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A comparative study of memory-type control
charts under normal and contaminated
normal environments
Hafiz Zafar Nazir,a*† Nasir Abbas,b Muhammad Riazb

and Ronald J.M.M. Doesc
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used to detect
small changes in the parameters of production processes. Recently, a new control structure was introduced, named as mixed
EWMA–CUSUM control chart, which combined both charts. The current study provides a detailed comparison of these three
types of control charts when the process parameters are unknown under normal and contaminated normal environments.
Performance measures average run length and different percentiles of run length distribution are used for comparison
purposes. We investigate six different location estimators with the structures of the three memory charts and study their
robustness properties. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

C
ontrol charts may be classified in memory-less (Shewhart-type) and memory control charts. Shewhart-type charts use current
available information and are less sensitive to detect small and moderate changes in the process parameters, but are most
efficient at detecting large shifts. An approach to deal with the detection of small shifts is to use memory control charts, such

as the cumulative sum (CUSUM) control chart proposed by Page1 and the exponentially weighted moving average (EWMA) control
chart proposed by Roberts.2 These charts are designed such that they use the past information along with the current information,
which makes them very sensitive to shifts of small and moderate magnitudes in the process parameters. A number of modifications
of the CUSUM and EWMA charts have been developed to further enhance the performance of these charts. Some of these
enhancements may be seen in Lucas,3 Lucas and Saccucci,4 Steiner,5 Capizzi and Masarotto,6 Zhao et al.,7 Colosimo et al.,8 Castagliola
et al.,9 Machado and Costa,10 Riaz et al.,11 Abbas et al.12 and the references therein. Following these authors, Abbas et al.13 proposed a
mixed EWMA–CUSUM control chart and concluded that mixing the two charts makes the proposed scheme even more sensitive to
small shifts in the process mean as compared to the other schemes designed for similar purposes.

In practice, process parameters are unknown, and they need to be estimated from samples, which are assumed to be in state of
statistical control. Woodall and Montgomery14 name this stage as Phase I. The resultant estimates from Phase I establish the control
limits that are used to monitor the process parameter of interest in the next stage: Phase II.

Jensen et al.15 studied estimation effects on control chart properties in Phase I and their Phase II impact. Schoonhoven et al.16 used
different robust estimators for the location control chart in a Shewhart set up by considering limited information in Phase I and
studied the performance of these estimators in Phase II. Recently, Nazir et al.17 proposed the use of some robust location estimators
with the control structures of the CUSUM chart, in order to increase the robustness of the CUSUM chart against contamination or non-
normality. However, they only considered the situation when a large number of samples are available in Phase I, and they did not take
into account the estimation effects of parameters.

The concern of this study is to assess the estimation effects of process parameters in Phase I and to check the impact and
influence of robust estimators of the location parameter on the Phase II performance with the design structures of CUSUM,
EWMA and mixed EWMA–CUSUM control charts under different environments. Generally, the performance and efficiency of
control charts are assessed by the determinant, called average run length (ARL). The ARL is the mean of a random variable called
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run length (RL), where RL is the number of samples required before an alarm signal occurs. The in-control ARL is likely to be
high, but can be fixed to a specific number for a given false alarm rate and is denoted by ARL0. The out-of-control ARL is
expected to be as small as possible and is denoted by ARL1. Besides using the ARLs as efficiency indicators, we will also take
into account the standard deviation of the run length (SDRL) and different percentiles of the RL distribution in order to have
an even better comparison.

In the next section, we give the details regarding the control structure of three memory-type control charts and the Phase I and
Phase II estimators. Design structures of these charts are provided in section . In section we provide a comprehensive comparison
of the three memory-type control charts (based on six different location estimates) in terms of ARLs and percentiles of RL distribution
to study their robustness. Finally, the article is concluded in section 5.

2. CUSUM, EWMA and mixed EWMA–CUSUM charts

Shewhart-type control charts are less efficient to detect small and moderate shifts in the process parameter(s). For that reason, some
memory-type control charts are proposed. The most important ones include the CUSUM, EWMA and mixed EWMA–CUSUM charts,
and the current section contains the details about these three structures.

2.1. Cumulative sum charts

Page1 presented the idea of accumulating the positive and negative deviations from the process location in two different statistics Cþ
i

and C�
i , respectively. These two statistics are defined as:

Cþ
i ¼ max 0; θ̂ i � θ0

� �
� K θ̂ þ Cþ

i�1

h i
; C�

i ¼ max 0;� θ̂ i � θ0
� �

� K θ̂ þ C�
i�1

h i
(1)

where i is the sample number and θ̂ is the location estimator used to monitor the process location parameter. The initial values for
both of the statistics given in (1) are usually taken equal to the target value θ0, i.e. Cþ

0 ¼ C�
0 ¼ θ0. The statistics Cþ

i and C�
i are plotted

against the control limit Hθ̂ , and an out-of-control signal is generated if either one of these statistics crosses the control limit. The
standardized versions of the chart parameters (K θ̂ and Hθ̂) are given as:

K θ̂ ¼ k�σθ̂ ; Hθ̂ ¼ h�σθ̂: (2)

Here k and h are the constants which are chosen to satisfy a pre-specified ARL0.

2.2. Exponentially weighted moving average charts

Roberts2 proposed a control charting scheme, in which the plotting statistic is split into two components (i.e. present information and
past information), and named it as the exponentially weighted moving average (EWMA) chart. The weights are assigned to the
observations such that these weights decrease exponentially for the mor e dated observations. The control structure of the EWMA
chart, consisting of a plotting statistic and the control limits, is given as:

Zi ¼ λθ̂ i þ 1� λð ÞZi�1 (3)

LCLi ¼ θ0 � Lθ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var θ̂
� �

� λ
2� λ

1� 1� λð Þ2i
� �r

CL ¼ θ0UCLi ¼ θ0 þ Lθ̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var θ̂
� �

� λ
2� λ

1� 1� λð Þ2i
� �r )

(4)

where λ ∈ (0, 1] is the smoothing parameter of the chart. The initial value for the above plotting statistic in (3) is usually taken
equal to the target value, i.e. Z0 = θ0. Lθ̂ is the control limit coefficient and can be chosen to satisfy the pre-specified ARL0.
Note that for λ= 1, we obtain the Shewhart control chart, and hence the Shewhart control chart is a special case of the EWMA
control chart.

2.3. Mixed EWMA–CUSUM charts

Abbas et al.13 proposed a mixture of the CUSUM and EWMA charts and named it as the mixed EWMA–CUSUM chart. The two plotting
statistics (Mþ

i and M�
i ) for this chart are given as:

Mþ
i ¼ max 0; Zi � θ0ð Þ � Aθ̂ ;i þMþ

i�1

h i
; M�

i ¼ max 0;�Zi � θ0ð Þ � Aθ̂ ;i þM�
i�1

h i
(5)

where Zi is defined as in (3). The statistics (given in (5)) are plotted against the control limit Bθ̂ ;i and an out-of-control signal is detected
if either one of these statistics crosses the control limit. The standardized versions Aθ̂ ;i and Bθ̂ ;i are given as:

Aθ̂ ;i ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var θ̂
� �

� λ
2� λ

1� 1� λð Þ2i
� �r

; Bθ̂ ;i ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var θ̂
� �

� λ
2� λ

1� 1� λð Þ2i
� �r

(6)

where a and b are constants like k and h in (2), respectively.
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Previous equations (1)–(6) include θ0 and Var θ̂
� �

. Consider that Xij, i= 1, 2,. . . , n and j= 1, 2,. . . , m denote the Phase I data, when

the process is in an in-control state and let Yij, i=1, 2,. . ., n and j= 1, 2,. . . , denote the Phase II data.
We assume that the Xij are normally distributed with mean θ0 and variance σ2, i.e. N(θ0, σ

2). The unknown location parameter θ0 is
estimated from the mean of the sample means, i.e.

θ̂0 ¼ X ¼ 1

m
∑
m

j¼1
Xj ¼ 1

m
∑
m

j¼1

1

n
∑
n

i¼1
Xij

� �

and the unknown dispersion parameter σ is based on the pooled sample standard deviation,

Sp ¼ 1

m
∑
m

j¼1
S2j

 !1=2

where S2j is the jth sample variance defined by

S2j ¼
1

n� 1
∑
n

i¼1
Xij � Xj

� �2
:

An unbiased estimator of σ is given by σ̂ ¼ Sp=c4 m n� 1ð Þ þ 1ð Þ, where c4(q) is defined by

c4 qð Þ ¼ 2

q� 1

� �1=2 Γ q
2

� �
Γ q�1

2

� � :
Note that Var θ̂

� �
is a function of dispersion parameter σ which is unknown and has to be estimated. The estimates θ̂0 ¼ X and σ̂ ¼

Sp=c4 m n� 1ð Þ þ 1ð Þ will be used in (1)–(6), respectively, instead of θ0 and σ for the construction of the control limits in Phase I.
In Phase II we assume that Yij are independent and equally distributed as the Xij, with the only difference that the location

parameter may be shifted.

The sample mean Y ¼ 1
n ∑

n

i¼1
Yi is one of the estimators of the population location that can replace θ̂ in (1)–(6) in Phase II. However,

there are many other estimators that can also be used instead of θ̂ with the above mentioned three memory charts structures. The
first estimator we consider out of those is the sample median. The sample median is defined as the middle order statistic Y ¼ Y nþ1

2ð Þ
for odd sample sizes and the average of the two middle order statisticsY ¼ 1

2 Y n
2ð Þ þ Y nþ2

2ð Þ
� �

in case of even sample sizes. The sample

median is a robust estimator, because it is least affected by outliers (cf. Dixon and Massey18). The next estimator is the sample

midrange and is defined as MR ¼ Y 1ð ÞþY nð Þ
2 , where Y(1) and Y(n) are the lowest and highest order statistics in a random sample of size

n. It is highly sensitive to outliers as its design structure is based on only extreme values of data (cf. Ferrell19 for more details). We also
include the estimator based on the median of the pairwise Walsh averages, which is defined as: HL=median((Yj+ Yk)/2, 1 ≤ j ≤ k ≤ n).
The main advantage of the HL estimator is that it is robust against outliers in a sample. For more properties of HL see Hettmansperger
and McKean.20 The estimator HL is also known as the Hodges–Lehmann estimator. The next estimator included in this study is the

trimean of a sample, which is the weighted average of the sample median and two quartiles and is defined as: TM ¼ Q1þ2Q2þQ3
4 , where

Qp (p=1, 2, 3) denote one of the three quartiles in a sample. For detailed properties of trimean (TM) see Wang et al..21 The last

estimator used in this study is sample trimmed mean and is defined as TRM ¼ 1
n�2T ∑

n�T

i¼Tþ1
Y ið Þ, where 2T is the number of trimmed values

and Y(i) is the ith order statistic in a sample of size n. We take T=1 for n=5 and T= 2 for n= 10, respectively.
Under normality, the means and (asymptotic) variances (cf. Song et al.,22 Caperaa and Rivest,23 Khattree and Rao24 and Wang

et al.21) of these estimators are given in Table I.
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3. Design and derivation of phase II control limits of the charts

The design of the Phase II control charts involves a derivation of different factors: the CUSUM structure requires values of k and h (cf.
(2)), the EWMA scheme needs λ and L (cf. (4)), and the mixed EWMA–CUSUM demands values of a and b (cf. (6)) for the construction of
the control limits of these charts. Along with these factors, the Phase I process location parameter θ and dispersion parameter σ also
have to be estimated.

We derive these factors in such a way that we obtain the intended value of ARL0 = 370. The Phase I estimators are θ̂0 ¼ X and σ̂ ¼
Sp=c4 m n� 1ð Þ þ 1ð Þ . We employ different estimators for the Phase II plotting statistic(s) and adopt the following settings, k= 0.5,
λ= 0.13 and a=0.5 as optimal constants to detect a shift size of δ= 1 (i.e. a shift of 1 σ), for respectively, CUSUM, EWMA and mixed
EWMA–CUSUM charts, taking inspiration from Lucas,3 Crowder,25 and Abbas et al..13 We simulate the factors h for the CUSUM, L
for the EWMA and b for the mixed EWMA–CUSUM control chart by considering m=50 subgroups of sizes n= 5 and n= 10 from an
uncontaminated normal environment with desired ARL0 = 370. Values of these factors are given in Table II.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1347–1356



Table II. Factors of CUSUM, EWMA and mixed EWMA–CUSUM charts under uncontaminated normal environment with m= 50 at
ARL0 = 370

n Chart

Phase II estimators

Mean Median Midrange HL Trimean Trimmed

5 CUSUM h=5.000 h= 4.532 h= 5.058 h=5.110 h=4.480 h= 4.520
EWMA L=2.895 L= 2.740 L=2.912 L= 2.926 L=2.790 L= 2.760
Mixed b= 36.30 b=31.76 b= 35.90 b= 36.82 b= 32.20 b=33.98

10 CUSUM h=5.078 h= 4.440 h= 5.168 h=5.116 h=4.680 h= 4.827
EWMA L=2.916 L= 2.714 L=2.935 L= 2.929 L=2.790 L= 2.847
Mixed b= 36.70 b=31.08 b= 35.26 b= 36.78 b= 33.50 b=35.14

Table I. Expected values and the asymptotic variances of the estimators under in-control situation

Estimator Expected value of the estimator (Asymptotic) variance of the estimator

Mean θ0 σ2
n

Median θ0 πσ2
2n

Midrange θ0 π2σ2
24 ln nð Þ

Hodges–Lehmann (HL) θ0 πσ2
3n

Trimean θ0 πσ2
2:61n

Trimmed mean θ0

n σ2 � 2:9565ð Þ
n� 2ð Þ2 for n ¼ 5

n σ2 � 5:9209ð Þ
n� 4ð Þ2 for n ¼ 10
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4. Performance evaluation of memory control charts

This section gives the details regarding the performance evaluation of the three memory control charts for normal and contaminated
normal environments.

The performance of the design structures is measured in terms of different characteristics of run length distribution e.g. its
ARL s, SDRL and its various percentile points. As a baseline we use the most conventional measure in-control ARL, i.e.
ARL0 = 370, under normality for the performance evaluation and comparisons. The evaluation of ARL values is done using
Monte Carlo simulations.

Now for the Phase II analysis, the estimated Phase I process location parameter θ and dispersion parameter σ are used for
constructing the control limits of all the charts (where the control limits of the CUSUM are given in (2), the control limits of the EWMA
are given in (4) and the control limits of the mixed EWMA–CUSUM control chart are given in (6)). Then, by applying the out-of-control
condition (i.e. when an out-of-control signal occurs), we have noted the sample number where the plotting statistic crosses the
control limits. This noted number is called run length which is replicated 105 times to get the run length distribution. The mean of
that distribution, when the location has not been changed, is known as ARL0. After that, we introduce different amounts of shifts δ
(i.e. the location parameter is shifted from the target value θ0 to θ0 + δσ such that when δ=0, the location parameter θ of the process
is in control; otherwise the location parameter has changed and needs to be detected) in the process while keeping the control limits
the same as we have used for the in-control case. It results in an evaluation of the ARL1 performance of all the charts. Hence the
performance measure ARL1 is used for measuring the efficiency of charts and for robustness comparison, ARL0 is used.
4.1. Normal and contaminated normal environments

The description of the environments, for which the performance of the CUSUM, EWMA and mixed EWMA–CUSUM control charts is
evaluated, is given as follows:
4.1.1. Normal environment Here, we provide the performance of the memory charts under a perfectly normal environment with
mean θ and variance σ2, i.e. N(θ, σ2). Without loss of generality, we use θ =0 and σ = 1 throughout this article.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1347–1356
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4.1.2. Diffuse symmetric variance contaminated normal environment Here, (1� α)100% observations in a sample come from the
standard normal distribution, i.e. N(0, 1), and (α)100% observations of that sample are from N(0, 4), i.e. a normal distribution with
inflated variance.
4.1.3. Localized variance contaminated normal environment Here, a sample of size n with probability (1� α)100% come from the
standard normal distribution, i.e. N(0, 1), and otherwise a sample with probability (α)100% is from N(0, 4), i.e. a normal distribution
with inflated variance.
4.1.4. Diffuse asymmetric variance contaminated normal environment Here, asymmetric variance disturbances are introduced in the
process, i.e. (1� α)100% observations in a sample come from the standard normal distribution, i.e. N(0, 1), and (α)100% observations
are from N(0, 1) having a multiple of a χ21ð Þ variable added to it with multiplier equal to 4.

Note that these environments are commonly used in these robust studies (cf. Schoonhoven et al.16 and Nazir et al.17). We take in
the comparisons α= 0.05.
Table III. ARL values of CUSUM, EWMA and mixed EWMA–CUSUM charts with m= 50 at ARL0 = 370 under uncontaminated
normal environment

n Chart Estimator

ARL(δ)

0 0.25 0.5 0.75 1 1.5 2 3 5

5 CUSUM Mean 370.960 39.833 9.073 5.043 3.551 2.322 1.861 1.124 1.000
Median 370.186 56.332 12.110 6.264 4.264 2.682 2.055 1.374 1.000
Midrange 369.489 50.029 11.147 5.973 4.118 2.633 2.039 1.358 1.000
HL 371.060 42.524 9.614 5.314 3.714 2.413 1.920 1.188 1.000
Trimean 371.919 43.767 9.487 5.125 3.571 2.317 1.841 1.116 1.000
Trimmed 369.742 42.234 9.212 5.042 3.508 2.287 1.783 1.136 1.000

EWMA Mean 371.264 34.015 7.516 3.691 2.353 1.362 1.061 1.000 1.000
Median 369.967 46.430 10.147 4.894 3.058 1.685 1.206 1.003 1.000
Midrange 369.669 42.766 9.386 4.561 2.858 1.595 1.157 1.002 1.000
HL 370.258 36.090 7.956 3.928 2.475 1.420 1.084 1.000 1.000
Trimean 370.297 39.073 8.247 4.027 2.532 1.442 1.089 1.000 1.000
Trimmed 369.247 35.086 7.694 3.828 2.433 1.412 1.087 1.000 1.000

Mixed
EWMA–
CUSUM

Mean 369.937 37.119 17.361 12.508 10.101 7.589 6.219 4.773 3.179
Median 369.702 43.617 19.256 13.650 10.950 8.169 6.675 5.057 3.630
Midrange 369.226 42.226 19.098 13.625 10.960 8.195 6.710 5.084 3.692
HL 369.097 38.443 17.893 12.861 10.386 7.788 6.381 4.889 3.342
Trimean 370.070 37.442 17.238 12.363 9.978 7.468 6.121 4.668 3.103
Trimmed 370.697 37.969 17.469 12.524 10.106 7.571 6.206 4.707 3.287

10 CUSUM Mean 369.951 17.700 5.521 3.357 2.477 1.802 1.232 1.000 1.000
Median 370.690 24.379 6.683 3.886 2.802 1.944 1.457 1.003 1.000
Midrange 370.496 31.178 8.398 4.782 3.400 2.252 1.825 1.082 1.000
HL 369.035 18.640 5.741 3.471 2.552 1.845 1.293 1.000 1.000
Trimean 370.352 19.469 5.766 3.458 2.532 1.814 1.264 1.000 1.000
Trimmed 370.627 18.988 5.735 3.450 2.537 1.801 1.283 1.001 1.000

EWMA Mean 371.352 15.161 4.110 2.170 1.471 1.035 1.000 1.000 1.000
Median 370.566 20.177 5.304 2.745 1.794 1.132 1.007 1.000 1.000
Midrange 370.449 26.687 6.751 3.412 2.191 1.291 1.041 1.000 1.000
HL 369.956 15.943 4.316 2.270 1.524 1.046 1.001 1.000 1.000
Trimean 368.507 16.440 4.421 2.313 1.554 1.056 1.001 1.000 1.000
Trimmed 371.715 16.275 4.399 2.303 1.550 1.059 1.001 1.000 1.000

Mixed
EWMA–
CUSUM

Mean 369.621 24.261 13.175 9.752 7.958 6.026 4.978 3.926 2.946
Median 370.223 26.953 14.083 10.327 8.394 6.315 5.167 3.990 2.994
Midrange 370.631 31.757 16.121 11.733 9.507 7.151 5.881 4.418 3.009
HL 371.022 24.904 13.434 9.937 8.105 6.130 5.039 3.964 2.979
Trimean 368.809 24.802 13.275 9.793 7.977 6.033 4.978 3.918 2.939
Trimmed 370.225 25.018 13.421 9.898 8.070 6.097 5.010 3.874 2.864

Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1347–1356
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Table IV. ARL values of CUSUM, EWMA and mixed EWMA–CUSUM charts with m= 50 at ARL0 = 370 under diffuse symmetric
variance contaminated normal environment

n Chart Estimator

ARL(δ)

0 0.25 0.5 0.75 1 1.5 2 3 5

5 CUSUM Mean 205.586 34.104 9.385 5.261 3.714 2.430 1.925 1.216 1.005
Median 280.197 51.814 12.359 6.435 4.385 2.754 2.102 1.416 1.002
Midrange 123.295 35.917 11.411 6.352 4.422 2.832 2.189 1.482 1.093
HL 250.772 41.438 10.176 5.581 3.896 2.509 1.974 1.256 1.007
Trimean 241.763 42.477 10.084 5.427 3.763 2.427 1.896 1.194 1.002
Trimmed 258.276 40.950 9.651 5.241 3.655 2.363 1.833 1.179 1.001

EWMA Mean 220.788 29.779 7.384 3.712 2.370 1.380 1.073 1.001 1.000
Median 290.172 42.363 10.032 4.889 3.048 1.694 1.211 1.005 1.000
Midrange 140.017 32.355 9.020 4.536 2.882 1.625 1.181 1.008 1.000
HL 260.660 33.133 7.900 3.916 2.495 1.428 1.092 1.001 1.000
Trimean 300.958 35.151 8.143 4.015 2.552 1.454 1.099 1.001 1.000
Trimmed 275.763 32.019 7.607 3.828 2.439 1.418 1.097 1.001 1.000

Mixed
EWMA–
CUSUM

Mean 292.322 36.840 17.435 12.534 10.119 7.592 6.227 4.767 3.189
Median 475.142 46.897 19.939 14.062 11.254 8.392 6.860 5.181 3.728
Midrange 280.581 39.496 18.468 13.209 10.638 7.966 6.535 4.962 3.530
HL 415.371 39.541 18.153 13.036 10.514 7.888 6.469 4.923 3.457
Trimean 414.258 38.303 17.427 12.506 10.080 7.549 6.184 4.710 3.212
Trimmed 851.272 47.058 19.921 14.111 11.326 8.465 6.920 5.240 3.747

10 CUSUM Mean 212.117 16.842 5.714 3.499 2.588 1.852 1.330 1.007 1.000
Median 291.308 23.585 6.827 3.973 2.869 1.977 1.495 1.009 1.000
Midrange 78.245 23.243 8.796 5.241 3.767 2.511 2.003 1.305 1.085
HL 260.353 19.338 6.027 3.622 2.655 1.886 1.366 1.004 1.000
Trimean 273.492 20.145 6.030 3.592 2.625 1.857 1.325 1.003 1.000
Trimmed 277.029 19.642 5.975 3.578 2.617 1.840 1.340 1.003 1.000

EWMA Mean 224.377 14.445 4.113 2.194 1.489 1.047 1.001 1.000 1.000
Median 301.759 19.693 5.317 2.738 1.804 1.138 1.009 1.000 1.000
Midrange 90.298 20.550 6.582 3.454 2.254 1.337 1.071 1.004 1.000
HL 274.427 15.485 4.302 2.276 1.532 1.055 1.001 1.000 1.000
Trimean 283.828 15.900 4.399 2.325 1.561 1.061 1.001 1.000 1.000
Trimmed 288.092 15.799 4.397 2.321 1.558 1.064 1.002 1.000 1.000

Mixed
EWMA–
CUSUM

Mean 294.426 24.424 13.203 9.765 7.960 6.023 4.976 3.918 2.938
Median 503.884 28.285 14.623 10.678 8.659 6.519 5.333 4.030 2.987
Midrange 216.461 28.891 15.075 11.009 8.949 6.732 5.533 4.168 2.982
HL 428.580 25.382 13.677 10.105 8.235 6.223 5.104 3.966 2.957
Trimean 455.428 25.495 13.578 10.007 8.145 6.152 5.050 3.938 2.926
Trimmed 898.986 29.327 15.184 11.128 9.045 6.815 5.604 4.186 3.000
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4.2. Performance comparison of the classical and robust control structures

In section we have described the six different location estimators which will be used in this study. In this subsection we will evaluate
these estimators with the design structures of the CUSUM, EWMA and mixed EWMA–CUSUM control charts. The ARL0 and ARL1 based
comparisons of the charts under the different environments discussed in section are given in Tables III–VI.

Keeping in mind that ARL0 is a measure for robustness and ARL1 is a measure of efficiency, the following points cover the findings
of Tables III–VI:

1. Normal environment: As we have explained earlier we have taken ARL0 = 370. It may be concluded from Table III that, if there is
no shift, indeed the ARL0 is around 370. Clearly, the ARL1 performance of the EWMA control chart is best among the three
control charts. This makes the EWMA control chart dominant over the CUSUM and mixed EMWA–CUSUM charts as the ARLs
for EWMA are smaller for larger values of δ (cf. Table III). Under the uncontaminated normal environment, as it was expected,
the sample mean performs best with the design structures of the CUSUM, EWMA and mixed EWMA–CUSUM charts as compared
to all other estimators used (cf. Table III). For small shifts in the process, i.e. δ=0.25, the EWMA chart with the trimmed mean
estimator performs well, followed by the HL estimator with the EWMA structure. For small sample sizes, the mixed EWMA–
CUSUM chart is slightly better than the CUSUM chart (cf. Table III).
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1347–1356



Table V. ARL values of CUSUM, EWMA and mixed EWMA–CUSUM charts with m=50 at ARL0 = 370 under localized variance
contaminated normal environment

n Chart Estimator

ARL(δ)

0 0.25 0.5 0.75 1 1.5 2 3 5

5 CUSUM Mean 186.939 34.273 9.005 5.036 3.558 2.325 1.862 1.132 1.000
Median 183.256 45.501 11.868 6.240 4.257 2.687 2.065 1.377 1.001
Midrange 187.388 41.651 10.939 5.962 4.142 2.640 2.046 1.358 1.001
HL 189.957 35.935 9.582 5.313 3.726 2.418 1.921 1.195 1.000
Trimean 183.341 36.725 9.414 5.132 3.581 2.324 1.842 1.125 1.000
Trimmed 166.674 34.709 9.161 5.043 3.519 2.294 1.786 1.142 1.000

EWMA Mean 206.444 30.071 7.439 3.711 2.371 1.378 1.071 1.002 1.000
Median 205.883 39.461 9.932 4.881 3.059 1.698 1.218 1.008 1.000
Midrange 207.653 36.833 9.228 4.555 2.870 1.607 1.169 1.005 1.000
HL 207.087 31.781 7.884 3.939 2.495 1.433 1.091 1.002 1.000
Trimean 235.093 34.154 8.168 4.030 2.546 1.450 1.097 1.002 1.000
Trimmed 187.948 30.133 7.663 3.829 2.448 1.422 1.098 1.003 1.000

Mixed
EWMA–
CUSUM

Mean 290.984 37.045 17.397 12.540 10.114 7.588 6.225 4.767 3.187
Median 291.370 43.480 19.349 13.695 10.957 8.169 6.678 5.057 3.625
Midrange 293.450 41.961 19.189 13.645 10.978 8.202 6.716 5.084 3.688
HL 291.633 38.454 17.954 12.887 10.397 7.795 6.384 4.885 3.345
Trimean 288.958 37.402 17.301 12.398 9.984 7.467 6.125 4.665 3.110
Trimmed 289.030 38.031 17.549 12.551 10.119 7.574 6.206 4.708 3.290

10 CUSUM Mean 191.302 17.000 5.517 3.374 2.485 1.800 1.240 1.001 1.000
Median 184.090 22.743 6.673 3.899 2.814 1.946 1.459 1.007 1.000
Midrange 191.757 28.383 8.326 4.799 3.416 2.258 1.824 1.090 1.000
HL 190.179 17.692 5.744 3.482 2.561 1.846 1.299 1.002 1.000
Trimean 185.838 18.452 5.763 3.470 2.541 1.815 1.271 1.002 1.000
Trimmed 179.613 18.033 5.718 3.461 2.543 1.800 1.289 1.002 1.000

EWMA Mean 209.400 14.597 4.121 2.190 1.478 1.044 1.003 1.000 1.000
Median 209.208 19.153 5.304 2.747 1.812 1.141 1.012 1.000 1.000
Midrange 209.875 24.620 6.724 3.420 2.211 1.304 1.047 1.001 1.000
HL 207.123 15.368 4.333 2.285 1.536 1.057 1.003 1.000 1.000
Trimean 206.977 15.600 4.407 2.338 1.570 1.063 1.004 1.000 1.000
Trimmed 200.900 15.547 4.398 2.327 1.567 1.069 1.005 1.000 1.000

Mixed
EWMA–
CUSUM

Mean 293.249 24.346 13.207 9.768 7.963 6.024 4.978 3.920 2.940
Median 291.893 27.122 14.117 10.338 8.401 6.320 5.173 3.990 2.991
Midrange 294.094 31.787 16.180 11.753 9.517 7.153 5.881 4.422 3.013
HL 290.902 24.995 13.473 9.949 8.114 6.133 5.041 3.959 2.976
Trimean 291.016 24.873 13.303 9.807 7.983 6.035 4.976 3.910 2.930
Trimmed 289.129 25.112 13.446 9.913 8.071 6.098 5.012 3.872 2.860
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2. Diffuse symmetric variance contaminated normal environment: We see from Table IV, that the ARL0 of the mixed EWMA–
CUSUM chart with the HL estimator is not much affected by the presence of a diffuse symmetric variance contamination in
the distribution. On the other hand, the in-control ARLs for the other charts are disturbed, and the gap between the pre-
fixed ARL0 (370) and the attained ARL0 is mostly significant. In most cases the number of false alarms has increased when there
is a diffuse symmetric variance contamination present in the data but δ= 0. The effect of this kind of variance contamination on
the design structure of these charts is obvious. For example, the in-control ARL0 of the CUSUM, EWMA and mixed EWMA–
CUSUM charts with the sample mean as location estimator decreases respectively by 44.58%, 40.53% and 20.93% for n=5
and approximately the same decrease can be seen for n= 10. This shows that the mixed EWMA–CUSUM is more robust to
diffuse symmetric variance contaminations as compared to the CUSUM and EWMA charts. In the other words, the mixed
EWMA–CUSUM reacts when there is a shift in the location parameter and does not react unnecessarily in the presence of
variance contamination when we assume that this variance contamination is a part of the in-control process.

3. Localized variance contaminated normal environment: Table V reads that the in-control ARL s of the mixed EWMA–CUSUM chart
is less affected as compared to the in-control ARL s of the CUSUM and EWMA charts. The influence of the estimator is limited for
all charts when there are localized variance contaminations (the trimmed mean has the worst performance in the in-control
situation). The CUSUM chart is producing many false alarms when the process is in-control. According to the ARL1 determinant,
the EWMA chart is very effective in finding out-of-control situations.
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Table VI. ARL values of CUSUM, EWMA and mixed EWMA–CUSUM charts with m= 50 at ARL0 = 370 under diffuse asymmetric
variance contaminated normal environment

n Chart Estimator

ARL(δ)

0 0.25 0.5 0.75 1 1.5 2 3 5

5 CUSUM Mean 24.471 11.733 6.191 4.139 3.115 2.165 1.769 1.107 1.000
Median 221.194 33.230 10.131 5.735 4.023 2.602 2.019 1.348 1.000
Midrange 15.477 10.459 6.496 4.498 3.441 2.386 1.918 1.307 1.000
HL 110.292 20.474 7.749 4.733 3.444 2.321 1.865 1.165 1.000
Trimean 37.723 14.067 6.713 4.291 3.177 2.179 1.757 1.102 1.000
Trimmed 130.813 22.258 7.672 4.577 3.298 2.212 1.741 1.124 1.000

EWMA Mean 24.765 10.197 4.986 3.014 2.092 1.307 1.053 1.000 1.000
Median 229.483 27.581 8.391 4.370 2.840 1.627 1.188 1.003 1.000
Midrange 15.167 9.325 5.382 3.457 2.433 1.494 1.133 1.001 1.000
HL 116.648 17.650 6.174 3.407 2.274 1.367 1.072 1.000 1.000
Trimean 42.583 12.694 5.629 3.292 2.246 1.373 1.076 1.000 1.000
Trimmed 146.130 19.240 6.270 3.403 2.268 1.369 1.076 1.000 1.000

Mixed
EWMA–
CUSUM

Mean 49.725 20.309 13.646 10.719 9.006 7.025 5.872 4.564 3.119
Median 267.080 33.471 17.685 12.970 10.563 7.973 6.562 5.005 3.580
Midrange 29.304 17.770 13.015 10.578 9.038 7.182 6.070 4.747 3.486
HL 170.946 27.386 15.885 11.972 9.858 7.526 6.222 4.807 3.286
Trimean 75.458 22.265 14.178 10.942 9.126 7.043 5.854 4.505 3.070
Trimmed 214.485 28.489 15.887 11.840 9.691 7.368 6.081 4.645 3.257

10 CUSUM Mean 17.351 7.027 3.978 2.789 2.196 1.653 1.178 1.000 1.000
Median 223.303 16.272 5.874 3.617 2.676 1.897 1.412 1.002 1.000
Midrange 7.919 5.992 4.329 3.293 2.654 1.968 1.652 1.061 1.000
HL 134.052 11.551 4.903 3.182 2.412 1.778 1.247 1.000 1.000
Trimean 143.537 12.270 4.970 3.179 2.401 1.750 1.223 1.000 1.000
Trimmed 180.328 12.645 5.024 3.210 2.416 1.745 1.244 1.000 1.000

EWMA Mean 16.346 5.747 2.879 1.831 1.346 1.026 1.000 1.000 1.000
Median 227.155 13.632 4.553 2.503 1.696 1.114 1.006 1.000 1.000
Midrange 7.409 5.220 3.509 2.432 1.812 1.214 1.030 1.000 1.000
HL 136.495 9.693 3.541 2.035 1.433 1.038 1.001 1.000 1.000
Trimean 147.900 10.218 3.677 2.094 1.462 1.044 1.001 1.000 1.000
Trimmed 186.448 10.652 3.731 2.103 1.470 1.049 1.001 1.000 1.000

Mixed
EWMA–
CUSUM

Mean 33.412 14.895 10.454 8.352 7.084 5.561 4.687 3.710 2.795
Median 247.442 22.434 13.132 9.880 8.123 6.186 5.097 3.974 2.989
Midrange 15.376 11.530 9.346 7.974 7.025 5.764 4.961 3.926 2.872
HL 168.006 19.863 12.254 9.365 7.761 5.962 4.961 3.923 2.959
Trimean 183.772 19.981 12.175 9.270 7.660 5.871 4.895 3.860 2.900
Trimmed 213.733 20.632 12.428 9.431 7.783 5.950 4.930 3.835 2.838
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4. Diffuse asymmetric variance contaminated normal environment: From Table VI, we see that the in-control ARL s of the
CUSUM, EWMA and the mixed EWMA–CUSUM charts are highly affected by the presence of such type of contaminations.
The best in-control behavior is obtained with the median as estimator. Again the mixed EWMA–CUSUM chart has the
best in-control ARLs and the EWMA chart is more efficient in detecting shifts as the corresponding ARL1 s are the
smallest (cf. Table VI).

To obtain a more global view of the run length distribution, along with the ARL, different indicators like the standard deviation of
the run length (SDRL) and percentiles (denoted by Pi, i= 5, 25, 50, 75, 95) of the run lengths of the in-control process are reported in
Table VII. These measures help studying the short and long run behavior of the run length distribution. For instance, the 5%
percentiles of the run length distribution of the CUSUM, EWMA and mixed EWMA–CUSUM charts are on average about 20, 14, and
40 observations for all estimators used. (cf. Table VII).

To get more insight into the out-of-control run length distribution, Figure 1 presents the run length distribution curves of all the
charts considering n=10, m=50, k= 0.5 and λ= 0.13 with δ= 0.25 for normal environment. We only use three estimators: sample
mean, sample median and HL estimator. In Figure 1, C, E and M represent, respectively, CUSUM, EWMA and mixed EWMA–CUSUM
charts. The curves give the cumulative probability of detecting an out-of-control situation. A higher curve shows the superiority of
a chart in terms of its quick detection of shifts in the process parameter. It can be observed from Figure 1 that EWMA charts based
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1347–1356



Table VII. Characteristics of in-control run length distribution under uncontaminated normal environment for n=10, m= 50,
k= 0.5 and λ= 0.13 at ARL0 = 370

Chart Estimator SDRL Min P5 P25 P50 P75 P95 Max

CUSUM Mean 441.06 3 21 87 220 482.25 1223.05 6516
Median 425.46 2 21 95 234 499 1179 4488
Midrange 414.8 2 24 100 238 497 1171 5086
HL 443.5 3 20 89 220 484 1259.05 5047
Trimean 424.06 2 21 90 222 487 1173 6226
Trimmed 628.88 2 16 70 176 431 1322.2 16 482

EWMA Mean 463.69 1 14 82 209 478 1265.1 7765
Median 451.07 1 14 87 222 492 1245 5868
Midrange 427.63 1 15 91 231 497 1221 6477
HL 445.82 1 15 83.75 221 489.25 1250.05 4362
Trimean 454.56 1 14 81 209 478 1235.1 7772
Trimmed 592.98 1 11 65 175 435 1342 12 857

Mixed EWMA–CUSUM Mean 467.16 15 40 93 199.5 442 1270 5056
Median 443.42 14 40 99 216 466 1217.05 6810
Midrange 398.36 16 45 110 230 478 1168 5197
HL 453.89 16 41 96 204 468 1249.2 5500
Trimean 442 13 40 95 207.5 455.25 1214 4772
Trimmed 497.97 14 39 89 194 445 1262.15 6974

Figure 1. Run length curves for memory charts under uncontaminated normal environment when n = 10, m = 50, k = 0.5, λ = 0.13 and δ = 0.25 at ARL0 = 370

H. Z. NAZIR ET AL.
on all estimators have higher probabilities for small run lengths to detect the shift than those of other memory charts under
normality. For detecting a shift of magnitude δ=0.25 at a run length equal to 50, the mixed EMWA–CUSUM has larger probabilities
as compared to the EWMA and CUSUM charts.
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5. Summary and conclusion

Control charts are widely used in monitoring and controlling variations present in the process location and dispersion. Commonly
applied control charts are the memory-less (Shewhart-type) charts for targeting the large shifts and memory (EWMA and CUSUM)
charts for aiming the smaller shifts. A combination of the EWMA and CUSUM control charts is applied to enhance the performance
of the charts even further. The current study presents a comparison of the CUSUM, EWMA and mixed EWMA–CUSUM control charts
based on different estimators. Different parent environments (normal and contaminated normal) are used to evaluate the
performance of these charts in terms of their ARLs and different percentiles of the RL distribution. The comparisons showed that there
is no single control chart or estimator which behaves well in all environments. Under normality the EWMA control chart based on the
sample mean is the best, although the differences with the other charts and estimators are insignificant (especially for small shifts).
When there are localized or diffuse symmetric variances contaminations the mixed EWMA–CUSUM control chart is quite robust
against these variance contaminations. Overall the best performance is obtained by the EWMA control chart based on the median
estimator.
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H. Z. NAZIR ET AL.

1
3
5
6

Acknowledgement

The co-authors, Muhammad Riaz and Nasir Abbas, are indebted to the King Fahd University of Petroleum and Minerals Dhahran Saudi
Arabia for providing excellent research facilities.
References
1. Page ES. Continuous inspection schemes. Biometrika 1954; 41(1–2):100–115.
2. Roberts SW. Control chart tests based on geometric moving averages. Technometrics 1959; 1(3):239–250.
3. Lucas JM. Combined Shewhart–CUSUM quality control schemes. Journal of Quality Technology 1982; 14(2):51–59.
4. Lucas JM, Saccucci MS. Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 1990; 32(1):1–12.
5. Steiner SH. EWMA control charts with time varying control limits and fast initial response. Journal of Quality Technology 1999; 31(1):75–86.
6. Capizzi G, Masarotto G. An adaptive exponentially weighted moving average control chart. Technometrics 2003; 45(3):199–207.
7. Zhao Y, Tsung F, Wang Z. Dual CUSUM control schemes for detecting a range of mean shifts. IIE Transactions 2005; 37(11):1047–1057.
8. Colosimo BM, Godio F, Palmieri L. Comparative studies of control charts for torque data in automotive component assembling. International Journal

of Technology Management 2007; 37(1):72–85.
9. Castagliola P, Celano G, Fichera S, Giuffrida F. A variable sampling interval S2–EWMA control chart for monitoring the process variance. International

Journal of Technology Management 2007; 37(1):125–246.
10. Machado MAG, Costa AFB. The double sampling and the EWMA charts based on the sample variances. International Journal of Production

Economics 2008; 114(1):134–148.
11. Riaz M, Abbas N, Does RJMM. Improving the performance of CUSUM charts. Quality and Reliability Engineering International 2011; 27(4):415–424.
12. Abbas N, Riaz M, Does RJMM. Enhancing the performance of EWMA charts. Quality and Reliability Engineering International 2011; 27(6):821–833.
13. Abbas N, Riaz M, Does RJMM. Mixed exponentially weighted moving average-cumulative sum charts for process monitoring. Quality and Reliability

Engineering International 2013; 29(3):355–365.
14. Woodall WH, Montgomery DC. Research issues and ideas in statistical process control. Journal of Quality Technology 1999; 31:376–386.
15. Jensen WA, Jones-Farmer LA, Champ CW, Woodall WH. Effects of parameter estimation on control charts properties: a literature review. Journal of

Quality Technology 2006; 38(4):349–364.
16. Schoonhoven M, Nazir HZ, Riaz M, Does RJMM. Robust location estimators for the Xbar chart. Journal of Quality Technology 2011; 34(4):363–379.
17. Nazir HZ, Riaz M, Does RJMM, Abbas N. Robust CUSUM control charting. Quality Engineering 2013; 25(3):211–224.
18. Dixon WJ, Massey FJ. Introduction to statistical analysis (3rd edn). McGraw-Hill: New York, 1969.
19. Ferrell EB. Control charts using midranges and medians. Industrial Quality Control 1953; 9(5):30–34.
20. Hettmansperger TP, McKean JW. Robust nonparametric statistical methods. Wiley: New York, 1998.
21. Wang T, Li Y, Cui H. On weighted randomly trimmed means. Journal of Systems Science and Complexity 2007; 20(1):47–65.
22. SongMS, Chung HY, BaeW. Subset selection procedures based on some robust estimators. Journal of the Korean Statistical Society 1982; 11:109–117.
23. Caperaa P, Rivest LP. On the variance of trimmed mean. Statistics and Probability Letters 1995; 22(1):79–85.
24. Khattree R, Rao CR. Statistics in industry—(handbook of statistics; v. 22) (1st edn). Elsevier: The Netherlands, 2003.
25. Crowder SV. Design of exponentially weighted moving average schemes. Journal of Quality Technology 1989; 21(3):155–162.
Authors' biographies

Hafiz Zafar Nazir obtained his MSc in Statistics from the Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan, in
2006, and MPhil in Statistics from the Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan, in 2008. He obtained
his PhD in statistics from the Institute for Business and Industrial Statistics, University of Amsterdam, the Netherlands, in September,
2014. He is serving as a lecturer in the Department of Statistics, University of Sargodha, Pakistan, from September 2009 to till date. His
current research interests include statistical process control, nonparametric techniques, and robust methods.

Nasir Abbas did his PhD in Statistics from the Institute for Business and Industrial Statistics, University of Amsterdam, the
Netherlands, in 2008. Currently, he holds the position of assistant professor in the Department of Mathematics and Statistics, King
Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia. His current research interests include statistical process control.

Muhammad Riaz obtained his PhD in statistics from the Institute for Business and Industrial Statistics, University of Amsterdam, the
Netherlands, in 2008. He holds the position of associate professor in the Department of Mathematics and Statistics, King Fahd
University of Petroleum and Minerals, Dhahran, Saudi Arabia. His current research interests include statistical process control,
nonparametric techniques, and experimental design.

Ronald J.M.M. Does is a professor of Industrial Statistics at the University of Amsterdam; director of the Institute for Business and
Industrial Statistics, which operates as an independent consultancy firm within the University of Amsterdam; head of the Department
of Operations Management; and director of the Institute of Executive Programmes at the Amsterdam Business School. He is a fellow of
the ASQ and ASA and Academician of the International Academy for Quality. His current research activities include the design of
control charts for nonstandard situations, health care engineering, and operations management methods.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1347–1356


