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ABSTRACT
Shewhart control charts are among the most popular control charts used to monitor process disper-
sion. To base these control charts on the assumption of known in-control process parameters is often
unrealistic. In practice, estimates are used to construct the control charts and this has substantial con-
sequences for the in-control and out-of-control chart performance. The effects are especially severe
when the number of Phase I subgroups used to estimate the unknown process dispersion is small.
Typically, recommendations are to use around 30 subgroups of size 5 each.

We derive and tabulate new corrected charting constants that should be used to construct the esti-
mated probability limits of the Phase II Shewhart dispersion (e.g., range and standard deviation) con-
trol charts for agivennumberof Phase I subgroups, subgroup size andnominal in-control average run-
length (ICARL). These control limits account for the effects of parameter estimation. Two approaches
are used to find the new charting constants, a numerical and an analytic approach, which give sim-
ilar results. It is seen that the corrected probability limits based charts achieve the desired nominal
ICARL performance, but the out-of-control average run-length performance deteriorate when both
the size of the shift and the number of Phase I subgroups are small. This is the price onemust paywhile
accounting for the effects of parameter estimation so that the in-control performance is as advertised.
An illustration using real-life data is provided along with a summary and recommendations.

Introduction andmotivation

The two-sided Shewhart R (sample range) and S (sam-
ple standard deviation) control charts are widely used
to monitor the process dispersion. In practice, the in-
control standard deviation value is usually not known.
Then these charts are applied with estimated control
limits, where the parameter estimates are obtained
from Phase I reference data. When applying these
charts, it is common to use the 3-sigma limits, given
in most textbooks (Montgomery 2013), where a tab-
ulation of the necessary chart constants can be found.
The use of the standard 3-sigma limits is justified on
the basis that the distribution of the charting statistic is
normal or approximately normal. However, the chart-
ing statistics of the R and S charts are highly skewed. As
a result, the performance of these charts can be quite
questionable, particularly for smaller sample sizes typi-
cal in practice. To the best of our knowledge the perfor-
mances of these charts have not been fully examined in
the literature. But, these charts are critical in practical

CONTACT R. J. M. M. Does r.j.m.m.does@uva.nl Department of OperationsManagement, University of Amsterdam, PlantageMuidergracht , Amsterdam
 TV, The Netherlands.

SPC applications since they are the most popular dis-
persion charts that are used in Phase II for keeping the
process dispersion under control, before the location
charts are constructed (which need an estimate of the
process dispersion) and meaningfully interpreted.

To look more closely into the issues we derive
the expressions for the unconditional in-control
average run-length (ICARL) of the R and S charts
(Montgomery 2013), which are based on 3-sigma
limits and the assumption of a normal distribution,
using the conditioning-unconditioning method (Chen
1998 and Chakraborti 2000), and evaluate them using
the statistical software R. The evaluations are done for
various values of the number of reference subgroups
m, subgroup size n = 5,10, and nominal in-control
average run-length (ICARL0) equal to 370. The results
are shown in Table 1, where PD = 100( ICARL−370

370 )

denotes the relative percentage difference between the
ICARL and the nominal in-control average run-length
(ICARL0), which is equal to 370.

©  M. D. Diko, R. Goedhart, S. Chakraborti, R. J. M. M. Does, and E. K. Epprecht. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/./), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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606 M. D. DIKO ET AL.

Table . The ICARL and PD values for the estimated -sigma limits of the two-sided Phase II dispersion charts; for n = ,; ICARL = ,
and various values ofm.

R chart with σ 0 estimator R/d2(n) S chart with σ0 estimator S/c4(n) S chart with σ0 estimator Sp

n m ICARL PD ICARL PD ICARL PD

       
      
      
  −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 

       
      
  −     
  −     
  −     
  −   −   − 
  −   −   − 

Let us consider first the R chart. This chart uses
the average range estimator R/d2(n) for the unknown
in-control standard deviation (σ 0), where d2(n) is the
unbiasing constant assuming the normal distribution
(Montgomery 2013) and R is calculated from the m
independent Phase I subgroup ranges R1,R2, . . . ,Rm.
For n = 5, in Table 1, it can be seen that the ICARL
values differ substantially from the nominal value, as
the absolute PD values range from 10 (for m = 30)
to 1161 (for m = 5). Note that a PD value greater (or
smaller) than zero indicates that the ICARL value is
greater (or smaller) than the nominal value 370. Both
cases are undesirable. It can also be observed that
for m ≥ 30, the PD values are negative, which means
that increasing the number of reference subgroups m
exacerbates the false alarm rate (FAR). Similar results
are found for the S chart that uses the Phase I esti-
mator S/c4(n) = ∑m

i=1 Si/mc4(n), where c4(n) is the
unbiasing constant assuming the normal distribution
(Montgomery 2013) and the S chart that uses the
“pooled” estimator Sp =

√∑m
i=1 S2i /m, respectively,

where S1, S2, . . . , Sm denote the standard deviations
of the m Phase I reference subgroups. Note that the
“pooled” estimator is not an unbiased estimator of σ0.
We use this estimator because the unbiasing constant
c4(m(n − 1) + 1) is already 0.9876 whenm, n= 5, and
it gets even closer to 1 as m and or n increase (0.9975
for m = 25 and n = 5). Therefore, for all practical
purposes this constant is indistinguishable from 1 and
hence it is sufficient to use the estimator Sp. The reader
is also referred to Mahmoud et al. (2010), where Sp
and Sp/c4(m(n − 1) + 1) are compared and shown
to be practically equal in terms of their probability

distributions and mean squared error (MSE). For
n = 10, in Table 1, the PD values are somewhat better
than their counterparts for n = 5, but they are still
unacceptable.

Based on these results, the standard estimated
3-sigma charts for dispersion cannot be recommended
to monitor the dispersion in practice. This is an issue
for anyone who uses these control limits available in
most textbooks (Montgomery 2013). In fact, most
of the commercial software seem to use these same
(incorrect) limits. An alternative approach is to use
probability limits instead of the classical 3-sigma limits
(Diko, Chakraborti, and Graham 2016). This mitigates
this issue, but does not solve it entirely. Indeed, Mont-
gomery (2013) mentions the use of probability limits
and refers to some tables in Grant and Leavenworth
(1986), but it is not clear whether or not these proba-
bility limits are commonly used in practice. Woodall
(2017) advocates the use of probability limits for the
dispersion control charts. For a specified nominal FAR
(denoted by α = α0 ) such as 0.0027 or ICARL0 = 370,
the probability limits may be constructed using the
exact distribution of the charting statistic. This will be
discussed in more detail later. As an example, Table 2
shows the ICARL and the PD values for the two sided R
and the S charts with the estimated probability limits,
for various values ofm, n = 5, 10 and ICARL0 = 370.

It can be seen that now the PD values range from
−29 to 0 and −32 to −1 for n = 5 and n = 10, respec-
tively, and they approach zero as m increases, as one
might expect (Chen 1998). This means that the dif-
ference between the ICARL values and the nominal
ICARL0 = 370 value is not as bad as what was observed
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QUALITY ENGINEERING 607

Table . The ICARL and PD values for the two-sided Phase II R and S charts with estimated probability limits for various values ofm; n= ,
; and ICARL = .

R chart with σ0 estimator R/d2(n) S chart with σ0 estimator S/c4(n) S chart with σ0 estimator Sp

n m ICARL PD ICARL PD ICARL PD

   −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 
      

   −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 
  −   −   − 

in Table 1. It also means that even though the situation
has improved over using the 3-sigma limits, unless m
is very large, the estimated probability limits may not
lead to the desired ICARL0. The other thing to note is
that the PD values are remarkably similar for all three
estimators.

Thus, from a practical point of view, an impor-
tant problem still persists. If the number of Phase I
subgroups at hand m is small to moderate, even the
estimated probability limits of theR and S charts do not
quite maintain an advertised nominal in-control aver-
age run-length. Hence, for a given nominal ICARL0
and a given amount of Phase I data, this article derives
and tabulates new (correct) charting constants, which
account for the effects of parameter estimation. We
achieve this by setting the ICARL expression equal
to some specified nominal value ICARL0 and then
evaluating the resulting equation for α = α(m, n).
The in-control (IC) and out-of-control (OOC) average
run-length performance of the corrected probability
limits charts are calculated and compared to the IC
and OOC average run-length performance of the
uncorrected probability limits.

This article is organized as follows. We begin by
describing the classical (uncorrected) 3-sigma limits
and probability limits Shewhart control charts for dis-
persion. Next, we derive new (corrected) control limits
based on a numerical and an analytic method. Next, a
data set from Montgomery (2013) is used to illustrate
and discuss the differences between the corrected and
uncorrected control limits. Following this, we evaluate
the OOC behavior of the newly proposed probability
limits. Finally, a summary and recommendations are
provided in the last section.

Classical model for probability limits for the
dispersion control charts

Suppose that m subgroups (samples) each of size n are
available after a successful Phase I analysis to estimate
the unknown parameters and set up the control limits
that are to be used in prospective Phase II monitoring.
Suppose that the data are from normal distributions
and as before, let R1,R2, . . . ,Rm denote the ranges
and S1, S2, . . . ., Sm denote the standard deviations of
the m Phase I subgroups. As noted earlier, the three
commonly used estimators of the unknown in-control
process standard deviation σ0 are (i) σ̂01 = R/d2(n),
based on the average range, (ii) σ̂02 = S/c4(n), based
on the average standard deviation, and (iii) σ̂03 = Sp,
the pooled estimator.

Thus, using each of the three Phase I estimators
above, the three most popular Phase II Shewhart stan-
dard deviation charts are (1) the R chart using the
charting statistic Ti1 = Ri with the unbiased estimator
σ̂01, (2) the S chart using the charting statistic Ti2 = Si
with the unbiased estimator σ̂02 and (3) the S chart
using the charting statistic Ti3 = Si with the estimator
σ̂03, respectively. Note that for all three of the charts, we
let i = m + 1,m + 2, . . . to emphasize that these are
Phase II charts, where prospective monitoring starts
from the (m + 1)th sample having collectedm Phase I
samples. The subscript j = 1, 2, 3 is used to distinguish
between the 3 charts. For chart j, we alsowrite the unbi-
ased Phase I estimator σ̂0 j as σ̂0 j = w j/ε0 j, wherew j is
a biased Phase I estimator based on the charting statis-
tic (i.e., R̄, S̄, and Sp ) and ε0 j is its corresponding unbi-
asing constant (with ε01 = d2(n), ε02 = c4(n), ε03 =
c4 (m(n − 1) + 1) ≈ 1 shown in Appendix A). Note
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608 M. D. DIKO ET AL.

also that even though Mahmoud et al. (2010) recom-
mended the estimator Sp, we consider all three esti-
mators here for completeness. It also allows us to con-
trast our results with those that are found in the current
literature.

In general, the control limits of the jth Phase II She-
whart chart for the process dispersion, with a charting
statistic Ti j, can be written as

UĈL = Un,α, jw j

ĈL = w j

LĈL = Ln,α, jw j, [1]

where Un,α, j and Ln,α, j are charting constants. These
charting constants are based on the 100∗{1 − α/2}th
and the 100∗{α/2}th percentiles of the in-control dis-
tribution of the Phase II charting statistic Ti j, respec-
tively, and are given in Appendix A. Note that for con-
venience, the constant ε0 j, that divides w j to form the
unbiased estimator, is taken to be a part of each of the
charting constants U and L.

Probability limits are based on the in-control dis-
tribution of the charting statistic Ti j. To this end, note
that (i) the in-control distribution of Ti1 = Ri is that
of the random variable Wσ , where W is the sample
relative range, which has a well-known distribution
for a normal population (see for example, Gibbons
and Chakraborti, 2010) (ii) the in-control distribution
of Ti2 and Ti3 are both that of the random variable√

χ2
n−1/

√
n − 1, where χ2

n−1 is a chi-square variable
with n-1 degrees of freedom.

In the Introduction, we argued that to overcome
some of the issues associated with using the R and S
charts with the estimated 3-sigma limits, the R and S
charts with the estimated probability limits are recom-
mended. In this case, the charting constants,Un,α, j and
Ln,α, j are based on the percentiles of the exact distribu-
tions of Ri or Si. For the R chart, the charting constants
are given byUn,α,1 = FWn,1−α/2

d2(n)
andLn,α,1 = FWn,α/2

d2(n)
, where

FWn,1−α/2 and FWn,α/2 denote the 100∗{1 − α/2}th and the
100∗{α/2}th percentiles of the in-control distribution
of the sample relative range W, respectively. Given
these charting constants plus w1 = R, we can find
the control limits by substituting them into Ed. [1].
Similarly, the estimated probability limits for the S
charts (i.e., S2 and S3) are obtained by substituting

(w2 = S, Un,α,2 =
√

χ2
1−α/2,n−1√

n−1 c4(n)
, Ln,α,2 =

√
χ2

α/2,n−1√
n−1 c4(n)

)

and (w3 = Sp, Un,α,3 =
√

χ2
1−α/2,n−1√
n−1 , Ln,α,3 =

√
χ2

α/2,n−1√
n−1 )

for S2 and S3, respectively, in Eq. [1]. However, these
charting constants were originally intended for use
with the σ0 known probability limits, and are thus
incorporated using the nominal FAR α = α0. Fur-
thermore, they only depend on the Phase II charting
statistic, and not on the Phase I estimator or the
Phase I sample size. Hence, they are not the appro-
priate constants in the case that σ0 is unknown. Since
these charting constants do not depend on m, they
do not properly account for the effect of parameter
estimation. In the next section we will correct these
charting constants and so their control limits.

The R and S charts with estimated probability
limits and corrected for the effects of
parameter estimation

Toproperly account for the effects of parameter estima-
tion while using the Phase II charts, that is, to account
for the effects of using m Phase I samples each of size
n to estimate the in-control standard deviation σ0, we
propose to use the following probability limits

UĈL = Un,α(m,n), jw j

ĈL = w j

LĈL = Ln,α(m,n), jw j. [2]

Note that the above control limits are similar in form
to those in Eq. [1] except that here we denote α as
α(m, n) to emphasize that this probability should be a
function of bothm and n, to make the correct charting
constants L andU depend on both ofm and n, and thus
account for parameter estimation.

In order to find the charting constants, we need to
derive an expression for the unconditional in-control
average run-length (ICARL). This ICARL depends on
the in-control distributions of both the Phase I esti-
mator (w j) and the Phase II charting statistic (Ti j). In
our derivations, we assume that w j/σ follows a scaled

chi-square distribution
ε0 ja0 j

√
X0 j√

b0 j
, where X0 j denotes a

chi-square random variable with b0 j degrees of free-
dom. Formulae and or values for the constants a0 j, b0 j
and ε0 j are given in Appendix A, and are based on the
well-known Patnaik (1950) approximation (see Chen
(1998) for the explicit expressions). Note that condi-
tional on the observed value of the Phase I estimator
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QUALITY ENGINEERING 609

w j (or equivalently, on the realization of X0 j ), the con-
ditional in-control ( σ = σ0 ) Phase II run-length dis-
tribution is geometric. The success probability of this
distribution is equal to the conditional false alarm rate
(denoted CFAR), which is defined as

CFARj

= 1 − P
(
LĈL < Ti j < UĈL|σ = σ0

)
= 1 − P

(
Ln,α, jw j < Ti j < Un,α, jw j|σ = σ0

)
= 1 − P

(
Ln,α, j

w j

σ
<

Ti j
σ

< Un,α, j
w j

σ
|σ = σ0

)

= 1 − P

(
Ln,α, j

ε0 ja0 j
√
X0 j√

b0 j
<

Ti j
σ

< Un,α, j
ε0 ja0 j

√
X0 j√

b0 j
|σ = σ0

)

= CFARj
(
X0 j,m, n, α

)
. [3]

Next, using the conditioning-unconditioning
method in Chakraborti (2000), where we integrate
over all possible values of X0 j, the unconditional
ICARL of the jth Phase II Shewhart dispersion chart
can be obtained as

ICARLj (m, n, α)

=
∫ ∞

0

[
CFARj (x,m, n, α)

]−1 fχ2
b0 j

(x) dx, [4]

where fχ2
b0 j

denotes the probability density function
(pdf) of X0 j.

We start with the numerical approach, which
solves the equation ICARLj(m, n, α(m, n)) = ICARL0
numerically for α(m, n).

The numerical approach

The numerical approach finds α(m, n) numerically
and uses it to correct the uncorrected constants in
Montgomery (2013) as follows:

(i) specifies the values of m, n at hand and the
desired nominal ICARL0;

(ii) uses the exact in control distributions of the
charting statistics to (1) define the control
limits and (2) determine the expressions
for the CFARj(X0 j,m, n, α(m, n)) and the
ICARLj(m, n, α(m, n));

(iii) numerically solves the equation
∫∞
0 [CFARj

(x,m, n, α(m, n))]−1 fχ2
b0 j

(x)dx = ICARL0 for
the corresponding α(m, n) value; and

(iv) uses α(m, n) to correct the uncorrected charting
constants in Montgomery (2013).

For example, for the R chart, recall that Ln,α(m,n), j =
FWn,α(m,n)/2

d2(n)
and Un,α(m,n), j = FWn,1−α(m,n)/2

d2(n)
. Consequently,

CFAR1 becomes

CFAR1 (X01,m, n, α (m, n))

= 1 − P
(
Ln,α(m,n),1

w1

σ
<

Ri

σ

< Un,α(m,n),1
w1

σ
|σ = σ0

)

= 1 − FWn

(
FWn,1−α(m,n)/2

a01
√
X01√

b01

)

+ FWn

(
FWn,α(m,n)/2

a01
√
X01√

b01

)
,

where FWn represents the cumulative distribution func-
tion (CDF) of the sample relative range. Using this
equation to solve∫ ∞

0

[
CFARj (x,m, n, α (m, n))

]−1 fχ2
b0 j

(x) dx

= ICARL0 [5]

will result in the required corrected charting constants.
For example, with m = 5, n = 5, and ICARL0 = 370,
the value α(m, n) that satisfies the above equation is
0.001949. This value is then used to correct the uncor-
rected charting constants for the estimated probabil-
ity limits Phase II Shewhart R chart. The corrected
charting constants for the Phase II R chart with σ̂01 as
Phase I estimator, are given by

U5,α(5,5),1 = FW5,1−α(5,5)/2

d2(5)
= FW5,1−0.001949/2

d2(5)

= 5.49281
2.32593

= 2.3616

and

L5,α(5,5),1 = FW5,α(5,5)/2

d2(5)
= FW5,0.001949/2

d2(5)

= 0.36499
2.32593

= 0.1569,

respectively. For other values of n, m and ICARL0, the
values of α(m, n), Un,α(m,n),1 and Ln,α(m,n),1 are given
in Table 3. The R codes for finding all these values are
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610 M. D. DIKO ET AL.

Table . New corrected charting constants for the Shewhart R and S charts when parameters are estimated from m Phase I subgroups,
m= , , , , , , , ,  and  each of subgroup size n= ,  for a nominal in-control ARL=  and .

Numerical Approach Analytical Approach

ICARL=  ICARL=  ICARL=  ICARL= 

n m Chart α L U α L U α L U α L U

  R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

  R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

 R - R̄ . . . . . . . . . . . .
S - Sp . . . . . . . . . . . .
S - S̄ . . . . . . . . . . . .

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 2
3:

25
 1

1 
O

ct
ob

er
 2

01
7 



QUALITY ENGINEERING 611

given in Appendix B as an example for the other codes
used in this article.

Similarly, recall that for j = 2 we have Ln,α(m,n),2 =√
χ2

α(m,n)/2,n−1

c4(n)
√
n−1 and Un,α(m,n),2 =

√
χ2
1−α(m,n)/2,n−1

c4(n)
√
n−1 , and that

S
σ

∼
√

χ2
n−1√

n−1 . This can be used to calculate CFAR2 as

CFAR2 (X02,m, n, α (m, n))

= 1 − P
(
Ln,α(m,n),2

w2

σ
<

Si
σ

< Un,α(m,n),2
w2

σ
|σ = σ0

)

= 1 − Fχ2
n−1

(
χ2
1−α(m,n)/2,n−1

a202X02

b02

)

+Fχ2
n−1

(
χ2

α(m,n)/2,n−1
a202X02

b02

)

which can in turn be used to determine the required
charting constants. For example, for j = 2, m = 5,
n = 5, and ICARL0 = 370, the value of α(m, n) that
satisfies Eq. [5] is 0.001954. Thus, the corrected chart-
ing constants for the Phase II S chart with σ̂02 as Phase
I estimator, are calculated as

U5,α(5,5),2 =
√

χ2
1−α(5,5)/2,n−1

c4(n)
√
n − 1

=
√

χ2
1−0.001954/2,5−1

0.9400
√
5 − 1

=
√
18.5184

0.9400
√
4

= 2.2923

And

L5,α(5,5),2 =
√

χ2
α(5,5)/2,n−1

c4(n)
√
n − 1

=
√

χ2
0.001954/2,5−1√
5 − 1

=
√
0.0897

0.9400
√
4

= 0.1584,

respectively. For other values of n, m and ICARL0, the
values of α(m, n), Un,α(m,n),2 and Ln,α(m,n),2 are given
in Table 3.

Finally, for j = 3 we have Ln,α(m,n),3 =
√

χ2
α(m,n)/2,n−1√
n−1

and Un,α,3 =
√

χ2
1−α( ,n)/2,n−1√

n−1 , and that S
σ

∼
√

χ2
n−1√

n−1 . This
can be used to calculate CFAR3 as

CFAR3 (X03,m, n, α (m, n))

= 1 − P
(
Ln,α(m,n),3

w3

σ
<

Si
σ

< Un,α(m,n),3
w3

σ
|σ = σ0

)

= 1 − Fχ2
n−1

(
χ2
1−α(m,n)/2,n−1

X03

m (n − 1)

)

+Fχ2
n−1

(
χ2

α(m,n)/2,n−1
X02

m (n − 1)

)

which can be used to determine the required charting
constants for this case. For example, for j = 3, m = 5,
n= 5, and ICARL0 = 370, the value α(m, n) that satis-
fies Eq. [5] is 0.001908 Therefore, the corrected chart-
ing constants for the Phase II S chart, with σ̂03 as Phase
I estimator, are

U5,α(5,5),2 =
√

χ2
1−α(5,5)/2,n−1√

n − 1
=
√

χ2
1−0.001908/2,5−1√

5 − 1

=
√
18.5712√

4
= 2.1547

and

L5,α(5,5),2 =
√

χ2
α(5,5)/2,n−1√
n − 1

=
√

χ2
0.001908/2,5−1√
5 − 1

=
√
0.8866√
4

= 0.1489,

respectively. Again, Table 3 gives other values of
α(m, n), Un,α(m,n),3 and Ln,α(m,n),3 for different com-
binations of n, m and ICARL0.

From Table 3, it is interesting to see that
when m increases, as one might expect, the
α(m, n), Un,α(m,n), j, and Ln,α(m,n), j values converge to
their σ0 known counterparts α0, Un,α0, j, and Ln,α0, j,
respectively.

The analytical approach

While the numerical solutions outlined above are use-
ful, it is interesting to consider an approximation to
the charting constants based on the recent work of
Goedhart, Schoonhoven, and Does (2016) and Goed-
hart et al. (2017), which is based on a first-order Taylor
approximation of the ICARL. The numerical approach
of finding α(m, n) involves numerical integration and
solving some nonlinear equations. However, it is also
possible to find α(m, n) using a more easily imple-
mentable but approximatemethod.Our approach is to:

(i) specify the values ofm, n at hand and the desired
nominal ICARL0;

(ii) unify the control charts for dispersion under one
chi-square framework, which assumes that the
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612 M. D. DIKO ET AL.

charting statistic Ti j is either exactly or approx-
imately distributed as a scaled chi-square ran-

dom variable
ε ja jσ

√
χ2
b j√

bj
, where χ2

b j
is a chi-square

random variable with b j degrees of freedom, ε j

equals the expectation of Ti j, and a j is some con-
stant. Formulae and or values for the constants
a j, b j, and ε j are given in Appendix A, and are
based on the Patnaik (1950) approximation, sim-
ilar to w j;

(iii) use the above chi-square framework to (1)
define the control limits and (2) determine the
expressions for the CFARj(X0 j,m, n, α) and the
ICARLj(m, n, α);

(iv) obtain an analytical expression for α(m, n); and
(v) use the resulting value of α(m, n) to adjust the

uncorrected charting constants.
Using the approximations in step (ii), we can write

CFARj more explicitly as

CFARj
(
X0 j,m, n, α

)
= 1 − P

(
Ln,α, jw j < Ti j < Un,α, jw j|σ = σ0

)
= 1 − P

(
Ln,α, j

w j

σ
<

Ti j
σ

< Un,α, j
w j

σ
|σ = σ0

)

= 1 − P

⎛
⎝Ln,α, j

ε0 ja0 j
√
X0 j√

b0 j
<

ε ja j

√
χ2
b j√

b j

< Un,α, j
ε0 ja0 j

√
X0 j√

b0 j

⎞
⎠

= 1 − P

((
Ln,α, j

)2 a20 jb jX0 j

a2jb0 j
< χ2

b j

<
(
Un,α, j

)2 a20 jb jX0 j

a2jb0 j

)

= 1 − P

⎛
⎜⎝
⎛
⎝a j

√
χ2

α/2,b j√
b j

⎞
⎠

2
a20 jb jX0 j

a2jb0 j
< χ2

b j

<

⎛
⎝a j

√
χ2
1−α/2,b j√
b j

⎞
⎠

2

a20 jb jX0 j

a2jb0 j

⎞
⎟⎠

= 1 − P

(
χ2

α/2,b j

a20 jX0 j

b0 j
< χ2

b j
< χ2

1−α/2,b j

a20 jX0 j

b0 j

)

= 1 − Fχ2
b j

(
χ2
1−α/2,b j

a20 jX0 j

b0 j

)

+ Fχ2
b j

(
χ2

α/2,b j

a20 jX0 j

b0 j

)
[6]

where Fχ2
b j
represents the CDF of a chi-square variable

with b j degrees of freedom. Consequently, the approx-
imated ICARLj can be calculated as

ICARLj (m, n, α)

=
∫ ∞

0

[
1 − Fχ2

b j

(
χ2
1−α/2,b j

a20 jx
b0 j

)

+ Fχ2
b j

(
χ2

α/2,b j

a20 jx
b0 j

)]−1

fχ2
b0 j

(x) dx [7]

where fχ2
b0 j

represents the probability density function
(PDF) of a chi-square variable with b0 j degrees of free-
dom.

The next step is to determine an analytical
expression for α(m, n). In order to do this, we
consider a first order Taylor approximation of
ICARLj(m, n, α(m, n)), around α0 = 1/ICARL0,
where α0 is the nominal FAR as before. This gives the
approximation

ICARLj (m, n, α (m, n))

= ICARLj (m, n, α0)

+ (α (m, n) − α0)
dICARLj (m, n, α = α0)

dα
.

[8]

Since we want ICARLj(m, n, α(m, n)) = ICARL0,
which equals 1

α0
, we solve

1
α0

= ICARLj (m, n, α = α0)

+ (α (m, n) − α0)
dICARLj (m, n, α = α0)

dα
[9]

for α(m, n). This yields the approximation

α (m, n) = 1/α0 − ICARLj (m, n, α = α0)

d[ICARLj(m,n,α=α0)]
dα

+ α0.

[10]

The next step is to determine d[ICARLj(m,n,α)]
dα

.
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QUALITY ENGINEERING 613

Table . The ICARL and the PD values for the R and S charts with the charting constants calculated analytically (ANA) and numerical (NUM)
for n= , ICARL =  and various values ofm.

R chart with σ0 estimator R/d2(n) S chart with σ0 estimator S/c4(n) S chart with σ0 estimator Sp

m ICARL NUM PD ICARL ANA PD ICARL NUM PD ICARL ANA PD ICARL NUM PD ICARL ANA PD

            
            
            
            
            
            
            
            

From the obtained equation for ICARLj(m, n, α) it
follows that, in order to find its derivative, we need the
results

dχ2
1− α

2 ,b

dα
= −

[
2 fχ2

b

(
χ2
1− α

2 ,b

)]−1
and

dχ2
α
2 ,b

dα
= −

[
2 fχ2

b

(
χ2

α
2 ,b

)]−1
.

These are obtained using the fact that [G−1]′ (x) =
[G′(G−1(x))]−1 , where G and G′ denote the CDF of
a continuous random variable and its derivative (the
PDF), respectively;G−1 denotes the inverse of the CDF
G and [G−1]′ denotes the first derivative of G−1 (see
for example,Gibbons andChakraborti, 2010). Thus, we
find

d
[
ICARLj (m, n, α)

]
dα

=
∫ ∞

0
−
[
1 − Fχ2

b j

(
χ2
1−α/2,b j

a20 jx
b0 j

)

+ Fχ2
b j

(
χ2

α/2,b j

a20 jx
b0 j

)]−2

Q fχ2
b0 j

(x) dx, [11]

Where

Q =

⎡
⎢⎣ fχ2

b j

(
χ2
1−α/2,b j

a20 jx
b0 j

)
2 fχ2

b j

(
χ2
1−α/2,b j

) +
fχ2

b j

(
χ2

α/2,b j

a20 jx
b0 j

)
2 fχ2

b j

(
χ2

α/2,b j

)
⎤
⎥⎦ a20 jx

b0 j
.

With this result we have all the pieces required to
calculate an approximation to α(m, n) from Eq. [10].
Once α(m, n) is found, we can again use it to correct
the charting constants for the Montgomery probability
limits given earlier. The approximate values of α(m, n),
Un,α(m,n), j, and Ln,α(m,n), j, for each chart (j= 1,2,3), for
different combinations of values ofm, n and ICARL0 =
370 and 500 values are tabulated in Table 3.

Note that this approximate result is more general
than the provided numerical solutions. In fact, it can
be generalized to any combination of Phase I and
Phase II estimators. This can be done by determining
the required constants a, b, a0, and b0 based on the Pat-
naik (1950) approximation, as described in steps (i) and
(ii) of our approach.Moreover, anymonotonic increas-
ing function g(σ ) of σ can be considered, since in that
case P(LCL < Tj < UCL) is equivalent to P(g(LCL) <

g(Tj) < g(UCL)). Hence, our approach can also be
applied to S2 and log(S) charts.

Comparing the analytical solutionswith the numeri-
cal solutions it is seen that the approximations from the
analytical method are quite accurate and the accuracy
increases for higher values of m, as is desirable.

In order to compare the charting constants obtained
by the numerical and the analytical methods, we calcu-
lated the ICARLj(m, n, α(m, n)) values for each chart,
and ICARL0 = 370; n = 5 and for various values of m.
Table 4 shows the results including the PD values rela-
tive to 370. As expected, for the numerically calculated
probability limits, the ICARL values are exactly equal
to the nominal value 370. On the other hand, it can
be seen that for the analytically calculated probability
limits, except for m = 5, the ICARL values are not
more than 6% above the nominal value 370. It can also
be seen that as m increases, the ICARL values corre-
sponding to the analytical constants converge quickly
to 370. This shows that the behavior of the numer-
ically and analytically corrected probability limits is
similar.

A numerical illustration

In this section, we illustrate the R and S charts with the
estimated 3-sigma limits, the uncorrected probability
limits and the corrected probability limits given in this
article. We use a data set from Montgomery (2013)
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614 M. D. DIKO ET AL.

Table . Charting constants and control limits for the R chart when n= ;m= ,; ICARL =  and R = 0.3252.

m= 

L U LCL = LR UCL = UR Width

-sigma limits  .  . .
Uncorrected probability limits . . . . .
Corrected Probability limits (Analytical Approach) . . . . .
Corrected Probability limits (Numerical Approach) . . . . .

m= 

L U LCL = LR UCL = UR Width

-sigma limits  .  . .
Uncorrected probability limits . . . . .
Corrected Probability limits (Analytical approach) . . . . .
Corrected Probability limits (Numerical approach) . . . . .

on the measurements of the flow width of a hard bake
process. This is a popular data set used in the literature.
It contains m = 25 Phase I subgroups, each of size n
= 5 where R = 0.3252, S = 0.1316, and Sp = 0.1390.
All the Phase II control limits were constructed to
achieve the nominal ICARL0 = 370. Tables 5, 6, and 7
show the calculated limits of the Phase II R and S charts
together with their corresponding charting constants
L and U. To examine the effect of the number of Phase

I subgroups, these tables also include the case m = 5.
The charting constants for the corrected limits have
been taken from Table 3, while the charting constants
for the 3-sigma limits and the uncorrected probability
limits have been calculated using their formulas in
Appendix A.

For m = 25, it can be seen that the difference,
in width, between the uncorrected and the corrected
probability limits, is small. This is as expected, since

Table . Charting constants and control limits for the S chart when n= ;m= ,; ICARL =  and S = 0.1316.

m= 

L U LCL = LS UCL = US Width

-sigma limits  .  . .
Uncorrected probability limits . . . . .
Corrected Probability limits (Analytical Approach) . . . . .
Corrected Probability limits (Numerical Approach) . . . . .

m= 

L U LCL = LS UCL = US Width

-sigma limits  .  . .
Uncorrected probability limits . . . . .
Corrected Probability limits (Analytical Approach) . . . . .
Corrected Probability limits (Numerical Approach) . . . . .

Table . Charting constants and control limits for the S chart when n= ;m= ,; ICARL =  and Sp = 0.1390.

m= 

L U LCL = LSp UCL = USp Width

-sigma limits  .  . .
Uncorrected probability limits . . . . .
Corrected Probability limits (Analytical Approach) . . . . .
Corrected Probability limits (Numerical Approach) . . . . .

m= 

L U LCL = LSp UCL = USp Width

-sigma limits  .  . .
Uncorrected probability limits . . . . .
Corrected Probability limits (Analytical Approach) . . . . .
Corrected Probability limits (Numerical Approach) . . . . .
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QUALITY ENGINEERING 615

the number of subgroups m = 25 is moderately large,
and so it improves the performance of the uncor-
rected probability limits. In addition to this, it can
also be seen that the corrected probability limits are
a little wider than the uncorrected probability limits.
This can be seen even more clearly from the tables
constructed assuming m = 5. Since the problem with
uncorrected probability limits is their high uncondi-
tional false alarm rate, widening these control limits
helps alleviate the problem.

To summarize, the classical estimated 3-sigma lim-
its should not be used in practice, because the nor-
mal approximation to the distribution of the sample
range and sample standard deviation is poor. Conse-
quently, as seen from Tables 5–7, the classical esti-
mated 3-sigma limits cannot detect process improve-
ments (only deterioration; since the lower control limit
is set to be equal to 0 for subgroup sizes n ≤ 6 ). The
uncorrected estimated probability limits can still be
used ifm is large (saym > 20 ). However, it is better to
use the corrected charting constants proposed in this
article, because they guarantee the expected nominal
ICARL performance for the value of m and n that one
may have. Finally, the analytical method of finding the
corrected charting constants is a good approximation
to the numerical method.

Out of control performance

The numerical control limits provided here guarantee
that the in-control average run-length of the charts is
equal to the nominal value of 370 or 500. However,
since the corrected limits are wider than the uncor-
rected probability limits, it is of interest to see whether
the correction impacts the out-of-control performance.
It may be noted at the outset that such a compari-
son is not really fair since the in-control performance
of the uncorrected limits can be far worse than the
nominal.

In order to make this comparison, we compute the
ARL for the considered dispersion charts with n = 5,
for a number of values of the ratio ( λ ) between the
Phase II standard deviation (σ ) and the in-control pro-
cess standard deviation ( σ0 ), that is, for λ = σ/σ0. In
other words, we compute points of the ARL profiles of
the charts in different cases, where λ = 1 corresponds
to the ICARL, and λ 
= 1 corresponds to the out-of-
controlARL (OOCARL). This is done for several values
ofm. The results are given in Table 8.

The ARLs with the uncorrected and the corrected
limits could be easily computed from Eq. [3] by just
replacing CFARj by the general conditional probability
of an alarm, CPAj. Next, using λ = σ/σ0, and keep-
ing in mind that α = α (m, n), we calculate CPAj for
the corrected limits as

CPAj = 1 − P
(
Ln,α, j

w j

σ
<

Ti j
σ

< Un,α, j
w j

σ

)

= 1 − P

(
Ln,α, j

ε0 ja0 j
√
X0 j

λ
√
b0 j

<
Ti j
σ

< Un,α, j
ε0 ja0 j

√
X0 j

λ
√
b0 j

)

= CFARj
(
X0 j,m, n, α, λ

)
.

Using the known distributions of Ti j/σ this gives

CPA1 (X01,m, n, α, λ)

= 1 − FWn

(
Un,α,1

w1

λσ0

)
+ FWn

(
Ln,α,1

w1

λσ0

)

= 1 − FWn

(
FWn,1−α/2

a01
√
X01

λ
√
b01

)

+ FWn

(
FWn,α/2

a01
√
X01

λ
√
b01

)
,

CPA2 (X02,m, n, α, λ)

= 1 − Fχ2
n−1

((
Un,α,2

w2
√
n − 1

λσ0

)2)

+ Fχ2
n−1

((
Ln,α,2

w2
√
n − 1

λσ0

)2)

= 1 − Fχ2
n−1

(
χ2
1−α/2,n−1

a202X02

λ2b02

)

+ Fχ2
n−1

(
χ2

α/2,n−1
a202X02

λ2b02

)

and

CPA3 (X03,m, n, α, λ)

= 1 − Fχ2
n−1

((
Un,α,3

w3
√
n − 1

λσ0

)2)

+ Fχ2
n−1

((
Ln,α,3

w3
√
n − 1

λσ0

)2)

= 1 − Fχ2
n−1

(
χ2
1−α/2,n−1

a203X03

λ2b03

)
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616 M. D. DIKO ET AL.

+ Fχ2
n−1

(
χ2

α/2,n−1
a202X03

λ2b03

)
.

These values can in turn be used as described in the
numerical approach, to determine the unconditional
ARL as

ARLj (m, n, α, λ)

=
∫ ∞

0

[
CPAj (x,m, n, α, λ)

]−1 fχ2
b0 j

(x) dx,

where again x is the value of the random variable X0 j.
Formulae for the CPAj and ARLj of the uncorrected
limits are the same as above, except that α0 is used
instead of α(m, n).

Table 8 shows the ICARL (λ = 1), the OOCARL
(λ 
= 1) and the PD values associated with the uncor-
rected and the corrected estimated probability limits
based R and S charts, for n = 5, 10 and various values
of λ and m. The PD values measure the percentage
difference between the unconditional ARL values for
the estimated σ0 case and the nominal unconditional
ARL values. Note that the results for the uncorrected
estimated probability limits have been thoroughly
discussed by Chen (1998). From Table 8 it can be seen
that when the process is IC and σ0 is estimated, using
the uncorrected charting constants to construct the
uncorrected probability limits gives unconditional
ARL values that are up to 29% lower than the nominal
370 (corresponding to the σ0 known case) for n = 5
and 32% lower than the nominal 370 (corresponding to
the σ0 known case) for n= 10, respectively. This means
a lot of false alarms. Using the corrected (new) charting
constants to construct the probability limits yields the
nominal value 370, which is desirable. However, this
also leads to larger unconditional ARL values for the
corrected charts compared to the uncorrected charts
when the process is OOC. Interestingly, this difference
is smaller for decreases in variability (λ < 1) than for
increases (λ > 1). In general, both the corrected and
uncorrected charts have more difficulty in detecting
decreases in variability than increases. It can also be
seen that the effect of using either the corrected or
uncorrected estimated probability limits is a function
of m. In general, increasing m diminishes the effects
of parameter estimation on both the IC and OOC
unconditional ARL performance for both uncorrected
and corrected probability limits, as expected.

To summarize, the corrected estimated probability
limits provide a much better IC performance than the
uncorrected limits, as it yields the nominally specified

ICARL performance. However, this generally comes
with a deterioration of the OOCARL performance rel-
ative to the uncorrected limits. Note that this tradeoff
between IC and OOC performance can be altered by
adjusting the value of ICARL0.

Summary and conclusions

Shewhart control charts are often used to monitor
process dispersion. However, the standard versions
of these charts assume known in-control parameters,
which is typically not the case in practice. When the
parameters are estimated to set up the control lim-
its, both the IC and OOC performance of the con-
trol charts are affected (Chen 1998). In this article, we
have provided corrected control limit constants based
on the ICARL performance of the probability limits
based R and S charts, to account for the effects of
parameter estimation. Two methods are used to find
the corrected charting constants. The first method, the
numerical approach, involves numerical integration
and solving nonlinear equations. The second method,
the analytical approach is based on a first-order Taylor
approximation to the ICARL. Differences in the values
obtained with these two methods are small, indicating
that the analytical approximations are quite accurate.
However, the analytical approach ismore general in the
sense that it can be applied to any desired estimator.
Extensions to other functions of S, such as S2 or log-S
are straightforward.

The tabulated constants provided here ensure that
the unconditional ICARL is equal to a pre-specified
desired value, taking into account the estimators that
are used, the number of Phase I subgroups (m) and
the subgroup size (n). However, this IC robustness is
achieved at the price of a deterioration (increase) in
the unconditional OOCARL. This deterioration, due
to the use of the corrected limits, is negligible for large
values of m or large changes of variability.

In conclusion, this article provides the correct chart-
ing constants for the popular dispersion charts, for i.i.d.
data from a normal distribution, properly accounting
for the effects of parameter estimation, in terms of a
specified nominal value of the unconditional in-control
average run-length. A similar study, for the important
case when n = 1, is required. Finally, note that in prac-
tice, it is possible that the data do not follow a nor-
mal distribution. How these corrected limits perform
for other distributions and their requiredmodifications
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QUALITY ENGINEERING 617

Table . The ARL and PD values associated with the uncorrected and corrected probability limits based R and S charts for n= ,  and
various values of λ andm.

R Chart with σ0 estimator R/d2(n)

λ values

n m
Type
of
limit

0.2 0.5 0.8 1 1.2 1.5 2

ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD

5 5 Uncorrected      −  −      
Corrected              

10 Uncorrected      −  −      
Corrected              

20 Uncorrected        −      
Corrected              

25 Uncorrected        −      
Corrected              

30 Uncorrected        −      
Corrected              

50 Uncorrected        −      
Corrected              

100 Uncorrected        −      
Corrected              

300 Uncorrected        −      
Corrected              

500 Uncorrected              
Corrected              

1000 Uncorrected              
Corrected              

� σ known              

10 5 Uncorrected        −      
Corrected              

10 Uncorrected        −      
Corrected              

20 Uncorrected        −      
Corrected              

25 Uncorrected        −      
Corrected              

30 Uncorrected        −      
Corrected              

50 Uncorrected        −      
Corrected              

100 Uncorrected        −      
Corrected              

300 Uncorrected        −      
Corrected              

500 Uncorrected        −      
Corrected              

1000 Uncorrected              
Corrected              

� σ known       

S Chart with σ0 estimator Sp

λ values

n m Type
of
limit

0.2 0.5 0.8 1 1.2 1.5 2

ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD

5 5 Uncorrected      −  −      
Corrected              

10 Uncorrected        −      
Corrected              

20 Uncorrected        −      
Corrected              

25 Uncorrected        −      
Corrected              

30 Uncorrected        −      
Corrected              

50 Uncorrected        −      
Corrected              

(Continued on next page)
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618 M. D. DIKO ET AL.

Table . (Continued)

S Chart with σ0 estimator S/c4(n)

λ values

n m
Type
of
limit

0.2 0.5 0.8 1 1.2 1.5 2

ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD

100 Uncorrected        −      
Corrected              

300 Uncorrected        −      
Corrected              

500 Uncorrected        −      
Corrected              

1000 Uncorrected              
Corrected              

� σ known              

10 5 Uncorrected        −      
Corrected              

10 Uncorrected        −      
Corrected              

20 Uncorrected        −      
Corrected              

25 Uncorrected        −      
Corrected              

30 Uncorrected        −      
Corrected              

50 Uncorrected        −      
Corrected              

100 Uncorrected        −      
Corrected              

300 Uncorrected        −      
Corrected              

500 Uncorrected        −      
Corrected              

1000 Uncorrected              
Corrected              

� σ known       

S Chart with σ0 estimator S/c4(n)

λ values

n m Type
of
limit

0.2 0.5 0.8 1 1.2 1.5 2

ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD

5 5 Uncorrected      −  −      
Corrected              

10 Uncorrected      −  −      
Corrected              

20 Uncorrected        −      
Corrected              

25 Uncorrected        −      
Corrected              

30 Uncorrected        −      
Corrected              

50 Uncorrected        −      
Corrected              

100 Uncorrected        −      
Corrected              

300 Uncorrected        −      
Corrected              

500 Uncorrected              
Corrected              

1000 Uncorrected              
Corrected              

� σ known              

10 5 Uncorrected        −      
Corrected              
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Table . (Continued)

S Chart with σ0 estimator Sp

λ values

n m
Type
of
limit

0.2 0.5 0.8 1 1.2 1.5 2

ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD

10 Uncorrected        −      
Corrected              

20 Uncorrected        −      
Corrected              

25 Uncorrected        −      
Corrected              

30 Uncorrected        −      
Corrected              

50 Uncorrected        −      
Corrected              

100 Uncorrected        −      
Corrected              

300 Uncorrected        −      
Corrected              

500 Uncorrected        −      
Corrected              

1000 Uncorrected              
Corrected              

� σ known       

require further investigation, which will be considered
elsewhere.

About the authors

Mandla D. Diko obtained his M.Sc. in Statistics from the Uni-
versity of Pretoria. He is currently working as a Ph.D. student
in the Department of Operations Management of the Univer-
sity of Amsterdam, the Netherlands. His research interests are
in Statistical Process Quality Control.

Rob Goedhart obtained his M.Sc. in econometrics in 2014 at
theUniversity ofAmsterdam, theNetherlands.He is a Ph.D. stu-
dent in theDepartment of OperationsManagement and consul-
tant at the Institute for Business and Industrial Statistics of the
University of Amsterdam, theNetherlands. His current research
topic is control charting techniques with estimated parameters.

Subha Chakraborti is a professor of Statistics in the Depart-
ment of Information Systems, Statistics and Management Sci-
ence,University ofAlabama,USA.He is a Fellow of theASA and
an elected member of the ISI. His research interests are in Non-
parametric and Robust Statistical Inference, including applica-
tions in Statistical Process Quality Control.

Ronald J. M. M. Does is Professor of Industrial Statistics
at the University of Amsterdam, Director of the Institute for
Business and Industrial Statistics, Head of the Department of
Operations Management, and Director of the Institute of Exec-
utive Programmes at the Amsterdam Business School. He is a
Fellow of the ASQ and ASA, an elected member of the ISI, and
an Academician of the International Academy for Quality. His
current research activities include the design of control charts
for nonstandard situations, healthcare engineering and opera-
tional management methods.

Eugenio K. Epprecht is Professor in the Department of
Industrial Engineering at the Pontifical Catholic University of

Rio de Janeiro. He is a member of ASQ. His current research
activities include the design of control charts with estimated
parameters, and industrial engineering.

Acknowledgments

The authors are grateful to the anonymous referees for their
comments that have improved the article.

Funding

Part of the work of the third author was supported by the
CNPq, Brazil, through a Science Without Borders Special Vis-
iting Professor grant (project no. 401523 2014-4). Also, part
of the work of the last author was supported by the CNPq,
Brazil, through a research fellowship grant (project no. 308677
2015-3).

References

Chakraborti, S. (2000). Run length, average run length and false
alarm rate of shewhart X-bar chart: Exact derivations by
conditioning.Communications in Statistics – Simulation and
Computation 29:61–81.

Chen, G. (1998). The run length distributions of the R, S and S2

Control Charts when σ is Estimated. The Canadian Journal
of Statistics 26 (2):311–322.

Diko, M. D., S. Chakraborti, and M. A. Graham. (2016). Mon-
itoring the process mean when standards are unknown:
A classic problem revisited. Quality Reliability Engineering
International 32 (2):609–622.

Gibbons, J. D., and S. Chakraborti. (2010). Nonparametric sta-
tistical inference, 5th ed. Boca Raton, FL: Chapman & Hall.

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 2
3:

25
 1

1 
O

ct
ob

er
 2

01
7 



620 M. D. DIKO ET AL.

Goedhart, R., M. Schoonhoven, and R. J. M. M. Does. (2016).
Correction factors for shewhart and X control charts to
achieve desired unconditional ARL. International Journal of
Production Research 54 (24):7464–79.

Goedhart, R., M. M. D. Silva, M. Schoonhoven, E. K.
Epprecht, S. Chakraborti, R. J. M. M. Does, and A. L.
Veiga Filho. (2017). Shewhart control charts for disper-
sion adjusted for parameter estimation. IISE Transactions,
submitted.

Grant, E. L., and R. S. Leavenworth (1986). Statistical quality
control, 5th ed. New York: McGraw-Hill.

Mahmoud, A. M., G. R. Henderson, E. K. Epprecht, and W.
H. Woodall. (2010). Estimating the standard deviation in
quality-control applications. Journal of Quality Technology
42 (4):348–357.

Montgomery, D. C. (2013). Statistical quality control: A modern
introduction, 7th ed. John Wiley & Sons, Inc.

Patnaik, P. B. (1950). The use of mean range as an estimator of
variance in statistical tests. Biometrika 37 (1):78–87.

Woodall, W. H. (2017). Bridging the gap between theory and
practice in basic statistical process monitoring. Quality
Engineering 29 (1):2–15.

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 2
3:

25
 1

1 
O

ct
ob

er
 2

01
7 



QUALITY ENGINEERING 621

Appendix A

Table A. Formulae for the various constants that are associated with the three spread charts that are considered in this article.

R chart with σ0 estimator R/d2(n)

(j= )
S chart with σ0 estimator S/c4(n)

(j= ) S chart with σ0 estimator Sp (j= )

Values of the biased estimatorw j w1 = R w2 = S w3 = Sp
Values of the unbiasing constants
ε0 j and ε j

ε01 = d2 (n) ε02 = c4 (n) ε03 = c4 (m(n − 1) + 1) ≈ 1

ε1 = d2 (n) ε2 = c4 (n) ε3 = c4 (n)

Values of the unbiased estimator
σ̂0 j

w1
ε01

w2
ε02

w3

ε03

Charting statistic Ti j R ∼ Wσ S ∼
√

χ 2
n−1√

n − 1
σ S ∼

√
χ 2
n−1√

n − 1
σ

Uncorrected probability limits Ln,α,1 =
FW

α/2

ε01
Ln,α,2 =

√
χ 2

α/2,n−1

ε02

√
n − 1

Ln,α,3 =
√

χ 2
α/2,n−1

ε03

√
n − 1

Un,α,1 =
FW1−α/2

ε01
Un,α,2 =

√
χ 2
1−α/2,n−1

ε02

√
n − 1

Un,α,3 =
√

χ 2
1−α/2,n−1

ε03

√
n − 1

-sigma limits (c.f. Montgomery
())

Ln,α,1 = (1 − 3
d3(n)

ε1
) Ln,α,2 = (1 − 3

√
1 − c24(n)

ε2
) Ln,α,3 = (1 − 3

√
1 − c24(n)

ε3
)

Un,α,1 = (1 + 3
d3(n)

ε1
) Un,α,2 = (1 + 3

√
1 − c24(n)

ε2
) Un,α,3 = (1 + 3

√
1 − c24(n)

ε3
)

Chi approximation of Ti j R ∼
ε1a1

√
χ 2
b1√

b1
S ∼

ε2a2
√

χ 2
b2√

b2
S ∼

ε3a3
√

χ 2
b3√

b3

Chartings Constants Ln,α, j ,Un,α, j
Based on the chi approximation of
Ti j

Ln,α,1 =
ε1a1

√
χ 2

α/2,b1

ε01
√
b1

Ln,α,2 =
ε2a2

√
χ 2

α/2,b2

ε02
√
b2

Ln,α,3 =
ε3a3

√
χ 2

α/2,b3

ε03
√
b3

Un,α,1 =
ε1a1

√
χ 2
1−α/2,b1

ε01
√
b1

Un,α,2 =
ε2a2

√
χ 2
1−α/2,b2

ε02
√
b2

Un,α,3 =
ε3a3

√
χ 2
1−α/2,b3

ε03
√
b3

Variance (V 0 j) of standardized
unbiased estimator σ̂0 j/σ

V01 = Var(
R̄

d2(n)σ
) = d23 (n)

md22 (n)
V02 = Var(

S̄
c4(n)σ

) = 1 − c24(n)

mc24(n)
V03 ≈ Var(

Sp
σ

) =
1 − c24(m(n − 1) + 1)

Patnaik and Chen r0 j and t0 j

r01 = (−2 + 2
√
1 + 2V01)

−1

t01 = V1 + 1
16r301

r02 = (−2 + 2
√
1 + 2V02)

−1

t01 = V2 + 1
16r302

Not required (distribution
is exact)

Value of b0 j b01 = (−2 + 2
√
1 + 2V01)

−1 b02 = (−2 + 2
√
1 + 2V02)

−1 b03 = m(n − 1)

Value of a0 j a01 =
1 + 1

4b01
+ 1

32b201
− 5

128b301

a02 =
1 + 1

4b02
+ 1

32b202
− 5

128b302

a03 = 1

Variance (V j) of standardized
charting statistic T j/(ε jσ)

V1 = Var(
R

d2(n)σ
) = d23

d22
V2 = Var(

S
c4(n)σ

) = 1 − c24(n)

c24(n)
V3 = Var(

S
c4(n)σ

) = 1 − c24(n)

c24(n)

Patnaik and Chen r j and t j

r1 = (−2 + 2
√
1 + 2V1)

−1

t1 = V1 + 1
16r31

Not required (distribution
is exact)

Not required (distribution
is exact)

Value of b j b1 = (−2 + 2
√
1 + 2V1)

−1 b2 = n − 1 b3 = n − 1

Value of a j a1 = 1 + 1
4b1

+ 1
32b21

− 5
128b31

a2 = 1/c4(n) a3 = 1/c4(n)
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622 M. D. DIKO ET AL.

c4(n) =
(

2
n − 1

)1/2
� (n/2)

� ((n − 1)/2)

LetW = Ri
σ
and FWn denote the sample relative range and its distribution function, respectively, then

d2(n) = E (W ) =
∫ ∞

−∞

(
1 − FWn (w)

)
dw

E
(
W 2) =

∫ ∞

0

(
1 − FWn (w)

)
dw2 = 2

∫ ∞

0
w
(
1 − FWn (w)

)
dw

d3(n) =
√
Var (W ) =

√
E (W 2) − d22(n)

Appendix B

Figure B. R codes for Table  (numerical approach).
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