Taylor & Francis
Taylor & Francis Group

Quality Engineering

ISSN: 0898-2112 (Print) 1532-4222 (Online) Journal homepage: http://www.tandfonline.com/loi/lqgen20

Phase Il control charts for monitoring dispersion
when parameters are estimated

M. D. Diko, R. Goedhart, S. Chakraborti, R. J. M. M. Does & E. K. Epprecht

To cite this article: M. D. Diko, R. Goedhart, S. Chakraborti, R. J. M. M. Does & E. K. Epprecht
(2017) Phase Il control charts for monitoring dispersion when parameters are estimated, Quality
Engineering, 29:4, 605-622, DOI: 10.1080/08982112.2017.1288915

To link to this article: http://dx.doi.org/10.1080/08982112.2017.1288915

8 © 2017 The Author(s). Published with
license by Taylor & Francis© M. D. Diko, R.
Goedhart, S. Chakraborti, R. J. M. M. Does,
and E. K. Epprecht

@ Accepted author version posted online: 01
Feb 2017.
Published online: 01 Feb 2017.

N
C»/ Submit your article to this journal &

||I| Article views: 249

A
& View related articles &'

View Crossmark data &'

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=lgen20

(Download by: [UVA Universiteitsbibliotheek SZ] Date: 11 October 2017, At: 23:25 )



http://www.tandfonline.com/action/journalInformation?journalCode=lqen20
http://www.tandfonline.com/loi/lqen20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08982112.2017.1288915
http://dx.doi.org/10.1080/08982112.2017.1288915
http://www.tandfonline.com/action/authorSubmission?journalCode=lqen20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lqen20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08982112.2017.1288915
http://www.tandfonline.com/doi/mlt/10.1080/08982112.2017.1288915
http://crossmark.crossref.org/dialog/?doi=10.1080/08982112.2017.1288915&domain=pdf&date_stamp=2017-02-01
http://crossmark.crossref.org/dialog/?doi=10.1080/08982112.2017.1288915&domain=pdf&date_stamp=2017-02-01

Downloaded by [UVA Universiteitshibliotheek SZ] at 23:25 11 October 2017

QUALITY ENGINEERING Tavl S F .
2017, VOL. 29, NO. 4, 605-622 e aylor . rancis
http://dx.doi.org/10.1080/08982112.2017.1288915 Taylor & Francis Group

3 OPEN ACCESS

Phase Il control charts for monitoring dispersion when parameters are estimated

M. D. Diko?, R. Goedhart?, S. Chakraborti®, R. J. M. M. Does?, and E. K. Epprecht¢

3Department of Operations Management, University of Amsterdam, Amsterdam, The Netherlands; ®Department of Information Systems,
Statistics and Management Science, University of Alabama, Tuscaloosa, Alabama; “Department of Industrial Engineering, Pontifical Catholic
University of Rio de Janeiro, Rio de Janeiro, Brazil

ABSTRACT KEYWORDS
Shewhart control charts are among the most popular control charts used to monitor process disper- average run length (ARL);
sion. To base these control charts on the assumption of known in-control process parameters is often control charts; control limits;
unrealistic. In practice, estimates are used to construct the control charts and this has substantial con- Phase Il analysis; process
sequences for the in-control and out-of-control chart performance. The effects are especially severe ~ dispersion; statistical process
when the number of Phase | subgroups used to estimate the unknown process dispersion is small. control
Typically, recommendations are to use around 30 subgroups of size 5 each.
We derive and tabulate new corrected charting constants that should be used to construct the esti-
mated probability limits of the Phase Il Shewhart dispersion (e.g., range and standard deviation) con-
trol charts for a given number of Phase | subgroups, subgroup size and nominal in-control average run-
length (ICARL). These control limits account for the effects of parameter estimation. Two approaches
are used to find the new charting constants, a numerical and an analytic approach, which give sim-
ilar results. It is seen that the corrected probability limits based charts achieve the desired nominal
ICARL performance, but the out-of-control average run-length performance deteriorate when both
the size of the shift and the number of Phase | subgroups are small. This is the price one must pay while
accounting for the effects of parameter estimation so that the in-control performance is as advertised.
An illustration using real-life data is provided along with a summary and recommendations.

Introduction and motivation SPC applications since they are the most popular dis-
persion charts that are used in Phase II for keeping the

The two-sided Shewhart R (sample range) and S (sam- process dispersion under control, before the location

ple standard deviation) control charts are widely used . .
. . . . . charts are constructed (which need an estimate of the

to monitor the process dispersion. In practice, the in- . . _ .
. . process dispersion) and meaningfully interpreted.

control standard deviation value is usually not known. . . .
To look more closely into the issues we derive

the expressions for the unconditional in-control
average run-length (ICARL) of the R and S charts
(Montgomery 2013), which are based on 3-sigma
limits and the assumption of a normal distribution,
using the conditioning-unconditioning method (Chen
1998 and Chakraborti 2000), and evaluate them using

the statistical software R. The evaluations are done for

Then these charts are applied with estimated control
limits, where the parameter estimates are obtained
from Phase I reference data. When applying these
charts, it is common to use the 3-sigma limits, given
in most textbooks (Montgomery 2013), where a tab-
ulation of the necessary chart constants can be found.
The use of the standard 3-sigma limits is justified on
the basis that the distribution of the charting statistic is

_ various values of the number of reference subgroups
normal or approximately normal. However, the chart-

m, subgroup size n = 5,10, and nominal in-control
average run-length (ICARL,) equal to 370. The results
are shown in Table 1, where PD = 100(“;%)
denotes the relative percentage difference between the
ICARL and the nominal in-control average run-length

(ICARLy), which is equal to 370.

ing statistics of the R and S charts are highly skewed. As
a result, the performance of these charts can be quite
questionable, particularly for smaller sample sizes typi-
cal in practice. To the best of our knowledge the perfor-
mances of these charts have not been fully examined in
the literature. But, these charts are critical in practical
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Table 1. The ICARL and PD values for the estimated 3-sigma limits of the two-sided Phase Il dispersion charts; for n = 5,10; ICARL, = 370,

and various values of m.

R chart with o, estimator R/d, (n)

S chart with o, estimator §/c4(n) S chart with o, estimator Sp

n m ICARL PD ICARL PD ICARL PD
5 5 4665 161 745 101 668 80
10 1000 170 570 54 523 4
20 422 14 423 14 399 8
30 332 —-10 365 -2 349 -6
50 278 —-25 317 —14 308 -1
100 245 —34 282 —24 278 —25
500 222 —40 256 —31 256 =31
10 5 710 92 624 68 592 60
10 478 29 551 49 530 43
20 343 -8 469 27 456 23
30 300 —-19 429 16 421 14
50 269 -27 393 6 388 5
100 248 —-33 363 -2 361 -3
500 233 —-37 339 -8 339 -9

Let us consider first the R chart. This chart uses
the average range estimator R/d,(n) for the unknown
in-control standard deviation (o), where d,(n) is the
unbiasing constant assuming the normal distribution
(Montgomery 2013) and R is calculated from the m
independent Phase I subgroup ranges Ry, R, ..., Ry.
For n = 5, in Table 1, it can be seen that the ICARL
values differ substantially from the nominal value, as
the absolute PD values range from 10 (for m = 30)
to 1161 (for m = 5). Note that a PD value greater (or
smaller) than zero indicates that the ICARL value is
greater (or smaller) than the nominal value 370. Both
cases are undesirable. It can also be observed that
for m > 30, the PD values are negative, which means
that increasing the number of reference subgroups m
exacerbates the false alarm rate (FAR). Similar results
are found for the S chart that uses the Phase I esti-
mator S/cy(n) = > Si/mcy(n), where cy(n) is the
unbiasing constant assuming the normal distribution
(Montgomery 2013) and the S chart that uses the

“pooled” estimator S, = /> ", S?/m, respectively,

where S1, S,, ..., S,, denote the standard deviations
of the m Phase I reference subgroups. Note that the
“pooled” estimator is not an unbiased estimator of oy.
We use this estimator because the unbiasing constant
cs(m(n — 1) 4+ 1) is already 0.9876 when m, n =5, and
it gets even closer to 1 as m and or n increase (0.9975
for m = 25 and n = 5). Therefore, for all practical
purposes this constant is indistinguishable from 1 and
hence it is sufficient to use the estimator S,. The reader
is also referred to Mahmoud et al. (2010), where S,
and S,/cy(m(n—1) + 1) are compared and shown
to be practically equal in terms of their probability

distributions and mean squared error (MSE). For
n = 10, in Table 1, the PD values are somewhat better
than their counterparts for n = 5, but they are still
unacceptable.

Based on these results, the standard estimated
3-sigma charts for dispersion cannot be recommended
to monitor the dispersion in practice. This is an issue
for anyone who uses these control limits available in
most textbooks (Montgomery 2013). In fact, most
of the commercial software seem to use these same
(incorrect) limits. An alternative approach is to use
probability limits instead of the classical 3-sigma limits
(Diko, Chakraborti, and Graham 2016). This mitigates
this issue, but does not solve it entirely. Indeed, Mont-
gomery (2013) mentions the use of probability limits
and refers to some tables in Grant and Leavenworth
(1986), but it is not clear whether or not these proba-
bility limits are commonly used in practice. Woodall
(2017) advocates the use of probability limits for the
dispersion control charts. For a specified nominal FAR
(denoted by @ = « ) such as 0.0027 or ICARL, = 370,
the probability limits may be constructed using the
exact distribution of the charting statistic. This will be
discussed in more detail later. As an example, Table 2
shows the ICARL and the PD values for the two sided R
and the S charts with the estimated probability limits,
for various values of m, n = 5, 10 and ICARL, = 370.

It can be seen that now the PD values range from
—29to 0 and —32 to —1 for n = 5 and n = 10, respec-
tively, and they approach zero as m increases, as one
might expect (Chen 1998). This means that the dif-
ference between the ICARL values and the nominal
ICARL, = 370 value is not as bad as what was observed
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Table 2. The ICARL and PD values for the two-sided Phase Il R and S charts with estimated probability limits for various values of m; n =5,

10; and /CARLy = 370.

R chart with o, estimator R/d, (n)

S chart with oy estimatorf/c4 (n) S chart with o, estimator Sp

n m ICARL PD ICARL PD ICARL PD
5 5 269 -27 270 —-27 264 —-29
10 302 —18 302 —18 298 —-19
20 327 -1 328 —-n 325 —12
30 334 —10 339 -8 332 —10
50 339 -8 350 -5 337 -9
100 349 -5 359 -3 348 -6
500 368 0 368 0 368 0
10 5 252 —-32 252 —-32 254 =31
10 289 —22 289 —-22 291 —-21
20 319 —14 319 —14 320 —14
30 332 —10 332 —10 333 —10
50 345 -7 345 -7 345 -7
100 357 —4 357 —4 357 —4
500 367 -1 367 —1 367 -1

in Table 1. It also means that even though the situation
has improved over using the 3-sigma limits, unless m
is very large, the estimated probability limits may not
lead to the desired ICARLy. The other thing to note is
that the PD values are remarkably similar for all three
estimators.

Thus, from a practical point of view, an impor-
tant problem still persists. If the number of Phase I
subgroups at hand m is small to moderate, even the
estimated probability limits of the R and S charts do not
quite maintain an advertised nominal in-control aver-
age run-length. Hence, for a given nominal ICARL,
and a given amount of Phase I data, this article derives
and tabulates new (correct) charting constants, which
account for the effects of parameter estimation. We
achieve this by setting the ICARL expression equal
to some specified nominal value ICARL, and then
evaluating the resulting equation for o = a(m, n).
The in-control (IC) and out-of-control (OOC) average
run-length performance of the corrected probability
limits charts are calculated and compared to the IC
and OOC average run-length performance of the
uncorrected probability limits.

This article is organized as follows. We begin by
describing the classical (uncorrected) 3-sigma limits
and probability limits Shewhart control charts for dis-
persion. Next, we derive new (corrected) control limits
based on a numerical and an analytic method. Next, a
data set from Montgomery (2013) is used to illustrate
and discuss the differences between the corrected and
uncorrected control limits. Following this, we evaluate
the OOC behavior of the newly proposed probability
limits. Finally, a summary and recommendations are
provided in the last section.

Classical model for probability limits for the
dispersion control charts

Suppose that m subgroups (samples) each of size n are
available after a successful Phase I analysis to estimate
the unknown parameters and set up the control limits
that are to be used in prospective Phase II monitoring.
Suppose that the data are from normal distributions
and as before, let Ry, R;, ..., R, denote the ranges
and S, S,, .. .., S,, denote the standard deviations of
the m Phase I subgroups. As noted earlier, the three
commonly used estimators of the unknown in-control
process standard deviation oy are (i) 6o; = R/d»(n),
based on the average range, (ii) 6, = 3/ c4(n), based
on the average standard deviation, and (iii) 6p3 = S,
the pooled estimator.

Thus, using each of the three Phase I estimators
above, the three most popular Phase II Shewhart stan-
dard deviation charts are (1) the R chart using the
charting statistic T;; = R; with the unbiased estimator
601> (2) the S chart using the charting statistic T, = S;
with the unbiased estimator &y, and (3) the S chart
using the charting statistic T;3 = S; with the estimator
63 respectively. Note that for all three of the charts, we
let i=m+1,m~+2,... to emphasize that these are
Phase II charts, where prospective monitoring starts
from the (m + 1)th sample having collected m Phase I
samples. The subscript j = 1, 2, 3 is used to distinguish
between the 3 charts. For chart j, we also write the unbi-
ased Phase I estimator Gy as 6y; = w;/&oj, where w; is
a biased Phase I estimator based on the charting statis-
tic (e, R, S,and Sp)and & is its corresponding unbi-
asing constant (with g9, = d,(n), €02 = ca(n), €03 =
¢y (m(n—1)+ 1) =~ 1 shown in Appendix A). Note
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also that even though Mahmoud et al. (2010) recom-
mended the estimator S,, we consider all three esti-
mators here for completeness. It also allows us to con-
trast our results with those that are found in the current
literature.

In general, the control limits of the jth Phase II She-
whart chart for the process dispersion, with a charting
statistic T;; j» can be written as

UéL = Un,a,jwj
LéL = Ln,a,]’w]‘, [1]

where U, o j and L, 4, ; are charting constants. These
charting constants are based on the 100*{1 — «/2}th
and the 100*{«/2}th percentiles of the in-control dis-
tribution of the Phase II charting statistic T;;, respec-
tively, and are given in Appendix A. Note that for con-
venience, the constant o, that divides w; to form the
unbiased estimator, is taken to be a part of each of the
charting constants U and L.

Probability limits are based on the in-control dis-
tribution of the charting statistic T; j. To this end, note
that (i) the in-control distribution of T;; = R; is that
of the random variable Wo, where W is the sample
relative range, which has a well-known distribution
for a normal population (see for example, Gibbons
and Chakraborti, 2010) (ii) the in-control distribution
of Tj and T3 are both that of the random variable

Jx2 /~/n—1, where x2 | is a chi-square variable
with n-1 degrees of freedom.

In the Introduction, we argued that to overcome
some of the issues associated with using the R and S
charts with the estimated 3-sigma limits, the R and S
charts with the estimated probability limits are recom-
mended. In this case, the charting constants, U,  ; and
L, «,j are based on the percentiles of the exact distribu-
tions of R; or S;. For the R chart, the charting constants
aregivenby U, 4.1 = FM:; l(n‘;/ 2andL, 4 = F;vz(;/)z ,where
By, and Fy, , , denote the 100*{1 — «/2}th and the
100*{«r/2}th percentiles of the in-control distribution

of the sample relative range W, respectively. Given
these charting constants plus w;
the control limits by substituting them into Ed. [1].
Similarly, the estimated probability limits for the S
charts (i.e., S; and S3) are obtained by substituting

(02 =5, Upgy = Yot p o et
2 s n,a,2 Vn—1c(n)’ na2 = ﬁu(ﬂ)

=R, we can find

NG 7
and (w3 = Sp, Upas = %’ Lygs = \/Xu/l.n—l)

for S, and S;, respectively, in Eq. [1]. However, these
charting constants were originally intended for use
with the oy known probability limits, and are thus
incorporated using the nominal FAR « = «y. Fur-
thermore, they only depend on the Phase II charting
statistic, and not on the Phase I estimator or the
Phase I sample size. Hence, they are not the appro-
priate constants in the case that o is unknown. Since
these charting constants do not depend on m, they
do not properly account for the effect of parameter
estimation. In the next section we will correct these
charting constants and so their control limits.

The R and S charts with estimated probability
limits and corrected for the effects of
parameter estimation

To properly account for the effects of parameter estima-
tion while using the Phase II charts, that is, to account
for the effects of using m Phase I samples each of size
n to estimate the in-control standard deviation oy, we
propose to use the following probability limits

UCL = na(m n),jWj
éL = wj
LCL = Ln,a(m,,,),ju)j. [2]

Note that the above control limits are similar in form
to those in Eq. [1] except that here we denote « as
a(m, n) to emphasize that this probability should be a
function of both m and n, to make the correct charting
constants L and U depend on both of m and #, and thus
account for parameter estimation.

In order to find the charting constants, we need to
derive an expression for the unconditional in-control
average run-length (ICARL). This ICARL depends on
the in-control distributions of both the Phase I esti-
mator (w;) and the Phase II charting statistic (T;;). In
our derivations, we assume that w ilo follows a scaled

0]“0]4/

OJ
chi-square random variable with by; degrees of free-

chi-square distribution ———", where X,; denotes a

dom. Formulae and or values for the constants ay;, bo;
and & are given in Appendix A, and are based on the
well-known Patnaik (1950) approximation (see Chen
(1998) for the explicit expressions). Note that condi-
tional on the observed value of the Phase I estimator
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w; (or equivalently, on the realization of Xy; ), the con-
ditional in-control (o = oy ) Phase II run-length dis-
tribution is geometric. The success probability of this
distribution is equal to the conditional false alarm rate
(denoted CFAR), which is defined as

CFAR;

_p (LéL < T < UCL|o = 00)

= (L,,a]u)] <Tl]<Una]w]|O'—O’0)

Wwj
—lo =0y
o

j 1]
—P Lna ] < Un,a,]'

( Soja()],/X()j - E

= CFAR; (Xoj, m, n,a) . (3]

Next, using the conditioning-unconditioning
method in Chakraborti (2000), where we integrate
over all possible values of Xp;, the unconditional
ICARL of the jth Phase II Shewhart dispersion chart
can be obtained as

ICARL; (m, n, a)

= foo [CFAR]- (x, m, n, a)]_lfxfo_ (x) dx, [4]
0 j

where fx denotes the probability density function
(pdf) of Xo 7

We start with the numerical approach, which
solves the equation ICARL j(m, n, a(m, n)) = ICARL,
numerically for o (m, n).

The numerical approach

The numerical approach finds «(m, n) numerically
and uses it to correct the uncorrected constants in
Montgomery (2013) as follows:

(i) specifies the values of m, n at hand and the
desired nominal ICARLg;

(ii) uses the exact in control distributions of the
charting statistics to (1) define the control
limits and (2) determine the expressions
for the CFAR;(Xo;, m,n,a(m,n)) and the
ICARL(m, n, a(m, n));
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(iii) numerically solves the equation fooo [CFAR;
(x, m, n, a(m, ”))]_lijo. (x)dx = ICARL, for
the corresponding o (m, TJI) value; and

(iv) usesa(m, n) to correct the uncorrected charting
constants in Montgomery (2013).

For example, for the R chart, recall that L,, o (m,n),; =

vax.(x(m.n)/Z _ val,l—u(m.n)/Z
&) and Un,a(m,n),j =" am - Consequently,
CFAR; becomes
CFAR, (Xo1, m, n, a (m, n))
w; R
=1-P Ln,oz(m,n),l_ < —
o o

w1
< Un‘a(m,n),1;|a = 0y

ao1+/Xo1
= 1 - Fvvn F‘/Vn,l—a(m,n)/Z—
Vbor
ao1v/Xo1 )
Voo )’
where Fy, represents the cumulative distribution func-

tion (CDF) of the sample relative range. Using this
equation to solve

+ Fvvn (EA/n.a(m,n)/Z

/0 [CFAR; (x, m, n, a (m, n))]’lfxbzoj (x) dx
= ICARL, (5]

will result in the required corrected charting constants.
For example, with m = 5, n = 5, and ICARL, = 370,
the value o(m, n) that satisfies the above equation is
0.001949. This value is then used to correct the uncor-
rected charting constants for the estimated probabil-
ity limits Phase II Shewhart R chart. The corrected
charting constants for the Phase II R chart with 6y, as
Phase I estimator, are given by

U _ FVVS,I—O{(S.S)/Z _ FVV5,1—0.001949/2
5,0(5,5),1 — —
&3 dy(5) d(5)
5.49281
= = 2.3616
2.32593
and
L _ FWs.a(s.S)/z _ FWS.0.001949/2
5,a(5,5),1 — —
©3 d(5) dy(5)
0.36499
= = 0.1569,
2.32593

respectively. For other values of n, m and ICARL, the
values of a(m, n), U, a(m.ny.1 and Ly q(m.n).1 are given
in Table 3. The R codes for finding all these values are
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Table 3. New corrected charting constants for the Shewhart R and S charts when parameters are estimated from m Phase | subgroups,
m = 5,10, 20, 25, 30, 50, 100, 300, 500 and 1000 each of subgroup size n = 5, 10 for a nominal in-control ARL = 370 and 500.

Numerical Approach Analytical Approach
ICARLO = 370 ICARLO = 500 ICARLO = 370 ICARLO = 500
n m Chart o L U o L U o L U o L U
5 5 R-R 0.001949 0.1569 23616 0.001433 0.1451 24074 0.001686 0.1513 23832 0.001229 0.1396 24300
S-S p 0.001908 0.1489 21547 0.001402 0.1377 21939 0.001582 0.1420 2.1786 0.001149 0.1309 22188
s-S 0.001954 01593 22890 0.001438  0.1474 23306  0.001672 0.1532 23103 0.001218 0.1414 2.3527
10 R-R 0.002194 0.1617 23436 0.001615 0.1496 2.3897 0.002091 0.1598 2.3509 0.001534 0.1477 23974
S-S o 0.002166 0.1538 21383 0.001594 0.1422 21777 0.002035 0.1513 21464 0.001490 0.1398 2.1862
5-S 0.002198  0.1642 22729  0.001617 0.1519 23148 0.002082  0.1619 22803  0.001527 0.1497 23225
20 R-R 0.002384 0.1652 23310 0.001757 0.1529 23771 0.002350 0.1646 23332 0.001730 0.1522 2.3795
S-S o 0.002368 0.1573 2.1268 0.001745 0.1455 2.1662 0.002320 0.1565 21294 0.001706 0.1447 2.1690
5-S 0.002387  0.1677 22614  0.001760 01552 23033  0.002345 0.1669 22639  0.001726 0.1544 23060
25 R-R 0.002434 0.1660 23278 0.001795 0.1537 2.3740 0.002410 0.1656 23294 0.001775 0.1532 2.3756
S-S p 0.002420 0.1581 21239 0.001783 0.1463 2.1634 0.002386 0.1576 2.1258 0.001756 0.1458 2.1653
5-S 0.002435  0.1685 22587  0.001797 01560 23005  0.002406 01680 22603  0.001772 0.1554 23024
30 R-R 0.002469 0.1666 23257 0.001821 0.1542 23718 0.002452 0.1664 23267 0.001807 0.1539 23729
S-S o 0.002457 0.1587 21219 0.001812 0.1469 21614 0.002432 0.1583 21233 0.001792 0.1465 21628
5-S 0.002470  0.1691 22566  0.001823 01566 22985  0.002449 01687 22579  0.001805  0.1562 22999
50 R-R 0.002549 0.1680 23208 0.001883 0.1555 2.3668 0.002543 0.1679 23211 0.001877 0.1554 23672
S-S P 0.002542 0.1601 21175 0.001876 0.1482 2.1569 0.002530 0.1599 21181 0.001867 0.1481 21575
s-S 0.002550 01705 22522  0.001883  0.1579  2.2941 0.002541 01703 22527  0.001875 0.1577 2.2947
100 R-R 0.002619 0.1692 2.3166 0.001936 0.1567 2.3626 0.002618 0.1692 2.3167 0.001935 0.1566 23627
S-S P 0.002615 0.1613 21137 0.001932 0.1494 2.1531 0.002612 0.1612 2.1139 0.001930 0.1493 21533
s-S 0.002621 0.1717 22484  0.001936 01590 22903  0.002617 0.1716 22486  0.001934 01589 22904
300 R-R 0.002674 0.1701 23134 0.001978 0.1575 2.3594 0.002673 0.1701 23135 0.001977 0.1575 23594
S-S p 0.002672 0.1622 2.1109 0.001976 0.1502 2.1502 0.002671 0.1622 2.1109 0.001976 0.1502 2.1502
5-S 0.002674 0.1726 2.2455 0.001977 0.1598 2.2874 0.002673 0.1725 2.2456 0.001977 0.1598 22874
500 R-R 0.002685 0.1702 23128 0.001987 0.1577 2.3587 0.002685 0.1702 23128 0.001985 0.1577 2.3588
S-S o 0.002684 0.1624 2.1103 0.001986 0.1504 21496 0.002684 0.1624 2.1103 0.001985 0.1504 21496
5-S 0.002685  0.1728 22450  0.001987 01600 22867  0.002685  0.1727 22450  0.001986 01600 22868
1000 R-R 0.002695 0.17704 23122 0.001994 0.1578 2.3581 0.002694 0.1704 23123 0.001993 0.1578 2.3582
S-S P 0.002694 0.1625 2.1098 0.001994 0.1506 21491 0.002693 0.1625 21099 0.001993 0.1505 21491
5-S 0.002695 0.1729 2.2445 0.001994 0.1602 2.2863 0.002694 0.1729 2.2445 0.001993 0.1601 2.2863
10 5 R-R 0.001813 0.3481 1.9514 0.001328 0.3349 1.9840 0.001467 0.3391 1.9737 0.001057 0.3256 2.0075
S-S p 0001812 03534 17681 0.001328 03402 17931 0.001383 0.3419 17899  0.000992 03282  1.8162
5-S 0.001831 0.3638 1.8169 0.001342 0.3502 1.8427 0.001424 0.3527 1.8377 0.001024 0.3388 1.8647
10 R-R 0.002095 0.3545 1.9360 0.001538 0.341 1.9687 0.001965 0.3517 1.9428 0.001435 0.3381 1.9759
S-S p 0002095 03598 17561 0.001538 03463 17813 0.001921 03560 17633  0.001400 03424 17889
5-S 0.002107 0.3702 1.8050 0.001547 0.3564 1.8309 0.001942 0.3665 1.8119 0.001416 0.3525 1.8382
20 R-R 0.002319 0.3590 1.9251 0.001708 0.3455 1.9577 0.002280 0.3583 1.9270 0.001675 0.3447 1.9597
S-S , 0002320 03644 17477 0.001708 03508 17729  0.002256 03632 17500  0.001656 03495 17754
S-S 0002327 03748 17966 0.001713 03608 1.8224  0.002267 03736 17988  0.001664 03596  1.8248
25 R-R 0.002378 0.3602 1.9224 0.001752 0.3466 1.9550 0.002352 0.3597 1.9236 0.001730 0.3461 1.9563
S-S , 0002377 03655 17457 0.001751 0.3519 17708  0.002333 03647 17472 0.001715 0.3510 17725
S-S 0002384 03759 17945  0.001756 03619  1.8204 0002341 03751 17960 0.001721 03611  1.8220
30 R-R 0002420 03610 19206 0001783 03474 19531  0.002403 03606 19213 0001769 03470  1.9540
S-S , 0002420 03663 17442 0001783 03527 17694  0.002387 03657 17453 0.001756 0.3521 1.7706
5-S 0.002425 0.3767 1.7930 0.001787 0.3627 1.8189 0.002394 0.3761 1.7942 0.001762 0.3621 1.8201
50 R-R 0.002516 0.3627 1.9164 0.001857 0.3492 1.9488 0.002512 0.3627 1.9166 0.001852 0.3491 1.9491
S-S , 0002516 03681 1.7410 0.001857 03545 17660  0.002502 03679 17414 0.001845 03542 17666
S-S 0.002520 0.3785 1.7898 0.001860 0.3645 1.8156 0.002506 0.3783 1.7902 0.001848 0.3642 1.8161
100 R-R 0.002602 0.3643 1.9127 0.001922 0.3507 1.9452 0.002602 0.3643 1.9127 0.001922 0.3507 1.9452
5-5, 0002602 03697 17381 0.001921 03560 17633 0.002597 03696 17383  0.001918 03559 17634
$-S 0.002603 0.3801 1.7870 0.001924 0.3661 1.8127 0.002599 0.3800 1.7871 0.001920 0.3660 1.8129
300 R-R 0.002667 0.3654 1.9101 0.001973 0.3518 1.9424 0.002668 0.3654 1.9100 0.001973 0.3518 1.9424
S-S o 0.002668 03708 17361 0.001972  0.3571 17611 0.002666 03708 17361 0.001971 0.3571 17611
5-S 0.002668 0.3812 1.7849 0.001973 0.3672 1.8106 0.002667 0.3812 1.7849 0.001972 0.3672 1.8106
500 R-R 0.002681 0.3657 1.9095 0.001983 0.3521 1.9418 0.002681 0.3657 1.9095 0.001983 0.3521 1.9418
S-S o 0.002681 0.3710 17356  0.001983  0.3574 17607  0.002680  0.3710 17356  0.001983  0.3574 1.7607
S-S 0002681 03815 17844  0.001984 03675 18101  0.002681 03815 17844 0001983 03674 18102
1000  R-R 0002692 03659 19090 0.001993 03523 19414  0.002692 03659 19091  0.001992 0352 19414
S-S o 0.002692 03712 17353 0.001992 03576 17603  0.002691 0.3712 17353 0.001991 0.3576 1.7603
5-S 0.002692 0.3817 1.7841 0.001992 0.3676 1.8098 0.002692 0.3817 1.7841 0.001991 0.3676 1.8098
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given in Appendix B as an example for the other codes
used in this article.
Similarly, recall that for j = 2 we have L, o(m.n) 2 =

NZE Vi
a(m,n)/2,n—1 N femmiprl and that

and Un,a(m,n),Z =

cy(n)a/n—1 cy(n)s/n—1
S N Xr%—l .
Y This can be used to calculate CFAR, as

CFAR, (X()z, m,n, o (m’ 7’1))

wy S
=1-P Ln,a(m,n),Z_ < —
o o
Wy
< Un,a(m,n),Z_la = 0y
o
2
2 a5 X02
=1- FXil (Xl—(x(m,n)/Z,n—l b
02

2
2 ag Xoz
+F;> <Xa(m,n)/2,n—1 by )
02

which can in turn be used to determine the required
charting constants. For example, for j = 2, m = 5,
n = 5, and ICARL, = 370, the value of «(m, n) that
satisfies Eq. [5] is 0.001954. Thus, the corrected chart-
ing constants for the Phase II S chart with ¢, as Phase
I estimator, are calculated as

2 2
U \/Xl—a(S,S)/Z,n—l \/X170.001954/2,571
SeEDET Vn—1  0.9400./5 — 1
+/18.5184

0.94004/4

= 2.2923

And

2 2
L \/Xa(s,s)/z,nq \/X0.001954/2,5—1
POV Ly —1 51
+/0.0897
= 0.1584,

0.94004/4

respectively. For other values of n, m and ICARL, the
values of a(m, n), Uy o(m,n),2 and Ly o(m.n),2 are given

in Table 3.
/2
X:x(m,n)/Z.n—l

Finally, for j = 3 we have L, 4 (m.n).3 =

Vn—1
2 2
N - NI .
and U, 43 = % , and that g ~ Till This

can be used to calcgl_ate CFAR; as

CFAR; (Xo3, m, n, a (m, n))

wy S
=1-P Ln,a(m,n),?:_ < —
o o

w3
< Un,a(m,n),3?|0 = 0p
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X
2 03
=1-F: (Xl—a(m,n)/Z,n—lm>

X
5 02
5, (Koot )

which can be used to determine the required charting
constants for this case. For example, for j = 3, m =5,
n=>5,and ICARL, = 370, the value « (m, n) that satis-
fies Eq. [5] is 0.001908 Therefore, the corrected chart-
ing constants for the Phase II S chart, with 6y; as Phase
I estimator, are

2 2
\/Xl—a(S,S)/Z,n—l \/X1—0.001908/2,5—1

Y T 51
A/18.5712
= — =2.1547
N2
and
2 2
\/Xa(S,S)/2,an \/X0.001908/2,5—1
Ls o(5,5),2 = =

Jn—1  J5-1
/0.8866

= —— = 0.1489,
V4
respectively. Again, Table 3 gives other values of
a(m,n), U, amn),3 and L, om, n), 3 for different com-
binations of n, m and ICARL,.

From Table 3, it is interesting to see that
when m increases, as one might expect, the
a(m, n), Una(mn),j» a0d Ly q(m,n), j values converge to
their oy known counterparts ag, Uy ap,j, and Ly o, js
respectively.

The analytical approach

While the numerical solutions outlined above are use-
ful, it is interesting to consider an approximation to
the charting constants based on the recent work of
Goedhart, Schoonhoven, and Does (2016) and Goed-
hart et al. (2017), which is based on a first-order Taylor
approximation of the ICARL. The numerical approach
of finding « (m, n) involves numerical integration and
solving some nonlinear equations. However, it is also
possible to find o« (m, n) using a more easily imple-
mentable but approximate method. Our approach is to:
(i) specify the values of m, n at hand and the desired
nominal ICARL;
(ii) unify the control charts for dispersion under one
chi-square framework, which assumes that the
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charting statistic T;; is either exactly or approx-
imately distributed as a scaled chi-square ran-

£;a;o /Xb

dom variable 7, , where Xb is a chi-square

random variable with b; degrees of freedom, ¢;
equals the expectation of Tij, and a; is some con-
stant. Formulae and or values for the constants
aj, bj, and ¢; are given in Appendix A, and are
based on the Patnaik (1950) approximation, sim-
ilar to w3
(iii) use the above chi-square framework to (1)
define the control limits and (2) determine the
expressions for the CFAR;(Xyj, m, n, o) and the
ICARL;(m, n, a);
(iv) obtain an analytical expression for o« (1, n); and
(v) use the resulting value of «(m, n) to adjust the
uncorrected charting constants.
Using the approximations in step (ii), we can write
CFAR; more explicitly as

CFAR] (X()j, m, n, (X)
=1 —P(L,,,a,jwj < T,J < Un,a,jwj|a = O'())

wj T w;
=1-—-P Ln,a,j—<—<Una] lo = o9
o o

Sojaoj,/Xoj a]\/ Xb

ani /X
]

=1—P|Lya,;

agijO]
e 1 — P ((Ln,a ]) ;?170] l?j
0
e a?boj
2
aj X(f/z,bj a;b;Xo;

A

Vb ajboj

aOJX()]
= _Fx,f (Xl —a/2,b; b—oj)

aOJXOJ
+Fx§, (Xa/zb bo; ) (6]

where F,» represents the CDF of a chi-square variable
J

with b; degrees of freedom. Consequently, the approx-
imated ICARL ; can be calculated as

ICARL; (m, n, a)
_ _ j
_/0 |:1 F2<X1 a/zb]b )

-1
+F N p wds 1)
xfj Xa/2 b; by, xﬁoj

where fx represents the probability density function

(PDEF) of a chi- square variable with b, ; degrees of free-
dom.

The next step is to determine an analytical
expression for a(m,n). In order to do this, we
consider a first order Taylor approximation of
ICARLj(m, n,a(m,n)), around ay= 1/ICARLy,
where « is the nominal FAR as before. This gives the
approximation

ICARL; (m, n, a (m, n))
= ICARL] (m, n, Ol())

dICARL; (m, n, o = o)
+ (o (m, n) — o) o :
(8]

Since we want ICARL(m, n, a(m, n)) = ICARL,,
which equals a—lo, we solve

1
— =1ICARL; (m, n, a0 = atg)
Qp

dICARL; (m, n, o = o)
da

+ (a (m, n) —a)
[9]
for a(m, n). This yields the approximation

1/ag — ICARL; (m, n, « = ag)

d[ICARL;(m,n,a=ay)]
da

oa(m,n) = + ap.

[10]

d[ICARL;(m,n,a)]

The next step is to determine =
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Table 4. The ICARL and the PD values for the R and S charts with the charting constants calculated analytically (ANA) and numerical (NUM)

for n =5, ICARLy = 370 and various values of m.

R chart with o, estimator R/d, (n)

S chart with o, estimator S/c, (n)

S chart with o, estimator Sp

m ICARL NUM PD ICARL ANA PD ICARL NUM PD ICARL ANA PD ICARLNUM PD ICARL ANA PD
5 370 0 426 15 370 0 431 17 370 0 444 20
10 370 0 388 5 370 0 390 5 370 0 393 6
20 370 0 375 2 370 0 376 2 370 0 377 2
25 370 0 373 1 370 0 374 1 370 0 375 1
30 370 0 372 1 370 0 373 1 370 0 374 1
50 370 0 37 0 370 0 3N 0 370 0 372 0
100 370 0 370 0 370 0 370 0 370 0 370 0
500 370 0 370 0 370 0 370 0 370 0 370 0

From the obtained equation for ICARL;(m, n, a) it
follows that, in order to find its derivative, we need the
results

2
ka;i,b

Cda _[zfXZ (Xf_%,bﬂil and

Yoo g ()]

These are obtained using the fact that [G™!]" (x) =
[G'(G7'(x))]"!, where G and G’ denote the CDF of
a continuous random variable and its derivative (the
PDF), respectively; G~! denotes the inverse of the CDF
G and [G7!] denotes the first derivative of G™! (see
for example, Gibbons and Chakraborti, 2010). Thus, we
find

d[ICARL; (m,n, a)]
do

= —|1—F 2 2
A |: le]_ (Xla/Z,bj b()] )

2 a(z)jx - d
+FX§j Xa/Z’ijj Qfxﬁo, (x)dx, [11]

]

Where
2 a(z)-x 2 aé-x
fx,fj <X1—a/z,bijj> ijj <Xa/z,bj7fj> aéjx
2 2 byi
zfx,fj (Xl—oz/Z,bj> zfxsz (Xa/z,bj> 0j

With this result we have all the pieces required to

Q=

calculate an approximation to « (m, n) from Eq. [10].
Once a(m, n) is found, we can again use it to correct
the charting constants for the Montgomery probability
limits given earlier. The approximate values of « (m, n),
Un,a(m,n), j» a0d Ly, o (m,n), j» for each chart (j = 1,2,3), for
different combinations of values of m, n and ICARL, =
370 and 500 values are tabulated in Table 3.

Note that this approximate result is more general
than the provided numerical solutions. In fact, it can
be generalized to any combination of Phase I and
Phase II estimators. This can be done by determining
the required constants a, b, ay, and b, based on the Pat-
naik (1950) approximation, as described in steps (i) and
(ii) of our approach. Moreover, any monotonic increas-
ing function g(o) of o can be considered, since in that
case P(LCL < T; < UCL) is equivalent to P(g(LCL) <
g(T;) < g(UCL)). Hence, our approach can also be
applied to S? and log(S) charts.

Comparing the analytical solutions with the numeri-
cal solutions it is seen that the approximations from the
analytical method are quite accurate and the accuracy
increases for higher values of m, as is desirable.

In order to compare the charting constants obtained
by the numerical and the analytical methods, we calcu-
lated the ICARL j(m, n, a(m, n)) values for each chart,
and ICARL, = 370; n = 5 and for various values of m.
Table 4 shows the results including the PD values rela-
tive to 370. As expected, for the numerically calculated
probability limits, the ICARL values are exactly equal
to the nominal value 370. On the other hand, it can
be seen that for the analytically calculated probability
limits, except for m = 5, the ICARL values are not
more than 6% above the nominal value 370. It can also
be seen that as m increases, the ICARL values corre-
sponding to the analytical constants converge quickly
to 370. This shows that the behavior of the numer-
ically and analytically corrected probability limits is
similar.

A numerical illustration

In this section, we illustrate the R and S charts with the
estimated 3-sigma limits, the uncorrected probability
limits and the corrected probability limits given in this
article. We use a data set from Montgomery (2013)
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Table 5. Charting constants and control limits for the R chart when n = 5; m = 5,25; ICARLy = 370 and R = 0.3252.

m=25
L u LCL=LR UCL =UR Width
3-sigma limits 0 2.1145 0 0.6876 0.6876
Uncorrected probability limits 0.1705 23119 0.0555 0.7518 0.6963
Corrected Probability limits (Analytical Approach) 0.1656 23294 0.0539 0.7575 0.7036
Corrected Probability limits (Numerical Approach) 0.1660 2.3278 0.0540 0.7570 0.7030
m=>5
L u [CL=LR UCL=UR Width
3-sigma limits 0 2.1145 0 0.6876 0.6876
Uncorrected probability limits 0.1705 23119 0.0555 0.7518 0.6963
Corrected Probability limits (Analytical approach) 0.1513 23832 0.0492 0.7750 0.7258
Corrected Probability limits (Numerical approach) 0.1569 2.3616 0.0511 0.7676 0.7165

on the measurements of the flow width of a hard bake
process. This is a popular data set used in the literature.
It contains m = 25 Phase I subgroups, each of size n
= 5where R = 0.3252, S=0.1316,and S, = 0.1390.
All the Phase II control limits were constructed to
achieve the nominal ICARL, = 370. Tables 5, 6, and 7
show the calculated limits of the Phase II R and S charts
together with their corresponding charting constants
L and U. To examine the effect of the number of Phase

I subgroups, these tables also include the case m = 5.
The charting constants for the corrected limits have
been taken from Table 3, while the charting constants
for the 3-sigma limits and the uncorrected probability
limits have been calculated using their formulas in
Appendix A.

For m = 25, it can be seen that the difference,
in width, between the uncorrected and the corrected
probability limits, is small. This is as expected, since

Table 6. Charting constants and control limits for the S chart when n = 5; m = 5,25; ICARLy, = 370 and § = 0.1316.

m=25
L u ICL=LS ucL=Us Width
3-sigma limits 0 2.0890 0 0.2749 0.2749
Uncorrected probability limits 0.1730 2.2442 0.0225 0.2953 0.2728
Corrected Probability limits (Analytical Approach) 0.1680 2.2603 0.0221 0.2975 0.2754
Corrected Probability limits (Numerical Approach) 0.1685 2.2587 0.0222 0.2973 0.2751
m=5
L u ICL=1S ucL=Us Width
3-sigma limits 0 2.0890 0 0.2749 0.2749
Uncorrected probability limits 0.1730 22442 0.0225 0.2953 0.2728
Corrected Probability limits (Analytical Approach) 0.1513 23832 0.0199 0.3136 0.2937
Corrected Probability limits (Numerical Approach) 0.1593 2.2890 0.0210 0.3012 0.2802

Table 7. Charting constants and control limits for the S chart when n = 5; m = 5,25; ICARL; =370 and S,, = 0.1390.

m=25
L U LCL = LSp UCL = USp Width
3-sigma limits 0 1.9637 0 0.2732 0.2732
Uncorrected probability limits 0.1626 2.1096 0.0226 0.2935 0.2709
Corrected Probability limits (Analytical Approach) 0.1576 21258 0.0219 0.2957 0.2738
Corrected Probability limits (Numerical Approach) 0.1581 21240 0.0220 0.2955 0.2735
m=>5
L U LCL = LSp UcCL = USp Width
3-sigma limits 0 1.9637 0 0.2732 0.2732
Uncorrected probability limits 0.1626 2.1096 0.0226 0.2935 0.2709
Corrected Probability limits (Analytical Approach) 0.1419 21788 0.0197 0.3029 0.2832
Corrected Probability limits (Numerical Approach) 0.1489 2.1547 0.0207 0.2997 0.2790
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the number of subgroups m = 25 is moderately large,
and so it improves the performance of the uncor-
rected probability limits. In addition to this, it can
also be seen that the corrected probability limits are
a little wider than the uncorrected probability limits.
This can be seen even more clearly from the tables
constructed assuming m = 5. Since the problem with
uncorrected probability limits is their high uncondi-
tional false alarm rate, widening these control limits
helps alleviate the problem.

To summarize, the classical estimated 3-sigma lim-
its should not be used in practice, because the nor-
mal approximation to the distribution of the sample
range and sample standard deviation is poor. Conse-
quently, as seen from Tables 5-7, the classical esti-
mated 3-sigma limits cannot detect process improve-
ments (only deterioration; since the lower control limit
is set to be equal to 0 for subgroup sizes n < 6 ). The
uncorrected estimated probability limits can still be
used if m is large (say m > 20 ). However, it is better to
use the corrected charting constants proposed in this
article, because they guarantee the expected nominal
ICARL performance for the value of m and n that one
may have. Finally, the analytical method of finding the
corrected charting constants is a good approximation
to the numerical method.

Out of control performance

The numerical control limits provided here guarantee
that the in-control average run-length of the charts is
equal to the nominal value of 370 or 500. However,
since the corrected limits are wider than the uncor-
rected probability limits, it is of interest to see whether
the correction impacts the out-of-control performance.
It may be noted at the outset that such a compari-
son is not really fair since the in-control performance
of the uncorrected limits can be far worse than the
nominal.

In order to make this comparison, we compute the
ARL for the considered dispersion charts with n = 5,
for a number of values of the ratio ( A ) between the
Phase Il standard deviation ( o ) and the in-control pro-
cess standard deviation ( oy ), that is, for A = o /o). In
other words, we compute points of the ARL profiles of
the charts in different cases, where A = 1 corresponds
to the ICARL, and X # 1 corresponds to the out-of-
control ARL (OOCARL). This is done for several values
of m. The results are given in Table 8.
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The ARLs with the uncorrected and the corrected
limits could be easily computed from Eq. [3] by just
replacing CFAR; by the general conditional probability
of an alarm, CPA j- Next, using A = o /0oy, and keep-
ing in mind that « = « (m, n), we calculate CPA j for
the corrected limits as

_ ( wj T wj)
CPAj=1—P(Lygj— < — <Upa,j—
o o o

£0jd0jy/Xoj T
S e
J

- '80ja0j,/X0j
e )x b()]
= CFAR; (Xoj, m, n,at, 1) .

Using the known distributions of T;;/o this gives

CPA; (Xo1, m, n, o, 1)

(1 Wy
=1- FWV, Un,a,l_ + FWV, Ln,(x,l_
)LO’() )xO’()

a1~/ Xo1
a1~/ Xo1

CPA; (Xoz2, m, n, o, A)

2
-1 F wy n—1
=1—-r2 Un,a,zT
0
2
1B ((Lpe 2t
Xoy n,a,2 )LGO

2
2 a5, X02
=1- Fxﬁ,l (Xl—a/z,n—l *2byy )

2
2 a5, X02
+ B, (Xa/z,n—l A2byy >

:1_FV\]YI (I:VVVI

o5 (5

and

CPA; (X3, m, n, a, 1)

2
w3/n—1
SR (=)

2
wi/n—1
o (=)

)\.O'()

2
N 2 a3 X03
=1- FXnZ—l <X1—a/2,n—1 A2bos )
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2
2 a5, X03
+Fx3,1 (Xa/z,n—l A2bos ) .

These values can in turn be used as described in the
numerical approach, to determine the unconditional
ARL as

ARLj (m,n,a, )
o -1
= / [CPAj (x,m,n, «, A)] fx§ (x) dx,
0 0j

where again x is the value of the random variable Xj;.
Formulae for the CPA; and ARL; of the uncorrected
limits are the same as above, except that o is used
instead of a(m, n).

Table 8 shows the ICARL (A = 1), the OOCARL
(A # 1) and the PD values associated with the uncor-
rected and the corrected estimated probability limits
based R and S charts, for n = 5, 10 and various values
of A and m. The PD values measure the percentage
difference between the unconditional ARL values for
the estimated o, case and the nominal unconditional
ARL values. Note that the results for the uncorrected
estimated probability limits have been thoroughly
discussed by Chen (1998). From Table 8 it can be seen
that when the process is IC and oy is estimated, using
the uncorrected charting constants to construct the
uncorrected probability limits gives unconditional
ARL values that are up to 29% lower than the nominal
370 (corresponding to the oy known case) for n = 5
and 32% lower than the nominal 370 (corresponding to
the o known case) for n = 10, respectively. This means
alot of false alarms. Using the corrected (new) charting
constants to construct the probability limits yields the
nominal value 370, which is desirable. However, this
also leads to larger unconditional ARL values for the
corrected charts compared to the uncorrected charts
when the process is OOC. Interestingly, this difference
is smaller for decreases in variability (A < 1) than for
increases (A > 1). In general, both the corrected and
uncorrected charts have more difficulty in detecting
decreases in variability than increases. It can also be
seen that the effect of using either the corrected or
uncorrected estimated probability limits is a function
of m. In general, increasing m diminishes the effects
of parameter estimation on both the IC and OOC
unconditional ARL performance for both uncorrected
and corrected probability limits, as expected.

To summarize, the corrected estimated probability
limits provide a much better IC performance than the
uncorrected limits, as it yields the nominally specified

ICARL performance. However, this generally comes
with a deterioration of the OOCARL performance rel-
ative to the uncorrected limits. Note that this tradeoft
between IC and OOC performance can be altered by
adjusting the value of ICARL,.

Summary and conclusions

Shewhart control charts are often used to monitor
process dispersion. However, the standard versions
of these charts assume known in-control parameters,
which is typically not the case in practice. When the
parameters are estimated to set up the control lim-
its, both the IC and OOC performance of the con-
trol charts are affected (Chen 1998). In this article, we
have provided corrected control limit constants based
on the ICARL performance of the probability limits
based R and S charts, to account for the effects of
parameter estimation. Two methods are used to find
the corrected charting constants. The first method, the
numerical approach, involves numerical integration
and solving nonlinear equations. The second method,
the analytical approach is based on a first-order Taylor
approximation to the ICARL. Differences in the values
obtained with these two methods are small, indicating
that the analytical approximations are quite accurate.
However, the analytical approach is more general in the
sense that it can be applied to any desired estimator.
Extensions to other functions of S, such as S? or log-S
are straightforward.

The tabulated constants provided here ensure that
the unconditional ICARL is equal to a pre-specified
desired value, taking into account the estimators that
are used, the number of Phase I subgroups (m) and
the subgroup size (n). However, this IC robustness is
achieved at the price of a deterioration (increase) in
the unconditional OOCARL. This deterioration, due
to the use of the corrected limits, is negligible for large
values of m or large changes of variability.

In conclusion, this article provides the correct chart-
ing constants for the popular dispersion charts, for i.i.d.
data from a normal distribution, properly accounting
for the effects of parameter estimation, in terms of a
specified nominal value of the unconditional in-control
average run-length. A similar study, for the important
case when n = 1, is required. Finally, note that in prac-
tice, it is possible that the data do not follow a nor-
mal distribution. How these corrected limits perform
for other distributions and their required modifications
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Table 8. The ARL and PD values associated with the uncorrected and corrected probability limits based R and S charts for n = 5, 10 and
various values of > and m.

R Chart with o estimator R/d, (n)

A values
Type 0.2 0.5 0.8 1 12 15 2
n m of
limit ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD
5 5 Uncorrected 3 0 68 31 280 -9 269 -27 130 78 25 108 4 33
Corrected 4 33 93 79 387 26 370 0 175 143 31 158 4 33
10 Uncorrected 3 0 59 13 304 -1 302 —18 m 52 17 42 4 33
Corrected 3 0 72 39 374 21 370 0 133 85 19 58 4 33
20 Uncorrected 3 0 55 6 312 1 327 -1 94 29 14 17 3 0
Corrected 3 0 62 19 354 15 370 0 104 42 15 25 3 0
25 Uncorrected 3 0 54 4 313 2 334 —10 90 23 14 17 3 0
Corrected 3 0 60 15 347 13 370 0 98 34 14 17 3 0
30 Uncorrected 3 0 54 4 313 2 339 -8 87 19 13 8 3 0
Corrected 3 0 59 13 342 n 370 0 93 27 14 17 3 0
50 Uncorrected 3 0 53 2 312 1 349 -5 81 1 13 8 3 0
Corrected 3 0 56 8 330 7 370 0 85 16 13 8 3 0
100 Uncorrected 3 0 52 0 310 1 359 -3 76 4 12 0 3 0
Corrected 3 0 54 4 320 4 370 0 78 7 13 8 3 0
300 Uncorrected 3 0 52 0 309 0 366 -1 73 0 12 0 3 0
Corrected 3 0 52 0 312 1 370 0 74 1 12 0 3 0
500 Uncorrected 3 0 52 0 308 0 368 0 73 0 12 0 3 0
Corrected 3 0 52 1 310 1 370 0 73 1 12 1 3 0
1000 Uncorrected 3 0 52 0 308 0 369 0 72 0 12 0 3 0
Corrected 3 0 52 0 309 0 370 0 72 0 12 0 3 0
00 o known 3 0 52 0 308 0 370 0 72 0 12 0 3 0
10 5 Uncorrected 1 0 9 22 166 23 252 -32 94 84 n 57 2 0
Corrected 1 0 12 v 243 80 370 0 132 159 13 86 2 0
10 Uncorrected 1 0 8 14 158 17 289 —22 76 49 8 14 2 0
Corrected 1 0 9 2 201 49 370 0 93 82 9 2 2 0
20 Uncorrected 1 0 7 0 148 10 319 —14 64 25 8 14 2 0
Corrected 1 0 8 14 7 27 370 0 72 41 8 14 2 0
25 Uncorrected 1 0 7 0 146 8 326 12 62 22 7 0 2 0
Corrected 1 0 8 14 164 21 370 0 68 33 8 14 2 0
30 Uncorrected 1 0 7 0 144 7 332 —10 60 18 7 0 2 0
Corrected 1 0 8 14 160 19 370 0 65 27 8 14 2 0
50 Uncorrected 1 0 7 0 140 4 345 —7 56 10 7 0 2 0
Corrected 1 0 7 0 150 n 370 0 59 16 7 0 2 0
100 Uncorrected 1 0 7 0 138 2 357 —4 54 6 7 0 2 0
Corrected 1 0 7 0 142 5 370 0 55 8 7 0 2 0
300 Uncorrected 1 0 7 0 136 1 365 —1 52 2 7 0 2 0
Corrected 1 0 7 0 137 1 370 0 53 4 7 0 2 0
500 Uncorrected 1 0 7 0 135 0 367 —1 52 2 7 0 2 0
Corrected 1 0 7 0 136 1 370 0 52 2 7 0 2 0
1000 Uncorrected 1 0 7 0 135 0 369 0 52 2 7 0 2 0
Corrected 1 0 7 0 135 0 370 0 52 2 7 0 2 0
[ o known 1 7 135 370 51 7 2
S Chart with g estimator Sp
A values
n m Type 0.2 0.5 0.8 1 12 15 2
of
limit ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD
5 5 Uncorrected 3 0 69 35 290 —6 264 -29 14 75 19 73 3 0
Corrected 4 33 97 90 410 33 370 0 155 138 24 18 4 33
10 Uncorrected 3 0 59 16 312 1 298 —-19 98 51 14 27 3 0
Corrected 3 0 73 43 388 26 370 0 n7z 80 16 45 3 0
20 Uncorrected 3 0 55 8 317 3 325 —12 83 28 12 9 3 0
Corrected 3 0 62 22 361 17 370 0 92 42 13 18 3 0
25 Uncorrected 3 0 54 6 317 3 332 —10 80 23 12 9 3 0
Corrected 3 0 60 18 353 15 370 0 87 34 12 9 3 0
30 Uncorrected 3 0 54 6 316 3 337 -9 77 18 12 9 3 0
Corrected 3 0 59 16 347 13 370 0 83 28 12 9 3 0
50 Uncorrected 3 0 53 4 314 2 348 —6 72 n n 0 3 0
Corrected 3 0 56 10 333 8 370 0 75 15 n 0 3 0

(Continued on next page)
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Table 8. (Continued)

S Chart with o estimator S/c, (n)

A values
Type 0.2 05 0.8 1 12 15 2
n m of
limit ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD
100 Uncorrected 3 0 52 2 3N 1 358 -3 68 5 n 0 3 0
Corrected 3 0 54 6 321 4 370 0 70 8 n 0 3 0
300 Uncorrected 3 0 52 2 309 0 366 —1 66 2 n 0 3 0
Corrected 3 0 52 2 313 2 370 0 66 2 n 0 3 0
500 Uncorrected 3 0 52 2 309 0 368 -1 65 0 n 0 3 0
Corrected 3 0 52 2 3N 1 370 0 65 0 n 0 3 0
1000 Uncorrected 3 0 51 0 309 0 369 0 65 0 n 0 3 0
Corrected 3 0 52 2 309 0 370 0 65 0 n 0 3 0
00 o known 3 0 51 0 308 0 370 0 65 0 n 0 3 0
10 5 Uncorrected 1 0 8 33 168 27 252 -32 71 92 6 20 2 0
Corrected 1 0 n 83 246 86 370 0 99 168 8 60 2 0
10 Uncorrected 1 0 7 17 156 18 289 —22 56 51 6 20 2 0
Corrected 1 0 8 33 199 51 370 0 67 81 6 20 2 0
20 Uncorrected 1 0 7 17 145 10 319 —14 46 24 5 0 2 0
Corrected 1 0 7 17 167 27 370 0 51 38 5 0 2 0
25 Uncorrected 1 0 7 7 142 8 326 —12 44 19 5 0 2 0
Corrected 1 0 7 17 160 21 370 0 48 30 5 0 2 0
30 Uncorrected 1 0 6 0 140 6 332 —10 43 16 5 0 2 0
Corrected 1 0 7 17 156 18 370 0 46 24 5 0 2 0
50 Uncorrected 1 0 6 0 137 4 345 -7 40 8 5 0 2 0
Corrected 1 0 7 7 146 1 370 0 42 14 5 0 2 0
100 Uncorrected 1 0 6 0 134 2 357 —4 39 5 5 0 2 0
Corrected 1 0 6 0 139 5 370 0 40 8 5 0 2 0
300 Uncorrected 1 0 6 0 132 0 365 —1 37 0 5 0 2 0
Corrected 1 0 6 0 134 2 370 0 38 3 5 0 2 0
500 Uncorrected 1 0 6 0 132 0 367 —1 37 0 5 0 2 0
Corrected 1 0 6 0 133 1 370 0 37 0 5 0 2 0
1000 Uncorrected 1 0 6 0 132 0 369 0 37 0 5 0 2 0
Corrected 1 0 6 0 132 0 370 0 37 0 5 0 2 0
© o known 1 6 132 370 37 5 2
S Chart with g estimator S/c,(n)
A values
n m Type 0.2 0.5 0.8 1 1.2 1.5 2
of
limit ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD
5 5 Uncorrected 3 0 67 31 283 —8 270 —27 125 92 22 100 4 33
Corrected 4 33 91 78 390 27 370 0 167 157 27 145 4 33
10 Uncorrected 3 0 58 14 306 —1 302 —18 104 60 15 36 3 0
Corrected 3 0 v 39 376 22 370 0 124 91 17 55 3 0
20 Uncorrected 3 0 55 8 314 2 328 -1 87 34 12 9 3 0
Corrected 3 0 61 20 355 15 370 0 96 48 13 18 3 0
25 Uncorrected 3 0 54 6 314 2 334 —10 83 28 12 9 3 0
Corrected 3 0 60 18 348 13 370 0 89 37 13 18 3 0
30 Uncorrected 3 0 54 6 314 2 339 —8 80 23 12 9 3 0
Corrected 3 0 58 14 343 n 370 0 85 31 12 9 3 0
50 Uncorrected 3 0 53 4 313 2 350 -5 74 14 n 0 3 0
Corrected 3 0 56 10 331 7 370 0 77 18 n 0 3 0
100 Uncorrected 3 0 52 2 3n 1 359 -3 69 6 n 0 3 0
Corrected 3 0 54 6 320 4 370 0 70 8 n 0 3 0
300 Uncorrected 3 0 52 2 309 0 366 —1 66 2 n 0 3 0
Corrected 3 0 52 2 312 1 370 0 66 2 n 0 3 0
500 Uncorrected 3 0 52 2 309 0 368 0 65 0 n 0 3 0
Corrected 3 0 52 2 310 1 370 0 66 2 n 0 3 0
1000 Uncorrected 3 0 51 0 308 0 369 0 65 0 n 0 3 0
Corrected 3 0 52 2 309 0 370 0 65 0 n 0 3 0
00 o known 3 0 51 0 308 0 370 0 65 0 n 0 3 0
10 5 Uncorrected 1 0 8 33 163 23 254 —31 76 105 7 40 2 0
Corrected 1 0 n 83 237 80 370 0 105 184 8 60 2 0
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S Chart with oo estimator Sp

A values
Type 0.2 0.5 0.8 1 12 15 2
n m of

limit ARL PD ARL PD ARL PD ARL PD ARL PD ARL PD  ARL PD

10 Uncorrected 1 0 7 17 154 17 291 -21 58 57 6 20 2 0
Corrected 1 0 8 33 197 49 370 0 70 89 6 20 2 0

20 Uncorrected 1 0 7 17 144 9 320 —14 47 27 5 0 2 0
Corrected 1 0 7 17 165 25 370 0 52 4 5 0 2 0

25 Uncorrected 1 0 6 0 141 7 327 —12 45 2 5 0 2 0
Corrected 1 0 7 17 159 20 370 0 49 32 5 0 2 0

30 Uncorrected 1 0 6 0 140 6 333 —10 44 19 5 0 2 0
Corrected 1 0 7 17 154 17 370 0 47 27 5 0 2 0

50 Uncorrected 1 0 6 0 136 3 345 -7 41 1 5 0 2 0
Corrected 1 0 7 17 145 10 370 0 43 16 5 0 2 0

100 Uncorrected 1 0 6 0 134 2 357 —4 39 5 5 0 2 0
Corrected 1 0 6 0 139 5 370 0 40 8 5 0 2 0

300 Uncorrected 1 0 6 0 132 0 366 -1 38 3 5 0 2 0
Corrected 1 0 6 0 134 2 370 0 38 3 5 0 2 0

500 Uncorrected 1 0 6 0 132 0 367 —1 37 0 5 0 2 0
Corrected 1 0 6 0 133 1 370 0 37 0 5 0 2 0

1000  Uncorrected 1 0 6 0 132 0 369 0 37 0 5 0 2 0
Corrected 1 0 6 0 132 0 370 0 37 0 5 0 2 0

0 o known 1 6 132 370 37 5 2

require further investigation, which will be considered
elsewhere.
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Appendix A

Table A1. Formulae for the various constants that are associated with the three spread charts that are considered in this article.
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{2\ T2
C“(")_(n—l) F((n—1)/2)

Let W = % and Fy, denote the sample relative range and its distribution function, respectively, then

e ¢]

din =EW) = [ (1= Fy, (w))du
E(Wz)=foo(1—FWn(w))dw2=2/oow(1—FM(w))dw
0 0
d;(n) = /Var (W) = ,/E (W?) — d3(n)

Appendix B

Shewhart R chart with estimator Rbar/d2
ICARLO0=¢(370,500)

n=c(5,10)

m=c(5,10,20,25,30,50,100,300,500,1000)
dd=seq(from=0.001250,t0=0.002697,length.out=1250)

library(cubature)

ICARL=function(m,a,n){uclrchart=function(x) {qtukey(1-a/2,n,Inf) *aa(m)*sqrt(x)/(sqrt(bb(m)))} # UCL
Iclrchart=function(x){qtukey(a/2,n,Inf) *aa(m)*sqrt(x)/(sqrt(bb(m)))} # LCL

PNSrchart=function(x) { ptukey(uclrchart(x),n,Inf)-ptukey(lclrchart(x),n,Inf) } AF AR=function(x) { 1 -PNSrchart(x) }
CFAR=function(x){ AFAR(x)"-1*dchisq(x,bb(m))}

b=qchisq(0.99999,bb(m))

adaptIntegrate(CFAR,c(0),c(b),tol=1e-10)[[1]]}

diml=c("m=5","m=10","m=20","m=25","m=30","m=50","m=100","m=300","m=500","m=1000")
dim2 <- ¢("alpha", "L", "U")

dim3=c("n=5","n=10")

dim4= c¢("ICARL0=370","ICARL0=500")
Const=array(1:120, ¢(10, 3, 2,2), dimnames=list(dim1, dim2, dim3,dim4))
for(z in 1:length(ICARLO)){

for (1in 1:length(n)){

for (j in 1:length(m)){

for (i in 1:length(dd)){

d2=function(n) {

pt=function(w){1-ptukey(w,n,Inf)}
integrate(pt,lower=0,upper=Inf)[[1]]}

d2=d2(n[l])

EW2=function(n){
ptt=function(a){(1-ptukey(sqrt(a),n,Inf))}
integrate(ptt,Jlower=0,upper=Inf)[[1]]}

d3=function(n) {

sqrt(EW2(n)-d2"2)}

d3=d3(n[l])

M=function(m){

d372/(m*d2/2)}

r=function(m){

(-2+2*sqrt(1+2*M(m)))"-1}

t=function(m) {

M(m)+1/(16*r(m)"3)}

bb=function(m){

(-2+2*sqrt(1+2*t(m)))*-1}

aa=function(m){
1+(1/(4*bb(m)))+(1/(32*bb(m)"2))-(5/(128*bb(m)"3))}
if (ICARL(m([j],dd[i],n[1])<ICARLO[z]) break}
Const[j,,1,z]= c(dd[i], qtukey((dd[i]/2),n[1],Inf)/d2, qtukey(1-(dd[i]/2),n[1],Inf)/d2)
3

Const

write.table(Const, "clipboard",sep="\t",col.names=NA)

Figure B1. R codes for Table 3 (numerical approach).
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