
Measurement 95 (2017) 473–479
Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/locate /measurement
The statistical evaluation of binary tests without gold standard:
Robustness of latent variable approaches
http://dx.doi.org/10.1016/j.measurement.2016.10.043
0263-2241/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: t.s.akkerhuis@uva.nl (T. Akkerhuis).
Thomas Akkerhuis a,⇑, Jeroen de Mast a, Tashi Erdmann b

aDepartment of Operations Management, Amsterdam Business School, University of Amsterdam, P.O. Box 15953, 1001 NL Amsterdam, The Netherlands
b Shell Technology Centre Amsterdam, P.O. Box 38000, 1030 BN Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 June 2016
Received in revised form 12 October 2016
Accepted 15 October 2016
Available online 17 October 2016

Keywords:
Binary measurement
Binary data
Precision
Reproducibility and repeatability
Pass/fail inspection
Binary tests classify items into two categories such as reject/accept or positive/negative. Such tests are
usually evaluated in terms of their misclassification probabilities FAP (false acceptance probability)
and FRP (false rejection probability). A common complication arises when there is no gold standard or
reference standard. Various methods based on latent variable modelling have been proposed for this sit-
uation. We present the results of a simulation study in which these methods are tried in a range of sce-
narios, to study how robust they are to departures from the assumptions on which they are based.
The study convincingly shows that in general, the ambition of estimating FAP and FRP without gold

standard is unattainable, since all methods easily derail when assumptions are not precisely met. The
study also shows that the random components of the FAP and FRP can be reliably estimated by a straight-
forward modification of one of the tested methods.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Binary tests are common in industrial processes, and classify
items in two categories such as ‘reject’ (Y ¼ 0) or ‘accept’ (Y ¼ 1).
Examples include visual quality inspections and automated tests
where some parts fail and others pass. Diagnostic and screening
tests in medicine, yielding the results ‘positive’ or ‘negative’, are
closely related. We conceive of such tests as a form of measure-
ment (‘‘binary measurement”, see Suzuki et al. [1]), and thus, these
classifications aim to reflect an underlying true state X of the items
called the measurand [2,3], which can be ‘truly defective’ (X ¼ 0) or
‘conforming to specifications’ (X ¼ 1).

A measurement system analysis (MSA) experiment is an exper-
iment to evaluate how reliably the test results Y reflect the mea-
surand X. Measurement error is generally defined as the
discrepancy between measured and true value. Binary scales are
equipped with only the simplest of algebraic structures and in par-
ticular, subtraction and addition are usually not meaningfully
defined [4]. Consequently, it is problematic to define discrepancy
in terms of a difference Y � X (or derived statistics such as standard
deviations). For binary measurements, therefore, the measurement
error is usually expressed as a misclassification (Y – X), and a sta-
tistical evaluation is in terms of the misclassification probabilities:
FAP ¼ P½Y ¼ 1jX ¼ 0� ðFalse Acceptance ProbabilityÞ;
FRP ¼ P½Y ¼ 0jX ¼ 1� ðFalse Rejection ProbabilityÞ:
In medicine, one sometimes works with the complements of

these probabilities: the sensitivity and specificity. Traditional
methods for estimating the FAP and FRP (as described in AIAG
[5], Pepe [6], Danila et al. [7,8] and many other articles), require
a so-called gold standard or reference standard: a higher-order,
authoritative test that is accepted to constitute a faithful represen-
tation of the measurand [9]. A common problem occurs when such
gold standard is not available, in which case the true state of the
items is practically unobservable. Reasons for this include the
absence of a sufficiently capable authoritative test, ambiguity of
the specifications (such as when human perception is involved),
prohibitive cost, or damage resulting from applying the gold
standard to the tested items.

When a gold standard is unavailable, the traditional solution is
to fit a latent class model, in which FAP and FRP are assumed con-
stant in the subpopulations of defective and conforming items (see
Hui and Walter [10], Boyles [11], Van Wieringen and De Mast [12],
Danila et al. [13] and many others). However, this assumption has
been discredited as generally not realistic [14–17]. For example, if
there are various degrees of defectiveness such that some parts are
harder to judge than others, this assumption is violated and esti-
mators may have a substantial bias.
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To allow for variability in the misclassification probabilities in
each subpopulation, more complex latent variable models have
been proposed. In industrial statistics, Danila et al. [18] treat FAP
and FRP as random effects with beta distributions, and Erdmann
et al. [19] explicitly attribute variability in the misclassification
probability to an underlying continuous property of the items. Also
in medical statistics various more complex approaches have been
suggested [20,21]. However, Albert and Dodd [22] warn that these
models are not robust against model misspecification, which is
typically difficult to detect from the binary observations. Mathe-
matical analysis by Akkerhuis [23] reveals that the parameters
FAP and FRP are in general unidentifiable from the binary observa-
tions when a gold standard is unavailable. This suggests that the
estimation of FAP and FRP is inherently problematic without a gold
standard.

This paper compares the main approaches proposed in indus-
trial statistics for the evaluation of binary tests without a gold stan-
dard, to learn how robust they are to model misspecification. The
study is based on a crossed design where methods M1, M2 and
M3 are applied in a range of scenarios S1, S2, . . .. The estimation
bias of the methods in the various scenarios is analyzed with three
goals:

– Establish which method is most reliable across a range of real-
istic scenarios.

– Empirically establish how problematic estimation of FAP and
FRP is without gold standard.

– If the problems turn out to be severe: identify alternative ways
to evaluate binary tests.

The next section explains the set-up of the study in detail.
Section 3 presents the findings of the study, which results in
specific conclusions discussed in the final section.
2. Theory and methods

The current literature describes three classes of approaches for
estimating misclassification probabilities of binary tests under
absence of a gold standard: traditional latent class methods (M1),
latent class random effects approaches (M2), and approaches based
on characteristic curves (M3). In the comparison study we try these
methods M1, M2 and M3 in a number of scenarios (S1, S2, . . .) to
learn how sensitive they are to violations of their assumptions.

In this section, we present a novel statistical modelling frame-
work that is general enough to describe all methods M1, M2 and
M3 under study as special cases. Also the test scenarios will be
defined in terms of this modelling framework. The descriptions
of the methods are cursory, only highlighting the main idea, but
full descriptions can be found in the references.
Rejec�on probability 

Fig. 1. Density f R of rejection probabilities in scenario S2a (solid curve). Estimated
pdf f̂ R fitted by method M3 (dashed curve).
2.1. Statistical modelling framework

When a test is applied in regular production, it produces results
Yi ¼ 0 (rejection) or Yi ¼ 1 (acceptance) for tested items
i ¼ 1;2; . . .. The unobservable true states of the items are Xi ¼ 0
(truly defective) or Xi ¼ 1 (conforming to specifications), and the
(unknown) defect rate is p ¼ P½Xi ¼ 0�. The probability that an item
i is rejected is Ri ¼ P½Yi ¼ 0�, which depends on Xi and possibly on
other properties affecting the measurement.

To determine the error probabilities of the test, one executes an
MSA experiment, in which a sample of I items are tested J times,
producing the results Yij 2 f0;1g. When a gold standard is avail-
able, the corresponding true values X1; . . . ;XI are established, and
a comparison of Yij to Xi allows the calculation of FAP and FRP. In
the problem under consideration, however, a gold standard is
unavailable and the true states Xi of the items in the experiment
are unobservable. In fact, one can only observe the per-item rejec-

tion counts Ui ¼
PJ

j¼1ð1� YijÞ 2 f0;1; . . . ; Jg, from which the rejec-
tion probabilities Ri can be estimated.

We will specify statistical models in terms of the Ri, avoiding
the unobservable Xi. The rejection probabilities of items vary from
0 to 1 and have a statistical distribution FRðrÞ ¼ P½Ri 6 r�; r 2 ½0;1�.
We assume that given an item’s rejection probability, repeated
tests are independent: conditional on the event fRi ¼ rg, the
Yi1; . . . ;YiJ are i.i.d. Bernoulli (with parameter 1� r) and the rejec-
tion counts Ui have a binomial (J; r) distribution. A special case is
the traditional latent class model, where the rejection probabilities
assume only two values: Ri ¼ FRP for all conforming items and
Ri ¼ 1� FAP for all defective items (with FRP and FAP two
constants).

The distribution of rejection probabilities can be interpreted as
a mixture of two component distributions: FRðrÞ ¼ pF0

RðrÞ
þð1� pÞF1

RðrÞ, with

F0
RðrÞ ¼ P½Ri 6 rjXi ¼ 0�

ðdistribution of rejection probabilities of defective itemsÞ;

F1
RðrÞ¼ P½Ri 6 rjXi ¼1�

ðdistribution of rejection probabilities of conforming itemsÞ:
Fig. 1 gives an example. The solid curve is the density f R of

rejection probabilities in the population of items. The gray and

white areas show the components pf 0R and ð1� pÞf 1R associated
with defective and conforming items. In this example (produced
by scenario S2a explained later), the rejection probabilities of con-
forming and defective items are clearly separated and f RðrÞ � 0
around r ¼ 0:6.

The FAP and FRP are the mean probabilities of misclassification
of conforming or defective items:

FAP ¼ 1� E½RijXi ¼ 0�;

FRP ¼ E½RijXi ¼ 1�:
In MSA studies for quantitative measurements, the measure-

ment error is often decomposed into systematic and random mea-
surement error (or similar concepts such as trueness/precision).
Recent literature has proposed a similar decomposition for binary
MSA [19,23]. Let ~Xi ¼ 0 if Ri > 0:5 and ~Xi ¼ 1 if Ri 6 0:5 be the
modal (most likely) outcome for item i. Then, ~Xi – Xi implies that
test results for item i are systematically off, and Yij – ~Xi is a random
deviation of a test result from the modal outcome. Akkerhuis [23]
shows how the misclassification probabilities can be decomposed;
the terms corresponding to random measurement error are
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IAP ¼ 1� E½Rij~Xi ¼ 0� ¼ P½Yij ¼ 1j~Xi ¼ 0�
ðInconsistent Acceptance ProbabilityÞ;

IRP ¼ E½Rij~Xi ¼ 1� ¼ P½Yij ¼ 0j~Xi ¼ 1�
ðInconsistent Rejection ProbabilityÞ:

They represent the probability that a test result randomly devi-
ates from the most likely result for the item. These statistics have a
longer history in binary MSA, as measures for the repeatability of
binary tests; c.f. De Mast [17].

2.2. Methods included in the comparison

In the study we compare the sensitivity to model misspecifica-
tion of three methods for estimating the FAP and FRP, and/or the
IAP and IRP, proposed in the recent literature in industrial
statistics.

2.2.1. M1 traditional latent class method
Approaches based on a latent class model have been well stud-

ied in literature. These methods fit latent class models in which
FAP and FRP are constants in the subpopulations of conforming
and defective items [11,10,12,13,26]. Method M1 in our compar-
ison fits a model with Ri ¼ FRP if Xi ¼ 1 and Ri ¼ 1� FAP if
Xi ¼ 0. The three model parameters FRP, FAP and p ¼ P½Xi ¼ 0� are
commonly estimated by a maximum likelihood or Bayesian algo-
rithm (e.g. Gadrich and Bashkansky [24]). Under the simple setting
of M1 we have, under the mild assumption that FAP < 0:5 and
FRP < 0:5, that IAP ¼ FAP and IRP ¼ FRP. In view of this, the esti-
mated IAP and IRP are identical to the estimated FAP and FRP.

2.2.2. M2 latent class random effects approach
An extension of the traditional latent class method allows FAP

and FRP to be random effects, drawn from distributions F0
R and

F1
R. Danila et al. [18] propose a method based on a mixture of

two beta distributions: F0
R is a beta distribution with mean

l0 ¼ 1� FAP and dispersion /0, and F1
R is a beta distribution with

mean l1 ¼ FRP and dispersion /1. The five parameters l0, l1, /0,
/1 and p are fitted by a maximum likelihood algorithm. Based on
the beta distributions in each subpopulation, the density of the
rejection probabilities in the entire items population is the mixture

f RðrÞ ¼ p
rl0

1�/0
/0

�1ð1� rÞð1�l0Þ
1�/0
/0

�1

Beta l0
1�/0
/0

; ð1� l0Þ 1�/0
/0

� �þ ð1� pÞ

� rð1�l1Þ
1�/1
/1

�1ð1� rÞl1
1�/1
/1

�1

Beta ð1� l1Þ 1�/1
/1

;l1
1�/1
/1

� � :

FAP and FRP are estimated from the fitted l0 and l1. As intro-
duced originally, the method does not produce estimates for IAP
and IRP. However, these can be obtained from the fitted density

f̂ R by

dIRP ¼
R 0:5
0 rf̂ RðrÞdrR 0:5
0 f̂ RðrÞdr

; and

dIAP ¼
R 1
0:5ð1� rÞf̂ RðrÞdrR 1

0:5 f̂ RðrÞdr
:

2.2.3. M3 approaches based on characteristic curves
Another approach models the source of variability among items

more explicitly [17,19]. It assumes that the dichotomous true state
masks an underlying continuum where some items are more
defective than others (and, possibly, some items are more con-
forming than others). Thus, the true state Xi is determined by a
latent continuous quality characteristic Zi 2 R in the sense that
Xi ¼ 1 if Zi 6 L and Xi ¼ 0 otherwise (where L is the limit defining
for which values of Zi an item is out of specification).

Variability in the rejection probabilities, then, is related to vari-
ability in Zi by means of a characteristic curve (here a logistic curve
with inflection point at z ¼ d and slope a)

qðzÞ ¼ P½Yij ¼ 0jZi ¼ z� ¼ ð1þ exp½�aðz� dÞ�Þ�1
:

Writing FZðzÞ ¼ P½Zi 6 z� for the distribution of Zi in the popula-
tion of items, the distribution of rejection probabilities is

FRðrÞ ¼ P½qðZiÞ 6 r� ¼ FZðq�1ðrÞÞ:
Erdmann et al. [19] take FZ to be the standard normal distribu-

tion. The model’s parameters a and d are estimated by a maximum
likelihood algorithm. From the fitted characteristic curve, IAP and
IRP are determined from

dIRP ¼
Z d̂

�1
q̂ðzÞ/ðzÞdz

,Z d̂

�1
/ðzÞdz; and

dIAP ¼
Z 1

d̂
ð1� q̂ðzÞÞ/ðzÞdz

�Z 1

d̂
/ðzÞdz:

The approach does not offer a way to estimate FAP and FRP.
For all three methods, recent literature has investigated the

suitability of various sampling strategies. For the MSA study, one
needs a sample i ¼ 1; . . . ; I of items. The most straightforward sam-
pling strategy is to take a representative sample from the total
population of relevant items. However, given the usually very
low defect rates of industrial processes, samples thus collected typ-
ically contain no or only very few items with Ri > 0:5. Recent stud-
ies have investigated the effect of various alternative sampling
strategies on the precision of the estimates (Danila at al. for
approaches of type M1 [13] and M2 [18]; Erdmann et al. for M3
[19]). Consistently, these studies show that the best sampling
strategy is to take a representative sample from the stream of
rejected items, which typically produces a sample with more
evenly spread Ri (note that under realistic FAP, FRP and p even
the stream of rejected items contains more good items, rejected
falsely, than defective items; see De Mast et al. [17]). However,
such a sample is not representative for the total population of
items, and to correct for the resulting bias in the estimators, the
likelihood contributions in the maximum likelihood procedures
should be calculated conditional on the event that they have been
rejected initially (see Appendix A for the details of this procedure).

A further improvement can be obtained by augmenting the data
from the MSA experiment with an estimate for the rejection rate
P½Yi ¼ 0� based on historical data. Even if such historical data are
not available, they can be recorded as a by-product in the time per-
iod when the sample is collected from the stream of rejected items.
Recent papers call such data baseline data and demonstrate how
their incorporation in the estimation procedure makes estimates
more precise [13,18,19]. It is this setup, where the MSA study
involves a sample of I items taken from the rejection stream plus
a historical estimate for the rejection rate, that we have imple-
mented for all methods M1, M2 and M3.

2.3. Scenarios

To analyze the sensitivity of methods M1, M2 and M3 to model
misspecification, their estimation bias was compared in 10 scenar-
ios. Scenario S1 is a situation where measurements result from the
simple latent class model (as in method M1). In scenarios S2a, S2b
and S2c, data are generated from random effects models (as inM2),
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in which the Ri have beta or logit-logistic distributions with little
(S2a) or substantial (S2b,c) dispersion. Scenarios S3a through S3d
(related to M3) are based on a standard normal continuous charac-
teristic Z. This characteristic determines the rejection probability
through a steep logistic characteristic curve in S3a, and a flat logis-
tic curve in S3b. In S3c the characteristic curve is an asymmetric,
cumulative Weibull distribution, and in S3d it is a cumulative Wei-
bull distribution with an infimum set at infzqðzÞ ¼ 0:01 instead of
0:00.

Scenarios S4a and S4b incorporate the effects of nuisance vari-
ables that may affect the outcomes of the tests. In real life, these
could be the effects of conditions under which the tests are per-
formed (such as light conditions for visual inspections) or charac-
teristics of the appraisers (such as fatigue and motivation). Such
nuisances may leverage measurement error, and scenarios S4a
and S4b allow us to study whether methods are robust against
their effects.

We model nuisance variables as a standard normal random
variable Vij, which may assume a new value for each item i and
each repeat j. In scenario S4a, it affects the characteristic curve’s
slope in its inflection point:

P½Yij ¼ 0jZi ¼ z;Vij ¼ v � ¼ qðz;vÞ ¼ ð1þ exp½�10evðz� 2Þ�Þ�1

and in S4b it affects the location of the curve’s inflection point:

P½Yij ¼ 0jZi ¼ z;Vij ¼ v � ¼ qðz;vÞ ¼ ð1þ exp½�10ðzþ v � 2Þ�Þ�1

Further details of the investigated scenarios are presented in
Appendix A.
2.4. Implementation details

In our study, the parameters of the models prescribed by meth-
ods M1 (p, FAP and FRP), M2 (p, l0, l1, /0 and /1) and M3 (a and d)
are estimated by maximum likelihood, as is often used for fitting
these models. We implemented the recommended MSA setup
where I items are sampled from the stream of rejected items and
tested J times, and in addition, historical test results are available

for IHis baseline data.
As the study focusses on robustness against model misspecifica-

tion rather than the determination of appropriate sample sizes, the
comparison study treats sample sizes as neutrally as possible. Rec-
ommendations in the literature for the number of repeats are in
the range of J ¼ 7 (Erdmann et al. [19] for method M3) to J ¼ 10
(Danila et al. [18] for M2), with J ¼ 3 as a minimum to ensure iden-
tifiability (Van Wieringen and De Mast [12] for M1). In our study,
we have worked with J ¼ 7. The size of the sample of items is left
out of consideration by studying the limit behavior of estimators
when I approaches infinity. For this reason, estimators converge
to the true values when the model assumed in a scenario is the
same as the model assumed in the method (such as method M1

applied in scenario S1). The number IHis of historical data is
taken in a fixed proportion to the sample size I, namely,

IHis ¼ I=P½Yij ¼ 0�. This is the ratio that one finds if no historical data
are available, and instead, the baseline data are collected as a by-
product of obtaining the sample of I rejected items. Namely, in
order to obtain I rejected items, one has to produce an expected
number of I=P½Yij ¼ 0� items. When historical data are available,

the number IHis of baseline data will almost always be larger.
Likelihood functions and other details of the implementation

are given in Appendix A. For our calculations, we used Mathemat-
ica 8 [25]. Loglikelihood functions are optimized with the interior
point algorithm (as implemented in the function ‘‘FindMaximum”)
or the Nelder-Mead algorithm (as implemented in ‘‘NMaximize”).
The integrals are approximated numerically using adaptive
quadrature (as implemented in ‘‘NIntegrate”).

3. Results

Applying the methods M1, M2 and M3 across the selected sce-
narios reveals to what extent they are robust against violations
of the assumptions on which they are based. Table 1 presents the
results. We discuss our findings and motivate conclusions for the
robustness of methods M1, M2 and M3.

3.1. Traditional latent class method (M1)

Our findings for the performance of the traditional latent class
method M1 confirm earlier findings in the medical statistics liter-
ature [15,22]. Namely, such methods only work when the rejection
probabilities are constant in the subpopulations of conforming and
defective items (scenario S1), but seriously derail in other scenar-
ios, where M1 gives badly biased estimates for FAP, FRP, IAP and
IRP. Fig. 2 shows a typical example. Here, the solid line is the den-
sity f R of rejection probabilities produced by scenario S2b, where
the rejection probabilities of conforming and defective items fol-
low beta distributions. The implied true misclassification probabil-

ities are FAP ¼ 1� R
r f 0RðrÞdr ¼ 0:05 and FRP ¼ R

r f 1RðrÞdr ¼ 0:05.

Further, IAP ¼ 1� R 1
0:5 rfRðrÞdr ¼ 0:1293 and IRP ¼ R 0:5

0 rfRðrÞdr
¼ 0:0255. Method M1 yields p̂ ¼ 0:0882, dFAP ¼ dIAP ¼ 0:1220 anddFRP ¼ dIRP ¼ 0:0357 (which gives the point masses
P½Ri ¼ 0:0357� ¼ 0:9118 and P½Ri ¼ 0:878� ¼ 0:0882). Note thatdFAP and dFRP are both strongly biased. The estimates for IAP and
IRP are more accurate, but in other scenarios (S3a, S3b, S3c) the
biases are enormous. In this and similar situations, M1 approxi-
mates a continuous density f R of rejection probabilities by two
point masses, and the resulting estimates are unreliable.

3.2. Approaches based on characteristic curves (M3)

The method M3 based on a characteristic curve model produces
reliable estimates for IAP and IRP under scenarios S3a–b, which are
instances of its native model. However, the method turns out to
lack robustness in many other scenarios and produces a poor fit.
The performance is particularly poor in scenarios where there is
little variation in the rejection rates Ri of the items (S1, S2a, S2c,
S3c and S3d). We illustrate the problem with the typical example
of scenario S2a (Fig. 1 in Section 2). The solid curve is f R with
FAP ¼ FRP ¼ 0:0500, IAP ¼ 0:0540 and IRP ¼ 0:0497. There is little
variation in rejection probabilities, which can be seen from f R being
almost zero for rejection probabilities between 0.4 and 0.8. The
characteristic curve approach M3 turns out to be unable to fit this
low degree of variation (M3 produces the dashed curve with
â ¼ 4:56 and d̂ ¼ 1:43). M3 does not offer a way of estimating
FAP and FRP, but instead, the method yields the estimatesdIAP ¼ 0:200 and dIRP ¼ 0:033, which are rather far off.

3.3. Latent class random effects method (M2)

The latent class random effects approach M2 gives a good fit of
f R across scenarios, which is a promising finding. The M2 method
fits a model with 5 parameters, 3 more than M3, which may
explain the relatively good performance. For many scenarios, how-
ever, the estimated FAP and FRP are substantially off. To illustrate,
the true f R in scenario S2c is a mixture of logit-logistic distribu-
tions, but it is approximated rather well by the mixture of beta dis-
tributions fitted by method M2. However, the estimated FAP and
FRP (0:1891 and 0:0373) are far off (true values 0:0500 and



Table 1
Overview of the results when methods M1–3 are applied in scenarios S1–4.

Scenario Method FAP FRP IAP IRP

S1 TRUE 0.0500 0.0500 0.0500 0.0500
Constant FAP M1a 0.0500 0.0500 0.0500 0.0500
and FRP M2 0.0500 0.0500 0.0500 0.0500

M3 NA NA 0.2153 0.0358

S2a TRUE 0.0500 0.0500 0.0540 0.0497
Beta distributions M1 0.0535 0.0692 0.0535 0.0692
(little dispersion) M2a 0.0500 0.0500 0.0540 0.0497

M3 NA NA 0.2001 0.0330

S2b TRUE 0.0500 0.0500 0.1293 0.0255
Beta distributions M1 0.1220 0.0357 0.1220 0.0357
(substantial dispersion) M2a 0.0500 0.0500 0.1293 0.0255

M3 NA NA 0.1359 0.0200

S2c TRUE 0.0500 0.0500 0.0995 0.0405
Logit-logistic M2 0.1891 0.0373 0.0970 0.0399
Distributions M3 NA NA 0.1765 0.0280

S3a TRUE 0.5360 0.0000 0.0733 0.0022
Std normal FZ M1 0.0206 0.4179 0.0206 0.4179
Steep logistic M2 0.1598 0.0004 0.0799 0.0014
Characteristic curve M3a NA NA 0.0733 0.0022

S3b TRUE 0.0252 0.0183 0.2863 0.0278
Std normal FZ M1 0.2673 0.1584 0.2673 0.1584
Flat logistic M2 0.5614 0.0205 0.2846 0.0275
Characteristic curve M3a NA NA 0.2863 0.0278

S3c TRUE 0.5587 0.0000 0.0538 0.0005
Std normal FZ M1 0.0135 0.5895 0.0135 0.5895
Cum. Weibull M2 0.1030 0.0000 0.0540 0.0005
Characteristic curve M3 NA NA 0.0476 0.0012

S3d TRUE 0.5531 0.0100 0.0538 0.0105
Std normal FZ M1 0.0370 0.0284 0.0370 0.0284
cum. Weibull M2 0.1040 0.0100 0.0540 0.0105
characteristic curve M3 NA NA 0.1439 0.0071

S4a TRUE NA NA 0.1522 0.0137
Outcomes affected by M1 0.2217 0.0120 0.2217 0.0120
Nuisance variable V M1b 0.1628 0.0157 0.1628 0.0157

M2 0.1843 0.0161 0.1534 0.0137
M2b 0.2231 0.0120 0.1689 0.0132
M3 NA NA 0.1894 0.0111
M3b NA NA 0.2142 0.0133

S4b TRUE NA NA 0.3659 0.0675
Outcomes affected by M1 0.0731 0.0125 0.0731 0.0125
Nuisance variable V M1b 0.5468 0.0440 0.5468 0.0440

M2 0.0744 0.0153 0.0809 0.0088
M2b 0.7173 0.0520 0.3650 0.0672
M3 NA NA 0.0812 0.0088
M3b NA NA 0.3547 0.0678

NA: The M3 methods do not offer a way to estimate FAP and FRP.
a Methods marked with a star fit the exact same model as in the scenario, and therefore converge to the true parameter values (for I ! 1).
b Method applied with experimental randomization.

Rejec�on probability 

Fig. 2. True pdf f R of rejection probabilities in scenario S2b (solid curve),
decomposed into the densities for conforming (white) and defective (gray) items.
Vertical bars represent the distribution of rejection probabilities fitted by method
M1.
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0:0500). The estimated FAP and FRP are further off in scenarios

where the component densities f 0R and f 1R have more dispersion,
and therefore, are less clearly separated.

Estimation of FAP and FRP becomes hopeless for the S3 scenar-
ios, where the true state Xi is a dichotomization of a continuous

characteristic Zi and the two component densities f 0R and f 1R are less
clearly separated. For example, in Fig. 3 (scenario S3b), the density
f R of all items is fitted rather well by M2. The component densities

f 1R for conforming items (that is, Zi 6 L) and f 0R for defective items
(Zi > L) are separated by a vertical bound at r ¼ qðLÞ ¼ 0:256, but
this is impossible to determine from the shape of f R alone. Conse-
quently, the estimated FAP and FRP are far off (true values: 0.02521
and 0.01825; estimates: 0.5614 and 0.0205).

Still, because of the good fit of f R, method M2 produces reliable
estimates for IAP and IRP across the scenarios S1–S3. For example,
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in scenario S3b (Fig. 3) dIAP ¼ 0:2846 and dIRP ¼ 0:0275 (true values
are 0.2863 and 0.0278). In scenario S2c, the procedure gives 0.0970
and 0.0399 (true values 0.0995 and 0.0405).
3.4. Estimation in the presence of nuisance variables

The scenarios S4a–b explicitly incorporate the effects of a nui-
sance variable Vij on the test results. The ideal way to deal with
nuisance variables is of course to eliminate their effect in the test
protocol, for example, by introducing countermeasures that keep
nuisances constant. If this is not possible, we propose to handle
nuisance variables by experimental randomization [4]. This means
that in the MSA experiment each of the J repeats per item is done
under a new realization of the nuisance variables, and such that
these realizations are representative for normal circumstances.
Experimental randomization was implemented in our study by
drawing a new realization for Vij from its assumed population dis-
tribution FV for each repeat j and each item i. By the law of large
numbers, we then have that the per-item rejection fractions Ui=J
converge in probability to

R
P½Yij ¼ 0jVij ¼ v �f V ðvÞdv ¼ P½Yij ¼ 0�

¼ Ri (for j ! 1), so the effects of the nuisance variable averages
out.

When applying experimental randomization, the reliable per-
formance of method M2 in estimating IAP and IRP is maintained
even under the presence of nuisance variables. In S4b, for instance,

it gives dIAP ¼ 0:3650 and dIRP ¼ 0:0672 (true values 0:3659 and
0:0675). The importance of experimental randomization is illus-
trated by applying M2 under a more careless setup, where only a
single realization of Vij is drawn per item i, say Vi0. The rejection
fractions Ui=J now converge to P½Yij ¼ 0jVi0] (for j ! 1), which is
generally not equal to Ri. In the simulations, M2 gavedIAP ¼ 0:0809 and dIRP ¼ 0:0088 in scenario S4b (which are rather
far off).
4. Discussion and conclusions

Given the ubiquity of binary tests and measurements in indus-
try, medicine and beyond, and the often severe ramifications of
false results, reliable methods for assessing their misclassification
probabilities are important. The unavailability of a gold standard
is a common complication, and despite a large volume of papers
on the subject, there still is no approach that is generally accepted.

Latent variable methods are an obvious option to deal with an
unobservable measurand. Literature has explored various direc-
tions to do so, but there is no consensus about the suitability of
these methods. And in fact, a mathematical analysis by Akkerhuis
Rejec�on probability 

Fig. 3. True pdf f R of rejection probabilities in scenario S3b (solid curve), with the
densities of conforming and defective items marked by white and gray. Estimated
pdf f̂ R fitted by method M2 (dashed curve).
[23] shows that generally, FAP and FRP are unidentifiable parame-
ters when a gold standard is unavailable. In this study we have
investigated empirically whether currently available methods are
applicable, and if not, how severe the problems are.

The first set of conclusions mirrors the results of a comparable
study for methods proposed in medical statistics [22]: estimation
methods for FAP and FRP easily become severely biased if their
model assumptions are no precisely met. Such departures from
model assumptions are difficult to detect from the binary test
results, so this makes application of these estimation methods
unreliable. Especially under the (realistic) scenarios S3, estimation
of FAP and FRP becomes hopeless, with biases that are enormous.

Taken together with the mathematical analysis of Akkerhuis
[23], these results constitute a strong case that the estimation of
the FAP and FRP of a binary test without gold standard is in general
an unattainable ambition. Especially if one is not satisfied with
evaluating a binary test in terms of IAP and IRP, this is a strong
motivation to go quite some way in finding a gold standard.

By analogy with MSA studies for numerical measurements,
Akkerhuis [23] shows how the total misclassification errors FAP
and FRP can be decomposed into systematic errors and random
errors. The latter can be quantified as the IAP and IRP. Our current
study shows that IAP and IRP can reliably be estimated by a mod-
ification of method M2, and that even the presence of nuisance
effects can be handled by carefully randomizing repeated tests. If
IAP and IRP are poor, this means that there is too much random
variability in the test system’s results for them to be informative,
and even a good calibration will not save such system. If IAP and
IRP are good, this means that the test system’s discriminative capa-
bility is sufficient for discerning worse from better items: the test
results are reproducible. For many applications, this will in itself be
a useful result. If good reproducibility is not enough, and an appli-
cation demands that also the systematic error is controlled, the
system needs a calibration. This is problematic without a gold
standard. For test systems with good IAP and IRP, a rough calibra-
tion will typically do, and it may be possible to do so on the basis of
a training set of items that are rated as defective or conforming by
consensus among experts.

The model fitted in M2 is a mixture of two beta distributions,
reflecting its original purpose of estimating FAP and FRP. For the
purpose of evaluating a test system in terms of its IAP and IRP,
the class of distributions that is fitted to the data does not need
to be a mixture of two distributions corresponding to conforming
and defective items. This leaves a wide class of candidate distribu-
tion functions open for exploration, with the aim of finding a class
of functions that has a limited number of parameters, but that nev-
ertheless can reliably fit a wide range of scenarios.

All in all, the study offers bad and good news. Without gold
standard, the estimation of the error probabilities FAP and FRP is
usually not possible, but it is possible to determine the random
components IAP and IRP of these errors. Although this conclusion
is in line with theory and practice in MSA studies for numerical
measurements, it represents quite a drastic turn in the develop-
ment of techniques for binary MSA.
Appendix A

Each of the methods M1, M2 and M3 fits a model by maximum
likelihood estimation on the basis of a sample of initially rejected
items augmented with baseline data. We discuss here the details
of this estimation procedure.

Data are generated by the models defined in each of the scenar-
ios S1–4, and probabilities calculated under these data generating
models are denoted PSc. The models fitted to the data depend on
the methods M1–3, and probabilities calculated under these fitted
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models are denoted Ph, with h the parameter vector of the fitted
model. The results of the MSA study are the rejection counts

Ui ¼
PJ

j¼1ð1� YijÞ, which can be aggregated in the response
pattern frequencies Ej ¼ f#i : Ui ¼ jg for j ¼ 0; . . . ; J (with realiza-

tions ej). For the IHis baseline data we have EHis
0 ¼

f#i 2 f1;2; . . . ; IHisg : Yi ¼ 0g is the number of rejected items, and

EHis
1 is the number of accepted items (and EHis

0 =IHis is the historical
rejection rate). The loglikelihood of the data is

LðhjE ¼ eÞ ¼
XJ

j¼0

ej log½Ph;Rej½Ui ¼ j�� þ
X1
j¼0

eHis
j log½Ph½Yi ¼ j��:

Here,

Ph½Yi ¼ 1� ¼
Z 1

0
rfRðrjhÞdr; and Ph½Yi ¼ 0� ¼

Z 1

0
ð1� rÞf RðrjhÞdr;

with f R as implied by the model underlyingM1,M2 respectivelyM3.
Further, since the I items in the sample are taken from the stream of
rejected items, the likelihood is calculated conditional on this initial
rejection:

Ph;Rej½Ui ¼ j� ¼ Ph½Ui ¼ jjitem initially rejected�

¼

R 1
0f RðrjhÞ

J

j

� �
rjþ1ð1� rÞJ�jdrR 1

0 f RðrjhÞrdr
:

The aim of the comparison study is to learn what can be esti-
mated with a sufficiently large sample size I. We take sample size
(that is, sampling error) out of consideration by studying what can
be estimated if the size of the sample of items approaches infinity

(I ! 1). Also, we fix the ratio of I and the number IHis of baseline

data at I=IHis ¼ PSc½Yi ¼ 0�. We believe that often, many more base-
line data are available, depending on how long the test system has
been in use and whether results are logged. But a lower bound is
obtained when the baseline data are collected as a by-product of
obtaining the sample for the MSA study. Namely, in order to obtain
I rejected items, the expected total number of items to be inspected
is I=PSc½Yi ¼ 0�, and these can be used as baseline data. Dividing the
loglikelihood by I and substituting this ratio we obtain

LðhjE ¼ eÞ
I

¼
XJ

j¼0

ej
I
log½Ph;Rej½Ui ¼ j�� þ 1

PSc½Yi ¼ 0�
X1
j¼0

eHis
j

IHis log½Ph½Yi ¼ j��:

If I ! 1, the response pattern frequencies converge (with prob-
ability 1) to their expected values:

Ej=I!a:s: PSc½Ui ¼ j�;

and also IHis ! 1 and EHis
j =IHis !a:s: PSc½Yi ¼ j�. The maximum of

LðhjE ¼ eÞ is in the same location as that of LðhjE ¼ eÞ=I. Therefore,
for large sample sizes (I ! 1), the parameter values found from
maximizing LðhjE ¼ eÞ converge (with probability 1) to

arg max
h

XJ

j¼0

PSc½Ui ¼ j� � log½Ph;Rej½Ui ¼ j��

þ 1
PSc½Yi ¼ 0�

X1
j¼0

PSc½Yi ¼ j� � log½Ph½Yi ¼ j��; ðA:1Þ
which is the function that we maximize to find parameter esti-
mates. To summarize, we leave the question of appropriate sample
sizes out of consideration by studying the goodness of fit of meth-
ods M1, M2 and M3 when the sample size I becomes large, in which
case the maximum likelihood estimators converge to the solutions
from maximizing (A.1). These estimated model parameters ĥ yield a

fitted density f̂ R, from which estimates for IAP, IRP, and possibly FAP
and FRP are derived.
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