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In this paper we derive correction factors for Shewhart control charts that monitor individual observations as well as subgroup
averages. In practice, the distribution parameters of the process characteristic of interest are unknown and, therefore, have to
be estimated. A well-known performance measure within Statistical Process Monitoring is the expectation of the average run
length (ARL), defined as the unconditional ARL. A practitioner may want to design a control chart such that, in the in-control
situation, it has a certain expected ARL. However, accurate correction factors that lead to such an unconditional ARL are not
yet available. We derive correction factors that guarantee a certain unconditional in-control ARL. We use approximations
to derive the factors and show their accuracy and the performance of the control charts – based on the new factors – in
out-of-control situations. We also evaluate the variation between the ARLs of the individually estimated control charts.

Keywords: average run length; parameter estimation; process control; process monitoring; SPC; statistical methods

1. Introduction

Shewhart X and X̄ control charts are common tools to monitor process means. In practice, the true process parameters are
often unknown, and need to be estimated using a Phase I reference sample. However, since different practitioners have
different Phase I data, the estimates of the process parameters will vary across practitioners. Because of this the estimated
control limits, and consequently the control chart performance, are actually random variables. This variation in control chart
performance has been addressed by several researchers, and is of great interest in current SPC literature. An overview of this
literature is given by Jensen et al. (2006) and Psarakis, Vyniou, and Castagliola (2014).

The performance of a control chart is generally measured in terms of the false alarm rate (FAR) or the average run length
(ARL). However, for example as shown by Quesenberry (1993) and Chen (1997), the amount of Phase I data required for
the control chart to perform properly is substantially larger than initially thought. Although increasing the amount of Phase
I data generally improves the accuracy of the parameter estimates, the required amounts are not always feasible in practice.
Therefore, another solution is to apply corrections to the control chart limits to take parameter estimation into account. For
example, Hillier (1969), Does and Schriever (1992) and Schoonhoven, Riaz, and Does (2009) provide corrections leading to a
desired value of the FAR in expectation. Next to that, more recent works (e.g. Albers and Kallenberg 2004, 2005; Chakraborti
2006; Faraz, Woodall, and Heuchenne 2015; Saleh et al. 2015) also consider other performance measures such as the ARL.

Performance of control charts based on estimated parameters can be evaluated for a given set of parameter values (known
as conditional performance), or in expectation (known as unconditional performance). In this paper we derive new corrections
for the Shewhart X and X̄ control charts to achieve a desired unconditional ARL. Although Albers and Kallenberg (2005)
derived correction factors for the same objective function, they have only considered the individuals chart. Therefore, we
extend their approach for the Shewhart X̄ control chart. In addition, we derive new correction factors and compare their
performance. It will be shown that our newly proposed correction factors outperform those of Albers and Kallenberg (2005).

The next section discusses the considered model and notation. In Section 3, the performance of the correction factors of
Albers and Kallenberg (2005) is assessed. Next, in Section 4 we describe the derivation of the newly proposed correction
factors, and compare their performance. In Section 5, we discuss the implications of using the proposed corrections in
in-control and out-of-control situations. In Section 6, the implementation of the control chart is illustrated with a real-life
example. Finally, in Section 7 we provide concluding remarks.
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2. Model and approach

The Shewhart control chart for monitoring the mean with known parameters has control limits

UCL = μ + Kσ/
√

n, LCL = μ − Kσ/
√

n, (1)

where μ and σ are the mean and standard deviation of the process characteristic of interest, respectively, and where K
is the constant used to achieve the desired probability of a false signal (α). Let Yi j denote the j th observation in sample
i (i = 1, 2, . . . and j = 1, 2, . . . , n) and let Yi j be i.i.d. N (μ + δσ/

√
n, σ ) random variables, where δ = 0 corresponds to

the in-control situation, and where the process is considered out-of-control for δ �= 0. Then, K = �−1(1−α/2) with �−1 the
inverse of the standard normal cumulative distribution function. The run length (RL), i.e. the number of samples before
the control chart gives a signal, has a geometric distribution with parameter α. As a consequence, the in-control ARL is given
by 1/α.

In practice, μ and σ are not known and therefore have to be estimated. To this end, m samples of n measurements on
the process characteristic are collected when the process is considered to be in control. Let Xi j (the j th observation in the
i th subgroup) be i.i.d. N (μ, σ ) random variables (i = 1, 2, . . . , m and j = 1, 2, . . . , n). Note that the Xi j ’s correspond to
Phase I, and the Yi j ’s correspond to Phase II.

For the subgroup control chart, μ is usually estimated by the grand sample mean

¯̄X = 1

m

m∑
i=1

(
1

n

n∑
j=1

Xi j

)
, (2)

and σ is usually estimated by the pooled standard deviation

S̃ =
(

1

m

m∑
i=1

S2
i

)1/2

, (3)

where Si is the i th sample standard deviation defined by

Si =
(

1

n − 1

n∑
j=1

(Xi j − X̄i )
2
)1/2

.

An unbiased estimator of σ is S̃/c4(m(n − 1) + 1) (see e.g. Schoonhoven and Does (2012) or Saleh et al. (2015)), where
c4(k) is defined by

c4(k) =
(

2

k − 1

)1/2
�(k/2)

�((k − 1)/2)
.

For the individuals chart (n = 1), μ is usually estimated by the sample average

�X = 1

m

m∑
i=1

Xi , (4)

where Xi is the i th observation (i = 1, 2, . . . , m). When n = 1, σ is usually estimated by the average moving range

�MR = 1

m − 1

m−1∑
i=1

|Xi+1 − Xi | . (5)

An unbiased estimator of σ is �MR/d2(2), where d2(2) = 2√
π

. Hence we use the most common estimators of σ in both
situations. However, it is possible to use any other desired estimator in our approach.

The performance of a control chart design based on estimated parameters can be evaluated for a given set of parameter
values, known as conditional performance, or in expectation, known as unconditional performance. The conditional ARL
(henceforth denoted as CARL) of a control chart design can be determined as follows. We define Ei (i = 1, 2, . . .) as the
event that �Yi falls outside the control limits. Then

P(Ei |μ̂, σ̂ ) = P(Ȳi < L̂CL) + P(Ȳi > ̂UCL), (6)

where L̂CL and ̂UCL are the control limits as defined in (1) but with μ and σ replaced by their unbiased estimates μ̂ and
σ̂ , respectively. Given a pair of control limits, the events Ei are independent so that the conditional RL is geometrically
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distributed with parameter P(Ei |μ̂, σ̂ ). The CARL is then given by 1/P(Ei |μ̂, σ̂ ) and the unconditional ARL (henceforth
denoted as EARL) by E(1/P(Ei |μ̂, σ̂ )). The unconditional probability of a signal can be determined by E(P(Ei |μ̂, σ̂ )).

For the Shewhart X and X̄ control charts with estimated parameters, we propose control limits of the form

̂UCL = μ̂ + K̃ σ̂ /
√

n, L̂CL = μ̂ − K̃ σ̂ /
√

n, (7)

with ̂UCL and L̂CL the respective upper and lower control chart limits based on the unbiased estimators μ̂ and σ̂ of μ and
σ , respectively, and K̃ = K + c the factor used to achieve a desired in-control EARL, which is denoted by ARL0.

3. Albers and Kallenberg’s correction factors

In this section, we assess the performance of the correction factors derived by Albers and Kallenberg (2005). First, we extend
their work to subgroup control charts and then, based on simulations, we assess the accuracy of the proposed correction
factors. The final subsection gives an overview of the accuracy of the correction factors.

3.1 Derivation of the correction factors

Albers and Kallenberg (2005) derived correction factors for the individuals X chart in a multiplicative form of K (1 + c)
rather than the additive form K + c that we use. However, their corrections can easily be transformed into a comparable
form since K (1 + c) = K + K c = K + cAK. Hence, we can simply multiply their proposed corrections c by K to make a
comparison. For the individuals X chart with n = 1, their proposed correction cAK is equal to

cAK = − K + K 3τ 2

2m
, (8)

where τ 2 = limm→∞
[
mvar

(
σ̂

E σ̂

)]
. Although Albers and Kallenberg (2005) considered estimators of σ based on grouped

observations (such as the pooled standard deviation), they did not derive corrections for the Shewhart �X chart when n > 1.
However, following their derivations (see Appendix A.1) we arrive at the following corrections

cAK = −nK + K 3τ 2

2mn
(9)

where τ 2 = limmn→∞
[
mnvar

(
σ̂

E σ̂

)]
. Note that this more general correction is equal to their proposed correction for n = 1.

The resulting correction factors are given in Table 1.

3.2 Simulation procedure

The accuracy of the correction factor cAK is assessed for several combinations of parameter values, namely n ∈ {1, 3, 5, 7},
m ∈ {20, 30, 40, 50, 75, 100} and α ∈ {0.001, 0.0027, 0.005, 0.01}.

For each combination of parameter values, we calculate the EARL as follows. Without loss of generality, we generate
numerous Phase I data-sets (at least 1,000,000 data-sets consisting of m samples of size n) from a N (0, 1) distribution in
order to obtain the CARL values. For each Phase I data-set, we determine the control limits ̂UCL and L̂CL according to (7).
Let Ȳi be the average of the i th subgroup in Phase II (i = m + 1, m + 2, . . .) and let Ei denote the event that Ȳi falls above
̂UCL or below L̂CL. We define P(Ei |μ̂, σ̂ ) as the probability that subgroup i generates a signal conditional on μ̂ and σ̂ , i.e.

P(Ei |μ̂, σ̂ ) = P(Ȳi < L̂CL) + P(Ȳi > ̂UCL).

Conditional on μ̂ and σ̂ , the distribution of the RL is geometric with parameter P(Ei |μ̂, σ̂ ). Hence, the CARL is given by

CARL = E(RL|μ̂, σ̂ ) = 1

P(Ei |μ̂, σ̂ )
. (10)

When we take the expectation over all Phase I samples, we obtain the EARL

EARL = E

(
1

P(Ei |μ̂, σ̂ )

)
.

This expectation is obtained by simulation: for each Phase I data-set, E(RL|μ̂, σ̂ ) is computed. The number of Phase I
data-sets was at least 1,000,000 for each parameter combination. For a few combinations, additional data-sets are generated
so that the maximum relative standard error of the EARL is below 5% for n = 1, and below 1% for n > 1 for all cases.



International Journal of Production Research 7467

Table 1. Correction factors cAK for various values of α, n and m.

ARL0 = 1000 ARL0 = 370 ARL0 = 200 ARL0 = 100
α = 0.001 α = 0.0027 α = 0.005 α = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)

1 20 −0.8180 −0.6325 −0.5269 −0.4173
30 −0.5453 −0.4217 −0.3513 −0.2782
40 −0.4090 −0.3163 −0.2635 −0.2087
50 −0.3272 −0.2530 −0.2108 −0.1669
75 −0.2181 −0.1687 −0.1405 −0.1113

100 −0.1636 −0.1265 −0.1054 −0.0835

3 20 −0.3049 −0.2437 −0.2084 −0.1712
30 −0.2033 −0.1625 −0.1389 −0.1141
40 −0.1525 −0.1219 −0.1042 −0.0856
50 −0.1220 −0.0975 −0.0834 −0.0685
75 −0.0813 −0.0650 −0.0556 −0.0457

100 −0.0610 −0.0487 −0.0417 −0.0342

5 20 −0.1936 −0.1594 −0.1393 −0.1178
30 −0.1291 −0.1062 −0.0929 −0.0785
40 −0.0968 −0.0797 −0.0696 −0.0589
50 −0.0774 −0.0637 −0.0557 −0.0471
75 −0.0516 −0.0425 −0.0371 −0.0314

100 −0.0387 −0.0319 −0.0279 −0.0236

7 20 −0.1565 −0.1312 −0.1163 −0.1000
30 −0.1043 −0.0875 −0.0775 −0.0667
40 −0.0782 −0.0656 −0.0581 −0.0500
50 −0.0626 −0.0525 −0.0465 −0.0400
75 −0.0417 −0.0350 −0.0310 −0.0267

100 −0.0313 −0.0262 −0.0233 −0.0200

3.3 Accuracy of correction factors

For a wide range of parameter values, the realised values of the EARL are given in Table 2. It can be observed that these
values are still quite different from the desired values ARL0, especially for small sample sizes. This difference appears to
be larger for larger values of ARL0. For larger sample sizes, the uncorrected control limits even perform better than the
corrected control limits, as the EARL of the uncorrected chart are then closer to the desired value. It is clear that the proposed
correction factors by Albers and Kallenberg (2005) are not sufficient: the EARL still deviates heavily from its desired value.
For this reason, we derive new correction factors in the next section.

4. New correction factors

In this section, we derive new correction factors which give a numerical example and present the accuracy of the proposed
correction factors.

4.1 Derivation of new correction factor

The idea behind the derivation of the factor is as follows. We want to derive a correction factor c such that the EARL, given
by E(1/P(Ei |μ̂, σ̂ )), equals a desired value, namely ARL0 = 1/α. In order to do this, we derive P(Ei |μ̂, σ̂ ) and solve c
from the equation E(1/P(Ei |μ̂, σ̂ )) = 1/α.
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Table 2. EARL of corrected (based on cAK) and, between brackets, uncorrected control charts.

ARL0 = 1000 ARL0 = 370 ARL0 = 200 ARL0 = 100
α = 0.001 α = 0.0027 α = 0.005 α = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)

1 20 554 (1,151,800) 269 (191,160) 160 (7858) 85 (968)
30 807 (45,575) 321 (3632) 178 (1079) 91 (326)
40 878 (11,698) 337 (1828) 185 (589) 94 (210)
50 914 (5458) 346 (1084) 188 (442) 95 (173)
75 948 (2532) 355 (699) 192 (320) 97 (139)

100 963 (1945) 359 (581) 194 (280) 98 (128)

3 20 616 (2378) 251 (648) 142 (301) 75 (134)
30 734 (1693) 287 (520) 160 (259) 83 (117)
40 796 (1444) 306 (472) 169 (238) 87 (112)
50 835 (1335) 318 (447) 175 (231) 89 (110)
75 887 (1201) 335 (415) 183 (219) 93 (106)

100 913 (1148) 343 (405) 187 (213) 94 (105)

5 20 624 (1328) 249 (433) 141 (224) 74 (106)
30 727 (1184) 283 (406) 158 (214) 81 (103)
40 786 (1127) 302 (391) 167 (209) 86 (101)
50 822 (1095) 314 (389) 173 (204) 88 (101)
75 876 (1053) 331 (384) 181 (202) 92 (100)

100 898 (1036) 338 (377) 184 (201) 93 (100)

7 20 624 (1102) 248 (387) 140 (200) 74 (98)
30 724 (1055) 282 (379) 157 (199) 81 (98)
40 781 (1038) 300 (374) 166 (200) 85 (98)
50 819 (1018) 312 (371) 172 (199) 88 (99)
75 867 (1005) 328 (369) 180 (197) 91 (99)

100 897 (1004) 338 (370) 184 (199) 93 (98)

Note that the conditional probability of signaling (P(Ei |μ̂, σ̂ )) is given by

P(Ei |μ̂, σ̂ ) = 1 − P(L̂CL < Ȳi < ̂UCL)

= 1 −
[

P

(
Ȳi − μ

σ/
√

n
<

μ̂ − μ

σ/
√

n
+ K̃

σ̂

σ

)
− P

(
Ȳi − μ

σ/
√

n
<

μ̂ − μ

σ/
√

n
− K̃

σ̂

σ

)]
= 1 −

[
�

(
μ̂ − μ

σ/
√

n
+ K̃

σ̂

σ

)
− �

(
μ̂ − μ

σ/
√

n
− K̃

σ̂

σ

)]
= [1 − �(K̃ + 	1(K̃ ))] + [1 − �(K̃ + 	2(K̃ ))]
= �̄(K̃ + 	1(K̃ )) + �̄(K̃ + 	2(K̃ )) (11)

with K̃ = K + c, �̄(x) = 1 − �(x) and

	1(K̃ ) = μ̂ − μ

σ/
√

n
+ K̃

(
σ̂

σ
− 1

)
and

	2(K̃ ) = − μ̂ − μ

σ/
√

n
+ K̃

(
σ̂

σ
− 1

)
.

This notation is similar to that of Albers and Kallenberg (2004), who derived corrections for the one-sided individuals control
chart. From (11), we can write for any function g of P(Ei |μ̂, σ̂ )

g(P(Ei |μ̂, σ̂ )) = h(K̃ + 	1(K̃ ), K̃ + 	2(K̃ )) = h(x, y).
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Table 3. Derivatives of the function h, general at point (x, y) or specifically at point (K , K ) for g(α) = 1/α.

Point h hx hxx hxy

(x, y)
1

�̄(x) + �̄(y)

φ(x)(
�̄(x) + �̄(y)

)2 2φ2(x)(
�̄(x) + �̄(y)

)3 − xφ(x)(
�̄(x) + �̄(y)

)2 2φ(x)φ(y)(
�̄(x) + �̄(y)

)3
(K , K )

1

2�̄(K )

φ(K )

4�̄2(K )

φ2(K )

4�̄3(K )
− Kφ(K )

4�̄2(K )

φ2(K )

4�̄3(K )

where we use h(x, y) as general notation, which is required for the next steps in the derivation. Thus, for a specific value
of K̃ we can write h(K̃ + 	1(K̃ ), K̃ + 	2(K̃ )) = h(x0 + 	x, y0 + 	y) where (x0, y0) = (K̃ , K̃ ) and (	x,	y) =
(	1(K̃ ),	2(K̃ )). Next, we approximate the probability P(Ei |μ̂, σ̂ ) by using a two-step Taylor expansion of h(x, y) =
h(K̃ + 	1(K̃ ), K̃ + 	2(K̃ )) around (x0, y0) = (K̃ ,K̃ ).

h(K̃ + 	1(K̃ ), K̃ + 	2(K̃ ))

≈ h(K̃ , K̃ ) + hx (K̃ , K̃ )	1(K̃ ) + hy(K̃ , K̃ )	2(K̃ )

+ 1

2
[hxx (K̃ , K̃ )	2

1(K̃ , K̃ ) + 2hxy(K̃ , K̃ )	1(K̃ )	2(K̃ ) + hyy(K̃ , K̃ )	2
2(K̃ )], (12)

where hx (x, y) denotes the first-order partial derivative with respect to x , hxx (x, y) denotes the second-order partial derivative
with respect to x (and likewise for y) and hxy(x, y) denotes the cross-partial derivative with respect to x and y.

When parameters are estimated, Eg(P(Ei |μ̂, σ̂ )) �= g(α). Note that in (12) we have hx (K̃ , K̃ ) = hy(K̃ , K̃ ) and
hxx (K̃ , K̃ ) = hyy(K̃ , K̃ ). To ensure that Eg(P(Ei |μ̂, σ̂ )) = g(α), we want to find a correction factor c such that for
K̃ = K + c the following holds (cf. (12)):

Eg(P(Ei |μ̂, σ̂ )) = Eh(K̃ + 	1(K̃ ), K̃ + 	2(K̃ ))

≈ h(K̃ , K̃ ) + hx (K̃ , K̃ )
[

E	1(K̃ ) + E	2(K̃ )
]

+ 1

2
hxx (K̃ , K̃ )

[
E	2

1(K̃ ) + E	2
2(K̃ )

]
+ hxy(K̃ , K̃ )E

[
	1(K̃ )	2(K̃ )

]
= g(α) = h(K , K ). (13)

In Appendix A.2 we show that, for unbiased estimators μ̂ and σ̂ , we can rewrite this formula as

c = −hxx (K , K )E	2
1(K ) + hxy(K , K )E [	1(K )	2(K )]

2hx (K , K )
. (14)

The functions h(x, y), hx (x, y), hxx (x, y) and hxy(x, y) depend on the function g(α) that is being considered. For the ARL,
g(α) = 1/α. The derivatives for this function at point (K , K ) are given in Table 3. Note that the approach can easily be
adapted for any other function g(α) by adapting the corresponding derivatives. Commonly considered functions, apart from
the ARL, are the FAR (g(α) = α) and the probability that the RL is at most a specified value j (g(α) = 1 − (1 − α) j , see
e.g. Tsai et al. (2005)).

The derivations given in (11)–(14) are still in general form with regard to the used estimators. For μ̂ = ¯̄X and
σ̂ = S̃/c4(m(n − 1) + 1) (cf. (2) and (3)) we have (see Appendix A.3)

E [	1(K )	2(K )] ≈ K 2

2(m(n − 1) + 1)
− 1

m
(15)

and

E	2
1(K ) = E	2

2(K ) ≈ K 2

2(m(n − 1) + 1)
+ 1

m
. (16)

Besides the application to the Shewhart X̄ control chart it can also be applied to the individuals control chart. Since a different
estimator for the standard deviation is used in this case, namely �MR/d2(2), the explicit calculation of E [	1(K )	2(K )],
E	2

1(K ) and E	2
2(K ) will be different here. In Appendix A.4, we show that in this case

E [	1(K )	2(K )] ≈ K 2
[

0.8264m − 1.082

(m − 1)2

]
− 1

m
(17)
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and

E	2
1(K ) = E	2

2(K ) ≈ K 2
[

0.8264m − 1.082

(m − 1)2

]
+ 1

m
. (18)

4.2 Examples of computation of the correction factors

In this section, we demonstrate how to calculate the correction factor for both the subgroup control chart and individuals
control chart. In addition, we give an overview of correction factors for different values of α, n and m.

First, we give an example of the calculation of a correction factor for a subgroup control chart with α = 0.0027, n = 5
and m = 50. In this case, K = �−1(1 − α/2) = 3. We need to find the correction factor c in K̃ = K + c. For the subgroup
control chart, c is given by formula (14). To calculate c, we need to find hxx (K , K ), hxy(K , K ), hx (K , K ), E	2

1(K ) and
E [	1(K )	2(K )]. These are as follows.

hx (K , K ) = φ(3)

4�̄2(3)
= 608.03,

hxx (K , K ) = φ2(3)

4�̄3(3)
− 3φ(3)

4�̄2(3)
= 172.13,

hxy(K , K ) = φ2(3)

4�̄3(3)
= 1996.2,

E	2
1(K ) = 32

2(50(5 − 1) + 1)
+ 1

50
= 0.042,

E [	1(K )	2(K )] = 32

2(50(5 − 1) + 1)
− 1

50
= 0.0024.

From this, we can derive c as

c = −172.13 · 0.042 + 1996.2 · 0.0024

2 · 608.03
= −0.0099.

Next, we give an example of the calculation of a correction factor for individuals control chart with α = 0.005, n = 1 and
m = 100. Note that in this case σ is estimated by �MR/d2(2). We now have K = �−1(1 − α/2) = 2.81. Again, we need
to find the correction factor c in K̃ = K + c using (14). To calculate c, we need to find hxx (K , K ), hxy(K , K ), hx (K , K ),
E	2

1(K , K ) and E [	1(K )	2(K )]. These are as follows.

hx (K , K ) = φ(2.81)

4�̄2(2.81)
= 310.44,

hxx (K , K ) = φ2(2.81)

4�̄3(2.81)
− 3φ(2.81)

4�̄2(2.81)
= 92.30,

hxy(K , K ) = φ2(2.81)

4�̄3(2.81)
= 963.70,

E	2
1(K ) = 2.812

[
0.8264 · 100 − 1.082

(100 − 1)2

]
+ 1

100
= 0.076,

E [	1(K )	2(K )] = 2.812
[

0.8264 · 100 − 1.082

(100 − 1)2

]
− 1

100
= 0.056.

The desired value of c is now given by

c = −92.30 · 0.076 + 963.70 · 0.076

2 · 310.44
= −0.098.

In Table 4, we present the correction factors for α = 0.001, α = 0.0027, α = 0.005 and α = 0.01 for various values of
n and m. As can be seen from the table, a smaller n and m result in a larger correction. Similarly, the smaller the value of α,
the larger the correction needed. Finally, smaller values of α and n result in a negative correction factor. The reason is that
there is a larger probability of extreme limits resulting in high CARLs. These high CARLs have an impact on the EARL –
calculated as the average of the CARL – so that the correction factor has to be negative. This is not the case for higher values
of n and m or higher values of α.
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Table 4. Correction factors c for various values of α, n and m.

ARL0 = 1000 ARL0 = 370 ARL0 = 200 ARL0 = 100
α = 0.001 α = 0.0027 α = 0.005 α = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)

1 20 −0.8022 −0.6116 −0.5032 −0.3910
30 −0.5279 −0.4024 −0.3310 −0.2571
40 −0.3934 −0.2998 −0.2466 −0.1915
50 −0.3135 −0.2389 −0.1965 −0.1526
75 −0.2079 −0.1585 −0.1303 −0.1012

100 −0.1556 −0.1185 −0.0975 −0.0757

3 20 −0.1698 −0.1207 −0.0933 −0.0654
30 −0.1146 −0.0815 −0.0631 −0.0443
40 −0.0865 −0.0616 −0.0476 −0.0335
50 −0.0694 −0.0494 −0.0383 −0.0269
75 −0.0465 −0.0331 −0.0257 −0.0181

100 −0.0350 −0.0249 −0.0193 −0.0136

5 20 −0.0453 −0.0241 −0.0126 −0.0013
30 −0.0306 −0.0163 −0.0086 −0.0010
40 −0.0231 −0.0123 −0.0065 −0.00084
50 −0.0185 −0.0099 −0.0053 −0.00072
75 −0.0124 −0.0067 −0.0035 −0.00051

100 −0.0093 −0.0050 −0.0027 −0.00039

7 20 −0.0032 0.0087 0.0148 0.0204
30 −0.0023 0.0057 0.0098 0.0135
40 −0.0018 0.0042 0.0073 0.0101
50 −0.0014 0.0033 0.0058 0.0081
75 −0.00098 0.0022 0.0039 0.0054

100 −0.00074 0.0016 0.0029 0.0040

4.3 Accuracy of correction factors

In this section, we assess the accuracy of the correction factors. In order to do so, we simulate the performance of control
charts with these correction factors. The simulation procedure is described in Section 3.2.

The in-control EARL values are presented in Table 5. For comparison purposes, the in-control EARLs of the uncorrected
charts are presented in brackets. The EARLs of the uncorrected charts deviate from the desired value ARL0. The smaller the
value of α and the smaller the values of m and n, the larger the deviation is. As we can conclude from Table 5, the correction
factor performs relatively well: for sample sizes greater than n = 1 and m = 40, the correction factor leads an EARL close
to the desired value. As we will see in the next section, this leads to better out-of-control performance as well: when the
in-control ARL is exceptionally high, the control chart is not able to detect changes in the mean very quickly.

5. Implications of proposed corrected charts

In this section we discuss the implications of using the proposed correct control charts. First, we discuss the out-of-control
performance compared to uncorrected charts. Afterwards, we evaluate the variation between CARLs in both the in-control
and out-of-control situation.

5.1 Out-of-control performance of corrected charts

To evaluate the out-of-control performance of the charts with the new correction factors, we determine the EARLs for two
out-of-control situations. We use the same simulation procedure as described earlier but with the adjustment that the process
mean has changed, i.e. Yi j ∼ N (μ + δσ/

√
n, σ ) with δ �= 0. Again, without loss of generality we set μ = 0 and σ = 1 in

the simulations.
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Table 5. EARL of corrected and, between brackets, uncorrected control charts.

ARL0 = 1000 ARL0 = 370 ARL0 = 200 ARL0 = 100
α = 0.001 α = 0.0027 α = 0.005 α = 0.01

n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)

1 20 534 (1,151,800) 307 (191,160) 179 (7858) 96 (968)
30 864 (45,575) 337 (3632) 192 (1079) 101 (326)
40 962 (11,698) 375 (1828) 197 (589) 100 (210)
50 993 (5458) 367 (1084) 198 (442) 99 (173)
75 986 (2532) 369 (699) 198 (320) 99 (139)

100 1002 (1945) 370 (581) 199 (280) 100 (128)

3 20 1090 (2378) 398 (648) 212 (301) 107 (134)
30 1046 (1693) 383 (520) 208 (259) 102 (117)
40 1022 (1444) 378 (472) 203 (238) 101 (112)
50 1017 (1335) 375 (447) 204 (231) 101 (110)
75 1008 (1201) 371 (415) 202 (219) 101 (106)

100 1008 (1148) 372 (405) 200 (213) 101 (105)

5 20 1111 (1328) 397 (433) 214 (224) 106 (106)
30 1053 (1184) 383 (406) 208 (214) 103 (103)
40 1034 (1127) 374 (391) 204 (209) 101 (101)
50 1022 (1095) 376 (389) 201 (204) 101 (101)
75 1007 (1053) 371 (384) 200 (202) 100 (100)

100 1002 (1036) 370 (377) 199 (201) 100 (100)

7 20 1089 (1102) 399 (387) 210 (200) 105 (98)
30 1047 (1055) 387 (379) 205 (199) 102 (98)
40 1031 (1038) 379 (374) 205 (200) 101 (98)
50 1013 (1018) 375 (371) 203 (199) 101 (99)
75 1002 (1005) 370 (369) 200 (197) 100 (99)

100 1001 (1004) 372 (370) 201 (199) 100 (98)

Table 6 shows the results for δ = 0.5 and Table 7 for δ = 1. We can conclude from the tables that the corrected control
charts are more powerful in detecting shifts in the process mean than the uncorrected charts, the reason being the high
in-control ARL of some uncorrected charts. The positive effect of the correction factor shows up mainly for small sample
sizes: for the individuals control chart (n = 1) and for n = 3. In conclusion, for small sample sizes the corrected control
charts lead to more stable in-control as well as out-of-control performance compared to the uncorrected control charts.

5.2 Variation in CARLs

We have derived correction factors that lead to the desired value of the in-control EARL. Note that a given correction factor
leads only to a desired average value: the ARL values will vary across the conditional control charts used by each individual
practitioner. To illustrate this, we have drawn boxplots for the CARL values obtained in the simulations. For each simulation
run, we can calculate E(RL|μ̂, σ̂ ) from (10) and we can calculate the percentiles of the CARLs obtained by the simulations
runs.

Figures 1 and 2 show the 10th, 25th, 50th, 75th and 90th percentiles of the in-control CARLs when α = 0.0027, for
n = 3, m = 50 and n = 1, m = 100, respectively. As shown in the figures both the corrected and the uncorrected control
charts display quite some variation within the CARL values. However, this variation is much less for the corrected charts
than for the uncorrected charts. The same results are found in the out-of-control situation, as can be seen in Figures 3 and 4.
These figures show the 10th, 25th, 50th, 75th and 90th percentiles of the out-of-control (δ = 0.5) CARLs when α = 0.0027,
for n = 3, m = 50 and n = 1, m = 100, respectively.
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Table 6. Corrected and, between brackets, uncorrected out-of-control EARL for δ = 0.5.

α = 0.001 α = 0.0027 α = 0.005 α = 0.01
n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)

1 20 276 (1,759,500) 138 (16,449) 97 (7172) 52 (441)
30 339 (11,595) 157 (1301) 97 (474) 53 (145)
40 373 (3091) 160 (589) 95 (250) 52 (100)
50 379 (1636) 162 (460) 95 (193) 52 (85)
75 379 (871) 159 (276) 93 (142) 52 (70)

100 377 (672) 160 (237) 93 (125) 51 (63)

3 20 511 (1112) 208 (326) 117 (161) 61 (75)
30 473 (734) 191 (252) 107 (131) 57 (65)
40 444 (608) 178 (217) 104 (120) 55 (60)
50 428 (546) 175 (204) 101 (113) 55 (59)
75 405 (474) 168 (186) 99 (106) 53 (55)

100 399 (448) 165 (178) 96 (101) 52 (54)

5 20 546 (646) 210 (227) 119 (124) 62 (62)
30 491 (547) 190 (201) 110 (113) 59 (59)
40 452 (489) 184 (191) 104 (106) 56 (56)
50 427 (454) 176 (182) 101 (103) 55 (55)
75 412 (429) 169 (173) 98 (99) 53 (53)

100 401 (413) 165 (167) 95 (96) 52 (52)

7 20 544 (550) 215 (209) 119 (114) 62 (59)
30 486 (490) 191 (188) 111 (108) 58 (56)
40 453 (455) 184 (181) 105 (103) 56 (55)
50 431 (433) 178 (176) 103 (101) 55 (54)
75 410 (412) 169 (168) 98 (97) 53 (52)

100 410 (402) 165 (164) 96 (96) 52 (52)

100 200 300 400 500 600 700 800 900

Uncorrected

Corrected

Figure 1. 10th, 25th, 50th, 75th and 90th percentiles of the in-control CARLs for n = 3, m = 50 and α = 0.0027.
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Table 7. Corrected and, between brackets, uncorrected out-of-control EARL for δ = 1.

α = 0.001 α = 0.0027 α = 0.005 α = 0.01
n m (K = 3.29) (K = 3.00) (K = 2.81) (K = 2.58)

1 20 60 (122,320) 35 (2451) 25 (307) 17 (94)
30 74 (12,232) 40 (204) 27 (97) 17 (38)
40 80 (410) 42 (121) 27 (58) 17 (29)
50 84 (281) 42 (90) 28 (49) 17 (25)
75 87 (171) 43 (68) 28 (39) 17 (22)

100 89 (145) 43 (60) 28 (36) 17 (21)

3 20 122 (224) 57 (84) 35 (46) 21 (25)
30 110 (158) 52 (66) 33 (39) 19 (21)
40 105 (136) 50 (59) 31 (35) 19 (20)
50 102 (125) 48 (54) 31 (34) 19 (20)
75 97 (110) 47 (51) 30 (32) 18 (19)

100 96 (106) 47 (50) 30 (31) 18 (19)

5 20 131 (151) 59 (63) 37 (38) 22 (22)
30 115 (126) 53 (56) 34 (34) 20 (20)
40 110 (117) 51 (53) 32 (33) 19 (19)
50 105 (110) 49 (51) 31 (32) 19 (19)
75 99 (103) 48 (48) 30 (30) 18 (18)

100 96 (99) 46 (47) 29 (30) 18 (18)

7 20 135 (137) 62 (60) 37 (36) 22 (21)
30 118 (119) 54 (53) 34 (33) 20 (20)
40 110 (110) 51 (51) 33 (32) 19 (19)
50 105 (106) 50 (49) 32 (31) 19 (19)
75 100 (100) 48 (48) 30 (30) 18 (18)

100 98 (98) 46 (46) 30 (30) 18 (18)

200 400 600 800 1000 1200

Uncorrected

Corrected

Figure 2. 10th, 25th, 50th, 75th and 90th percentiles of the in-control CARLs for n = 1, m = 100 and α = 0.0027.
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0 50 100 150 200 250 300 350 400 450

Uncorrected

Corrected

Figure 3. 10th, 25th, 50th, 75th and 90th percentiles of the out-of-control (δ = 0.5) CARLs for n = 3, m = 50 and α = 0.0027.

0 50 100 150 200 250 300 350 400 450 500

Uncorrected

Corrected

Figure 4. 10th, 25th, 50th, 75th and 90th percentiles of the out-of-control (δ = 0.5) CARLs for n = 1, m = 100 and α = 0.0027.

6. Application of the proposed control chart

In this section we demonstrate the application of the proposed control chart through a real-life example. Data is collected
of the torque of Torque-to-Yield bolts that are used as fasteners in engines at a subsidiary of Paccar. The bolts are tightened
at several different positions of the engines using a specific fastening procedure. At the end of this procedure, the torque
is measured (in Newton-meter) for bolts at two specific positions. The measurements are performed by a process engineer
for the purpose of process monitoring. Clearly, detecting trends or anomalies in the applied torque is very important, as this
indicates problems with either the bolt(s) or the fastening procedure. For example, the performance of the used wrenches
can deteriorate over time, which can result in fasteners being too tight or too loose. It is thus of major importance to detect
such out-of-control situations.

An initial Phase I data-set of 40 observations, consisting of m = 20 subgroups of size n = 2, is collected by the process
engineer to construct the control limits (see Table 8). First, we have checked our data for normality. We found no reason to
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Table 8. Phase I (Xi j ’s) and Phase II (Yi j ’s) data of torque values.

Sample Xi1 Xi2 Yi1 Yi2

1 164.06 163.98 164.13 164.19
2 164.11 164.05 164.18 164.02
3 164.03 164.09 164.17 164.02
4 164.10 164.13 164.10 164.07
5 164.04 164.15 163.95 164.04
6 164.06 164.22 164.15 164.03
7 163.98 164.11 163.92 164.02
8 164.06 164.09 164.08 164.15
9 164.10 164.08 164.06 163.96
10 164.03 164.03 163.97 164.05
11 164.12 164.09 164.11 164.15
12 164.13 164.04 164.10 164.15
13 164.03 164.10 163.98 164.02
14 164.17 164.05 164.08 164.08
15 164.00 164.06 164.02 164.16
16 164.15 163.98 164.02 164.18
17 163.96 164.02 164.11 164.03
18 164.02 164.08 164.03 164.05
19 164.17 164.23 163.98 164.00
20 164.05 164.07 164.09 163.99
21 – – 164.14 164.04
22 – – 163.94 164.03
23 – – 164.12 164.02
24 – – 164.03 164.12
25 – – 164.15 164.18
26 – – 164.13 164.11
27 – – 164.00 164.05
28 – – 164.10 164.15
29 – – 164.15 164.16
30 – – 164.33 164.02
31 – – 164.07 164.28

reject the normality assumption, because the p-value is larger than 0.1 (using the Shapiro-Wilk test for normality).Afterwards,
the control limits are constructed and used to monitor the process mean. The Phase II data-set consists of 31 subgroups of
size 2 (see also Table 8. The control limits are obtained using the following steps:

(1) First, we determine our parameters. We have m = 20, n = 2 and choose α = 0.0027. The latter is conventional
for Shewhart control charts, and means that we have K = 3. As estimators of μ and σ we use μ̂ = ¯̄X and
σ̂ = S̃/c4(m(n − 1) + 1), respectively. As parameter estimates we find μ̂ = 164.08 and σ̂ = 0.0508 from our Phase
I data-set.

(2) Next, we calculate the required correction c. This requires the calculations of hxx (K , K ), hxy(K , K ), hx (K , K ),
E	2

1(K ) and E [	1(K )	2(K )]. These are the same as calculated in Section 4.2, except for

E	2
1(K ) = 32

2(20(2 − 1) + 1)
+ 1

20
= 0.2643,

E [	1(K )	2(K )] = 32

2(20(2 − 1) + 1)
− 1

20
= 0.1643.

From this we can calculate c as

c = −172.13 · 0.2643 + 1996.21 · 0.1643

2 · 608.03
= −0.3071.



International Journal of Production Research 7477

0 5 10 15 20 25 30

LCL = 163.98

Average = 164.08

UCL = 164.18

Figure 5. Control chart of the monitoring of torque values with the proposed control limits. The monitored Phase II sample consists of
m = 31 subgroups of size n = 2 each.

(3) Finally, we calculate the control limits using μ̂, σ̂ and K̃ = 3 − 0.3071 = 2.6929, such that:

̂UCL = 164.08 + 2.6929 · 0.0508/
√

2 = 164.1767,

L̂CL = 164.08 − 2.6929 · 0.0508/
√

2 = 163.9833.

The Phase II data is now monitored using these control limits, as is illustrated in Figure 5. Note that the width of the control
limits is quite small. As can be observed, an out-of-control signal is given by observation 7 in the data-set. Usually, when a
signal is given, the wrenches should be recalibrated. However, after further investigation no action was required in this case,
because the out-of-control signal turned out to be caused by measurement uncertainty. The control chart is used in practice
to detect substantial anomalies and clear trends.

7. Concluding remarks

The ARL is a well-known metric to evaluate control chart performance. However, when the parameters of the process
characteristic are estimated from a limited amount of data, the expected value of the in-control ARL differs substantially
from the desired value.

In this paper, we have derived correction factors for the Shewhart X and X̄ control charts that can be used to obtain
the desired value of the in-control ARL in expectation. As is shown, the correction factor is accurate: it leads to the desired
value of the in-control ARL for a broad range of parameter values (α, n and m). Thus, using such a factor leads to a control
chart with the desired in-control EARL. Moreover, the correction factor overcomes the problem of potentially having high
CARLs in the out-of-control situation. The added value of the correction factor shows up predominantly when sample sizes
are small, namely the individuals chart (n = 1) and the subgroup control chart when n = 3 or 5 and m = 20.
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Appendix 1.

A.1 Albers and Kallenberg correction
Although Albers and Kallenberg (2005) derived corrections for the individuals X chart only, it is possible to apply their approach to the
X̄ chart as well. First note that they derive correction factors c̃ in the form K (1 + c̃) rather than K + c as we do. Their approach for the
individuals chart states that in the one-sided case, the bias is best removed when

c̃ = 1

2

(
Var

(
X̄

σ

)
+ K 2Var

(
σ̂

σ

))
. (A1)

Next, note that X̄ can essentially be treated as a N (μ, σ/
√

n) variable. Consequently, replacing σ and σ̂ in (A1) by σ/
√

n and σ̂ /
√

n,

respectively, leads to the required corrections for the X̄ chart. This gives us c̃ = 1
2

(
Var

( ¯̄X
σ/

√
n

)
+ K 2Var

(
σ̂
σ

))
= 1

2

(
1
m + K 2τ 2

mn

)
=

n+K 2τ 2

mn . In order to obtain the required correction for the two-sided case, Albers and Kallenberg instruct to add a minus sign in front of
the obtained correction, and to adjust the value of K from �−1(1 − α) to �−1(1 − α/2). Finally, since their correction is in the form of
K (1 + c̃) = K + K c̃ = K + cAK, we then construct cAK = − nK+K 3τ 2

2mn to make our correction factors comparable. Note that for n = 1
this result corresponds with the original proposal of Albers and Kallenberg (2005).

A.2 Correction factor
Here, we show how to derive (14) from (13). As given in (13), we want to have

Eh(K̃ + 	1(K̃ ), K̃ + 	2(K̃ )) ≈ h(K̃ , K̃ ) + hx (K̃ , K̃ )
[

E	1(K̃ ) + E	2(ũ)
]

+ 1

2
hxx (K̃ , K̃ )

[
E	2

1(K̃ ) + E	2
2(K̃ )

]
+ hxy(K̃ , K̃ )E

[
	1(K̃ )	2(K̃ )

]
= h(K , K ).

Next, we apply a two-step Taylor approximation around K to the middle part and ignore relatively small factors such as c2, cE	1(K )

and cE	2(K ). This essentially boils down to approximating h(K̃ , K̃ ) by h(K , K ) + c[hx (K , K ) + hy(K , K )] and replacing K̃ by K in
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the remaining parts. We then find that this equation is approximately equal to

Eh(K̃ + 	1(K̃ ), K̃ + 	2(K̃ ))

≈ h(K , K ) + c
[
hx (K , K ) + hy(K , K )

]+ hx (K , K ) [E	1(K ) + E	2(K )]

+ 1

2
hxx (K , K )

[
E	2

1(K ) + E	2
2(K )

]
+ hxy(K , K )E [	1(K )	2(K )] = h(K , K ).

Note that hx (K , K ) = hy(K , K ), and that for unbiased estimators μ̂ and σ̂ there holds E	1(K ) = E	2(K ) = 0 and E	2
1(K ) =

E	2
2(K ). Then, solving this equation to c leads to

c = −hxx (K , K )E	2
1(K ) + hxy(K , K )E [	1(K )	2(K )]

2hx (K , K )
.

A.3 Subgroup control chart
For E [	1(K )	2(K )], we have

E [	1(K )	2(K )] = −E

(
μ̂ − μ

σ/
√

n

)2
+ K 2 E

(
σ̂

σ
− 1

)2
,

where for μ̂ = ¯̄X and σ̂ = S̃/c4(m(n − 1) + 1) (cf. (2) and (3)) we have

−E

(
μ̂ − μ

σ/
√

n

)2
= − 1

m
,

and

E

(
σ̂

σ
− 1

)2

= 1

c2
4(m(n − 1) + 1)

E

(
S̃2

σ 2

)
− 1

≈ 1

2(m(n − 1) + 1)
,

so that

E [	1(K )	2(K )] ≈ K 2

2(m(n − 1) + 1)
− 1

m
and

E	2
1(K ) = E	2

2(K ) ≈ K 2

2(m(n − 1) + 1)
+ 1

m
.

A.4 Individuals control chart
For the individuals control chart, the calculation of E [	1(K )	2(K )], E	2

1(K ) and E	2
2(K ) is different. For E [	1(K )	2(K )], we

have

E [	1(K )	2(K )] = −E

(
μ̂ − μ

σ

)2
+ K 2 E

(
σ̂

σ
− 1

)2

≈ − 1

m
+ K 2var

(
σ̂

σ

)
.

Cryer and Ryan (1990) showed that

Var( �MR/σ) ≈ d2
2 (2)

[
0.8264m − 1.082

(m − 1)2

]
and thus

Var

(
σ̂

σ

)
≈
[

0.8264m − 1.082

(m − 1)2

]
.

Hence,

E [	1(K )	2(K )] = − 1

m
+ K 2

[
0.8264m − 1.082

(m − 1)2

]
and

E	2
1(K ) = E	2

2(K ) = 1

m
+ K 2

[
0.8264m − 1.082

(m − 1)2

]
.
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