adjusted con-
trol chart (limit) accounts for parameter estimation and yields
a better in-control performance compared with the unadjusted
chart, which does not account for parameter estimation. The
in-control performance of the unadjusted chart suffers from
parameter estimation and the practitioner-to-practitioner vari-
ability and therefore is unreliable. However, note that this gain in
the in-control performance of the adjusted chart is seen to lead
to a deterioration of the out-of-control performance for smaller
numbers of Phase I subgroups. Thus, a tradeoff has to be made
in practice to balance the in-control and out-of-control perfor-
mance properties of the control chart, depending on the amount
of Phase I data at hand. We recommend using the adjusted lim-
its, as the in-control (stability) performance of a control chart is
deemed more important in practice and our results show that
the loss of some out-of-control performance can be tolerable,
particularly for larger amounts of Phase I data.
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