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Quantifying the Random Component of
Measurement Error of Nominal Measurements
Without a Gold Standard
T. S. Akkerhuis*† and J. de Mast

It is well known that measurement error of numerical measurements can be divided into a systematic and a random com-
ponent and that only the latter component is estimable if there is no gold standard or reference standard available. In
this paper, we consider measurement error of nominal measurements. We motivate that, on a nominal measurement scale
too, measurement error has a systematic and a random component and only the random component is estimable without
gold standard.
Especially in literature about binary measurement error, it is common to quantify measurement error by ‘false classification
probabilities’: the probabilities that measurement outcomes are unequal to the correct outcomes. These probabilities can be
split up in a systematic and a random component. We quantify the random component by ‘inconsistent classification proba-
bilities’ (ICPs): the probabilities that a measurement outcome is unequal to the modal (instead of correct) outcome. Systematic
measurement error then is the event that this modal outcome is unequal to the correct outcome.
We introduce an estimator for the ICPs and evaluate its properties in a simulation study. We end with a case study that
demonstrates not only the determination and use of the ICPs but also demonstrates how the proposed modeling can be used
for formal hypothesis testing. Things to test include differences between appraisers and random classification by a single
appraiser. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Nominal measurement systems are devices, persons, or persons operating devices that classify objects on a nominal scale. They
yield a measurement outcome Y , which takes on one of C possible values (categories or classes). An example from industry
(the context of this paper) is an operator who assigns a failure mode to products that failed quality inspection. Because many

decisions in life are a result of measurement, a measurement system should be accompanied by a quantification of its reliability in
terms of measurement error. The experiment and subsequent analysis needed to arrive at such quantification is called ‘measurement
system analysis’ (MSA). In this paper, we look at MSA for nominal measurement systems, or ‘nominal MSA’.

In symbols, measurement error is often expressed as the conditional event fY D ajX ¤ ag, with Y a measurement outcome and X
the true value. X is obtained by applying a ‘reference standard’or ‘gold standard’: an authoritative procedure to arrive at the true value
of the object. We consider the case that this standard is not available: the ‘gold standard unavailable case’. This may be because a gold
standard is too costly to apply, has a negative impact on the object under measurement, or simply does not exist, for example for lack
of a clear definition.

Past literature about nominal MSA has focused on the concept of agreement, which originated in the social sciences (Cohen 1).
Agreement is the event that two measurements on the same object i yield equal outcomes, fYi1 D Yi2g. A popular measure of agree-
ment is the kappa (�) statistic (Fleiss 2), which can be found in industry standards such as AIAG 3 and influential works in medicine
like Pepe’s 4 book. Log-linear modeling is a related approach (e.g. Tanner and Young 5 and Agresti 6). There have been many criticisms
regarding agreement studies (De Mast 7; Erdmann et al. 8), and moreover, agreement quantifies a different concept than measurement
error: even if appraisers agree on some decision, it is not necessarily the correct decision X .

Proneness to measurement error can be quantified using probabilities of false classification, FCPa D P ŒY D ajX ¤ a�. These are
the probabilities that measurement of an object gives a while the true value of this object is something else. For the binary case,
Akkerhuis et al. 9, 10 have shown that false classification probabilities are in general not identifiable without gold standard, even though
many attempts have been made. The goal of this paper is to quantify the random component of the FCPs in terms of probabilities of
‘inconsistent classification’ (ICPs) on scales with more than two classes.

Institute for Business and Industrial Statistics, University of Amsterdam
*Correspondence to: T. S. Akkerhuis, IBIS UvA, Department of Operations Management, Plantage Muidergracht 12, 1018TV Amsterdam, The Netherlands.
†E-mail: t.s.akkerhuis@uva.nl

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1993–2003

1
9

9
3



T. S. AKKERHUIS AND J. DE MAST

We define the probabilities of inconsistent classification as ICPa D P
�

Y D aj QX ¤ a
�
. These probabilities condition on the most likely

outcome QXij of a measurement of object i by appraiser j. That is, QXij is the measurement outcome that object i would receive most
frequently from appraiser j during repeated measurement. This is comparable with common practice for numerical MSA, where random
measurement error is conceived as deviation from the expected measurement outcome as opposed to deviation from the true value. In
the nominal case, random variables do not have a statistical expectation, and we replace it by the mode. Because it does not condition
on a true value, but on something that is observable, it is an identifiable property.

There are other ways to quantify random measurement error. In some contexts, a quantification like P
�

Y ¤ aj QX D a
�

or even
P
�
QX D ajY ¤ a

�
or P

�
QX D ajY ¤ a

�
may be useful as well. The modeling we propose will allow calculation of any of these probabilities,

but for conciseness, we focus on ICPa D P
�

Y D aj QX ¤ a
�

because it is the most natural extension of the False/Inconsistent Accep-
tance/Rejection Probabilities in binary MSA (for example, Akkerhuis et al. 9, 10): probabilities of a specific outcome, conditional on the
event that this outcome is False/Inconsistent.

Akkerhuis et al. 10 have developed a method to estimate ICPs in the binary case, and this paper presents an extension. Estimation of
ICPs for ordinal MSA has been explored by De Mast and Van Wieringen, 11 but their approach relies on the assumption of a univariate
continuum underlying the measurement scale, which is not reasonable for unordered, nominal scales.

In Section 2, we introduce notation, modeling, estimation, and diagnostics. Moreover, we illustrate how ICPs represent the random
components of the FCPs. Section 3 explores the statistical properties of the proposed estimators, and Section 4 demonstrates the
method using data from a real life case.

2. Statistical modeling

In the first subsection, notation and modeling of the measurement outcomes are introduced. The second subsection covers estimation
of parameters and, consequently, of the ICPs, followed by diagnostic tests in the third subsection. The final subsection illustrates what
it means that ICPs are random components of the FCPs.

2.1. Modeling of measurement outcomes

In a typical MSA experiment, I objects are measured K times by J appraisers on a scale with C classes, leading to I � J � K measurement
outcomes YYY D

˚
Yijk

�
iD1,:::,I;jD1,:::,J,kD1,:::,K

.
Objects are modeled by probability vectors PPPij that contain classification probabilities. Conditional on a realization of this vector

pppij , the repeated measurements of object i by appraiser j follow a multinomial distribution with parameters K and pppij . Note that PPPij is
indexed by j to indicate that the distribution of appraisals of some object i may be different for each of the J appraisers.

In symbols, we have ˚
YijkjPPPij D pppij

�
kD1,:::,K

� MN
�

K , pppij

�
,

pppij D
˚

pij1, : : : , pijC

�
,

CP
cD1

pijc D 1.

For instance, pppij D f0.01, 0.98, 0.01g means that appraiser j mostly classifies object i as 2, but sometimes inconsistently as 1 or 3. If
pppij D f0, 1, 0g, the appraiser will classify i as 2 with certainty. If pppij D f0.01, 0.49, 0.50g, there is doubt between the categories 2 and 3, but
classification 1 is almost never given. The modal outcome QX is defined as the position of the largest element, that is, QXij D arg maxc pijc.

We model the PPPij as draws from a probability distribution Fj,PPP

�
pij1, : : : , pijC

�
D P

�
Pij1 � pij1, : : : , PijC � pijC

�
. The Dirichlet distribution

is a natural choice, as it is often used as a prior for multinomial data in Bayesian statistics and allows for explicit calculations. Its density
function is given by the following:

fj,PPP

�
pij1, : : : , pijC

�
D

�

�
CP

cD1
ˇj˛jc

�
CQ

cD1
�
�
ˇj˛jc

�
CY

cD1

p
ˇj˛jc�1
ijc for

CX
cD1

pijc D 1

˛jc > 0,
CX

cD1

˛jc D 1,ˇj > 0.

This distribution Fj,PPP can be conceived as a mixture distribution Fj,PPP D
CP

cD1
P ŒX D c� � Fc

j,PPP , where the components Fc
j,PPP D

P
�

Pij1 � pij1, : : : , PijC � pijCjX D c
�

are the distributions of PPPij among objects with true value c. However, as both X and its distribution
are unknown, only the aggregate distribution is identifiable, and not its components.

Where the PPPij are the expected relative frequencies of classifications of an object i (pijc D P
�

Yijk D cjPPPij D pppij

�
), the˛j are the expected

relative frequencies in the population of objects: ˛jc D E
�

Pijc

�
D EPPPij

�
P
�

Yijk D cjPPPij D pppij

��
.
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The scalar ˇj is a concentration parameter. For ˇj ! 0, probability mass in fj,PPP will concentrate only around the C unit vec-
tors .1, 0, 0, : : :/, .0, 1, 0, : : :/, etc. The realizations of PPPij will then almost surely all be unit vectors. Consequently, the distribution of˚

Yij1, : : : , YijK jPPPij D pppij

�
becomes degenerate, leading to perfectly consistent classifications. The C unit vectors are drawn in proportions

given by ˛j .
If, however, ˇj ! 1, probability mass in fj,PPP will concentrate only around ˛j , leading to realizations of PPPij that are almost identical

(and equal to ˛j) for each object i. This means that measurement outcomes do not at all depend on the objects under study, and we
call these measurements ‘uninformative’. In conclusion, a low ˇj implies better consistency of measurements, while a high ˇj means
poor consistency and uninformative measurements.

If ˇj !1, and measurements are uninformative, categorization becomes purely random guessing. Naturally, we would expect the
distributions of PPPij then to approach an uniform distribution. That is, if ˇj ! 1, we would expect to find that approximately ˛j D�

1
C , : : : , 1

C

�
(this is the maximum entropy and thus maximally uninformative distribution for the Yijk ; De Mast 8). However, it may be that

because of some artifact in the measurements or because of behavioral tendencies of the appraisers, purely random categorizations
have a non-uniform distribution (that is, ˇj !1while ˛j ¤

�
1
C , : : : , 1

C

�
).

2.2. Estimation of inconsistent classification probabilities

We propose estimation of the parameters in fj,PPP by maximum likelihood. As shorthand notation, we use � j D
�
˛j1, : : : ,˛jC ,ˇj

�
.

Conditional on a realization pppij , the outcome of repeated measurement of object i by appraiser j has likelihood

P
�

Yij1 D yij1, : : : , YijK D yijK

ˇ̌
PPPij D pppij

�
D

CY
cD1

p
#kfYijkDcg
ijc .

Here, #k

˚
Yijk D c

�
is the number of occurrences of classification c in repeated measurements

˚
Yij1, : : : , YijK

�
, and we assume that Yijk are

independent conditional on a realization of PPPij . In symbols:˚
YijkjPPPij D pppij

�
iD1,:::,I,jD1,:::,J,kD1,:::,K

are independent.

This assumption has the interpretation that, besides the PPPij , there are no factors that induce dependencies among the Yijk , k D 1, : : : , K .
As PPPij is not observed directly, we integrate it out over its probability distribution and obtain the unconditional likelihood:

P
�

Yij1 D yij1, : : : , YijK D yijK

�
D

1Z
0

: : :

1Z
0

fj,PPP

�
pij1, : : : , pijC

�
�

CY
cD1

p
#kfYijkDcg
ijc dpij1 : : :dpijC D

�
	PC

cD1 ˇj˛jc



CQ

cD1
�
�
ˇj˛jc

� �
CQ

cD1
�
�
ˇj˛jc C #k

˚
Yijk D c

��
�

�
CP

cD1
ˇj˛jc C #k

˚
Yijk D c

�� .

The loglikelihood is obtained by aggregating log-probabilities over objects:

Lj

	˚
˛jc

�
cD1,:::,C

,ˇj



D

IX
iD1

log
�
	PC

cD1 ˇj˛jc



CQ

cD1
�
�
ˇj˛jc

� �
CQ

cD1
�
�
ˇj˛jc C #k

˚
Yijk D c

��
�

�
CP

cD1
ˇj˛jc C #k

˚
Yijk D c

�� . (1)

The number of parameters is CC 1 (one of which is trivial as the C elements in ˛j sum to 1) for each appraiser. We found in our analyses
that the Nelder–Mead algorithm 12 gives stable estimates. Instead of maximizing Lj with respect to ˛j1, : : : ,˛jC ,ˇj under the restriction
that

P
c
˛jc D 1, we recommend to maximize Lj with respect to ˛j1ˇj , : : : ,˛jCˇj .

ICPja can be calculated using the indicator function (denoted 1):

ICPja D P
�

Yijk D aj QXij ¤ a
�
D

P
�

Yijk D a
�
� P

�
Yijk D a, arg maxc pijc D a

�
1 � P

�
arg maxc pijc D a

� DR
S

fj,PPP

�
pij1, : : : , pijC

�
1farg maxc pijcDagdpppij �

R
S

fj,PPP

�
pij1, : : : , pijC

�
pija1farg maxc pijcDagdpppij

1 �
R
S

fj,PPP

�
pij1, : : : , pijC

�
1farg maxc pijcDagdpppij

.

These C integrals are not easily approximated by numerical quadrature because of the complex intersection of the support S of fj,PPP

and the range of PPPij that satisfies the indicator condition. We therefore recommend the following transformation and corresponding
Jacobian determinant:
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pijk D

8̂̂̂<̂
ˆ̂:

p�ijk

1C
CP

cD1
p�ijc�p�ija

k ¤ a

1

1C
CP

cD1
p�ijc�p�ija

k D a
, det

"
@pijk

@p�ijk

#
D

1�
1C

CP
cD1

p�ijc � p�ija

�2 .

By integrating
˚

p�ijc
�C

cD1
n
˚

p�ija
�

over the unit hypercube, the conditions arg maxc pijc ¤ a and
CP

cD1
pijc D 1 are automatically satisfied.

For C > 5, standard adaptive numerical quadrature turned out computationally prohibitive, and Monte Carlo integration provided
a better alternative.

2.3. Diagnostics and tests

To verify the fit of the model, we employ response patterns EEEij D
�
#k

˚
Yijk D c

��
cD1,:::,C

. An example of such a pattern is eeeij D .1, 0, 2/:
object i is classified once as 1 and twice as 3 in three repeated measurements by appraiser j.

The data from the MSA study are summarized in response pattern frequencies F:

Fj,EEE .eee/ D #i

˚
EEEij D eee

�
.

For example, Fj,EEE ..0, 2, 0// D 3 means that 3 objects are classified as 2 consistently by appraiser j. Goodness of fit is verified by
comparing Fj,EEE with the expected frequencies (in which eŒc� is the cth element of eee):

E
�

Fj,EEE .eee/
�
D I �

1Z
0

: : :

1Z
0

fj,PPP

�
pij1, : : : , pijC

� KŠ
CQ

cD1
eŒc�Š

�

CY
cD1

peŒc�
ijc dpij1 : : :dpijC

D I �
KŠQC

cD1 eŒc�Š

�

�
CP

cD1
ˇj˛jc

�
CQ

cD1
�
�
ˇj˛jc

�
QC

cD1 �
�
ˇj˛jc C eŒc�

�
�

�
CP

cD1
ˇj˛jc C eŒc�

� .

Note that in a high variety of possible response patterns, expected frequencies are often low, which makes the standard chi-squared
test unreliable as shown by Kallenberg et al. 13. We therefore use the likelihood ratio test, which is also known as the G-test when it
comes to fitting response pattern frequencies:

Gj D 2
X
all eee

Fj,EEE .eee/ � log
Fj,EEE .eee/

E
�

Fj,EEE .eee/
� � �2 .# unique EEE � 1 � C/ .

# unique EEE�1 is the number of nontrivial parameters needed for a saturated model, and C is the number of parameters in the proposed
model (although there are CC1 parameters, one is trivial because of the restriction

P
˛jc D 1). The estimates for ˛j and ˇj can be used

to test against uninformative categorization, or to compare appraisers.

� To test for uninformative categorization, one can test H0 : fj,PPP D f1j,PPP with f1j,PPP D limˇj!1 fj,PPP and ˛j D
˚

1
C

�C

cD1
.

� A comparison of appraisers j and k with respect to consistency can be performed by testing H0 : ˇj D ˇk for j ¤ k.
� Systematic differences between appraisers can be detected by testing H0 : ˛j D ˛k for j ¤ k.
� Interchangeability of appraisers can be tested by H0 : ˛j D ˛k ,ˇj D ˇk for j ¤ k.

The likelihood ratio test can be used for these purposes, where the likelihood (1) is optimized both with and without these restrictions.
However, no appraiser is the same, and thus, for large enough samples, we will always find significant differences, however small.
Because statistical significance does not imply practical relevance, we recommend to combine hypothesis testing with a judicious look
at the actual sizes of the differences.

For evaluating the actual sizes of these differences, it can help to construct and plot confidence intervals. By calculating minus the
inverse of the Hessian matrix of the loglikelihood and then taking the square roots of the diagonal elements, we find standard errors.
Ninety-five percent confidence intervals are roughly given by the estimated value˙1.96 times the standard error.

2.4. Probabilities of mis- and inconsistent classification

As claimed in the introduction, probabilities of inconsistent classification ICPja are the random components of the probabilities of false
classification FCPja. We show the mathematical interpretation by following the reasoning in Akkerhuis et al. 9

The modal outcome QXij allows decomposing the probability of misclassification FCPja as follows:

FCPja D P
�

Yijk D a, QXij D ajXi ¤ a
�
C P

�
Yijk D a, QXij ¤ ajXi ¤ a

�
.

1
9

9
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The first term, P
�

Yijk D a, QXij D ajXi ¤ a
�
, is the systematic component, where the modal outcome does not equal the true value but

the actual outcome does equal the modal outcome. In P
�

Yijk D a, QXij ¤ ajXi ¤ a
�

(the second term), we have that the measurement
outcome randomly deviates from the modal outcome. The second term can be further decomposed as follows:

P
�

Yijk D a, QXij ¤ ajXi ¤ a
�
D P

�
Yijk D aj QXij ¤ a

�
� c1 � P

�
Yijk D a, QXij ¤ ajXi D a

�
� c2,

with c1 D PŒ QX ¤ a�=PŒX ¤ a� and c2 D PŒX D a�=PŒX ¤ a�. This decomposition reveals an interesting fact that does not hold for
numerical measurements. The first part is merely random error. However, a probability is subtracted for the event that a measurement
outcome Yijk equals the true value Xi , but QXij ¤ Xi . That is, a random error cancels out a systematic error, an event that has zero probability
for numerical measurements.

Consequently, we use the probability of inconsistent classification ICPja to quantify random measurement error: ICPja D

P
�

Yijk D aj QXij ¤ a
�
. Note that in the absence of systematic measurement error ( QXij D Xi), we have that ICPja D FCPja.

3. Evaluation by means of simulation

In this section, we evaluate first-order and second-order properties of the proposed estimators of ICPa by means of simulation. We vary
the concentration parameter ˇ and the number of classes C. We also investigate the effect of non-uniformity in ˛, to represent cases in
which some classes are rare. Finally, we evaluate the relation between sample size I and number of repeated measurements K on the
one hand, and standard errors of ICPa on the other.

For ease of notation, in what follows, we omit subscripts j that index appraisers.

3.1. Effect of different concentration ˇ

We study the situation of classifications on a three-point scale. For the case ˛ D
˚

1
3 , 1

3 , 1
3

�
, we vary ˇ D 0.50, 0.55, : : : , 2.00 (high

concentration to low concentration). In particular, for each value of ˇ, we perform 1000 simulation runs in which we draw I D 300
realizations pppi from the Dirichlet distribution, perform K D 10 repeated measurements for each object i, optimize the likelihood to
obtain estimates for b̨, b̌, and use these to calculate cICPa. This gives us the empirical distribution of the estimators for each value of ˇ.

Figure 1 contains plots of the average estimates and the associated standard errors, where interpolation between the points has
been used. In the left plot, we see that, naturally, the higher ˇ becomes (the lower the concentration), the higher the probability of
inconsistent classification. For low values of ˇ, draws for PPPi are close to unit vectors, leading to highly consistent classifications. For high
values of ˇ, pppi is closer to ˛j .

The right plot in Figure 1 shows that the relative standard error of the estimates is decreasing. Higher values of ˇ can be estimated
relatively precisely. This means that the mean increases faster in ˇ than does the standard error.

3.2. Effects of non-uniformities in˛

We consider a variety of situations in which ˛ is not uniform. In particular, we consider ˛ D
˚

q, 1�q
2 , 1�q

2

�
for q D 0.05, 0.10, : : : , 0.90.

For low values of q, there is one underrepresented class, and for high values of q, there are two underrepresented classes.
For each q, we perform 1000 simulation runs to generate the empirical distribution of ICPa; a D 1, 2, 3. We set I D 300, K D 10

and ˇ D 1. Figure 2 shows, as a function of q, the means of the estimators of ICP1 and ICP2 (and ICP3, which equals ICP2 up to some
simulation error), as well as their relative standard errors.

We see, first, that the average misclassification probability in favor of category 1 increases when q increases (top graphs in Figure 2).
Put simpler: as ˛1 increases, the probability of misclassifying something as 2 or 3 decreases (bottom graphs in Figure 2). This makes
sense: if an appraiser thinks there are many 1s in the population, he or she will be more inclined to misclassify 2s or 3s as 1, and
vice versa.

Second, from the standard errors, we see that the estimate for ICP1 is most precise if q � 2
3 . Especially for low q, when an object from

category 1 is very rare, ICP1 is difficult to estimate precisely. For high q, this is the case as well, because then categories 2 and 3 are rare,
and so a misclassification as 2 or 3 is rare as well.

Figure 1. Average inconsistent classification probabilities ICPa (left), and relative standard error of ICPa (right) for different values of ˇ

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1993–2003
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Figure 2. Average inconsistent classification probabilities ICPa (left), and relative standard error of ICPa (right) for different values of q. Top row: ICP1; bottom row: ICP2

and ICP3

Table I. Average ICPa (left), and relative standard
error of ICPa (right) for different values of C.

˛
�

1
2 , 1

2

� �
1
3 , 1

3 , 1
3

� �
1
4 , 1

4 , 1
4 , 1

4

�
mean ICPa 0.1823 0.1225 0.0924
rel. s.e. ICPa 0.0107 0.0076 0.0064

3.3. Effect of number of classes C

We studied ˛ D
˚

1
C

�C

cD1
for C D 2, 3, 4. We set I D 300, K D 10, and ˇ D 1. The estimates are given in Table I.

We see that the mean ICPa are decreasing in the number of categories. Note that, in the case with three categories, the total prob-
ability of misclassification is .3 � 1/ � 0.1225 D 0.2450, but in the case with four categories, it is .4 � 1/ � 0.0924 D 0.2772, which is
higher. The total probability of misclassification is thus increasing in C.

This means that, in order to maintain an equal probability of misclassification, the amount of concentration should increase (or: ˇ
should decrease) when there are more classes. Intuitively, this makes sense.

3.4. Effect of sample size I and number of repeated measurements K

We took the case ˛ D
˚

1
3 , 1

3 , 1
3

�
and ˇ D 1. We performed 1000 sets of simulations for the 9�7 grid defined by K D 2 to 18 in steps of 2

and I D 120 to 480 in steps of 60. The standard errors of ICPa are given in Figure 3. Contour lines are derived by interpolation between
the 63 grid points.

The solid contour lines in Figure 3 delineate points with constant standard errors of ICPa. The dashed contour lines represent regions
with constant I � K , representing constant number of measurements. For a given amount of measurements I � K , the standard errors
can be optimized by moving along the dashed line into the region with lowest standard error. We see that, in the range explored in
Figure 3, it is optimal to lower K to 3 or 4 and let the required precision determine I.

Note that optimizing the likelihood function can be seen as fitting a distribution of response patterns to the empirical distribution
of response patterns. For that reason, we recommend choosing K such that the number of possible response patterns is larger than the

number of parameters in FPPP . In symbols,

�
C C K � 1

K

�
> CC 1. This means that, in the binary case, three repeated measurements are

necessary (also see Van Wieringen and Van den Heuvel 14), and with more classes, K D 2 is sufficient.

4. Real-life case

4.1. Background

The case study comes from a manufacturer of decorative products. Because of a recent increase in competition, senior management
has focused its strategy on product quality. This was not straightforward as no customer specifications were defined, and thus, the first

1
9
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Figure 3. Relation between standard error, number of repeated measurements K , and sample size I. Dashed lines are regions with constant I � K

step was to define quality. The decision was made to distill a definition from the judgments of line operators. Specifically, the goals
were to

� find out whether there are systematic differences in appraisals between operators. These differences may serve as a basis for
discussion when developing a definition for quality.
� identify the operator with highest repeatability, in order to work with him or her to create a quality inspection procedure that

gives consistent measurement results.

The MSA study was performed on the production line for the casings for one of the products. Management had already determined
that there are two types of poor quality: a shortcoming in the casing that may cause the product to malfunction or a visual shortcoming,
which is almost equally relevant in a market for decorative products. We use a dataset containing measurements by three operators.
Possible classifications are ‘OK ’(1), ‘MALFUNCTION’(2), or ‘VISUAL’ (3). After the first round of measurements, appraisers were asked to
classify the products again, 2 or 3 days later, in a different, randomized order. This was to minimize the impact of the memory effect.

The sample has an important, but also realistic, complexity, which is the result of (production) time and (personnel) cost limitations.
The distribution of 1s, 2s, and 3s in the population of casings is, as is often the case in industry, very unbalanced, because the major-
ity of products are conforming (1). Therefore, an extremely large sample would be required to make sure that parts with QXij D 2 or 3
are sufficiently represented for estimation of all ICPja. In particular, this means that the recommended sample size will be beyond, and
specifically to the right of the range as depicted in Figure 3. The manufacturer chose to take a sample of 60 casings that were (subjec-
tively) considered hard to judge, because it was expected that these would provide the most information when comparing operators’
judgments. The sample size of 60 was chosen because this corresponded to the maximum amount of man-hours that management
wanted to devote to this experiment.

We are dealing with a non-random sample of hard-to-judge parts. These are parts with
ˇ̌
maxc pijc �minc pijc

ˇ̌
relatively small. That

is, especially, the boundaries of the support of the Dirichlet distribution, where the pppij are close to unit vectors, are underrepresented.
Parts around these boundaries have a relatively low P

�
Yijk D aj QXij ¤ a

�
, and as the ICPja is an average of these probabilities over all

products i, the estimate will turn out higher than if the sample were random. However, if appraiser j D 1 has ˛, ˇ that are very much
different from those of appraiser j D 2, this will be visible in any sample, random or non-random, in both the parameters and the ICPja.
In light of the aims depicted earlier, this sample will thus still allow for comparing appraisers, even though the absolute values of the
estimates are not representative for the entire population of products.

A more tractable approach for overcoming the challenge of an unbalanced population (with respect to X and/or QX) would have
been to perform conditional sampling (for example, Danila et al. 15 and Erdmann et al. 8). Conditional sampling means letting appraiser
j select a mix of parts that he or she has already (k D 0) classified as Yij0 D 1, Yij0 D 2 and Yij0 D 3 and thus obtain a sample that is more
balanced. To prevent biases, the conditional probability distributions f Y0Dt

j,PPP then need to be used in the likelihood (1).
The outcomes of the experiment are given in Table II. Some of the products seemed to be straightforward to classify (product 10

was clearly malfunctioning, and product 12 was clearly OK), while others were less easy to classify (for example product 21). In the next
sections, we will fit the aforementioned model to the data and give interpretations.

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1993–2003
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Table II. Outcome of the experiment
Case A B C Case A B C Case A B C

1 1,1 1,1 1,1 21 3,3 2,2 1,3 41 1,1 1,1 1,1
2 1,1 1,1 1,1 22 2,2 2,2 2,2 42 1,3 1,1 1,1
3 2,2 2,3 1,3 23 1,1 1,1 1,1 43 1,1 1,1 1,1
4 1,3 1,1 1,1 24 2,2 2,2 2,3 44 3,3 3,3 3,3
5 2,2 2,2 1,1 25 1,2 1,1 2,2 45 2,2 1,3 1,1
6 2,2 2,2 2,2 26 2,2 2,2 1,1 46 1,1 1,1 1,3
7 2,2 2,2 1,1 27 3,3 3,3 3,3 47 3,3 3,3 1,1
8 1,1 1,1 1,1 28 1,1 1,1 1,1 48 1,1 1,1 1,1
9 3,3 1,1 1,1 29 2,2 2,2 2,2 49 1,1 1,1 1,1
10 2,2 2,2 2,2 30 2,2 2,2 2,2 50 1,1 1,1 1,1
11 1,1 1,1 1,1 31 1,1 1,1 1,1 51 2,2 2,2 1,1
12 1,1 1,1 1,1 32 1,1 1,1 1,1 52 1,1 1,1 1,1
13 1,1 1,1 1,1 33 1,1 1,1 1,1 53 1,1 1,1 1,1
14 3,3 3,3 3,3 34 1,1 1,1 1,1 54 1,1 1,1 1,1
15 1,1 1,1 1,1 35 1,1 1,1 1,1 55 1,1 1,1 1,1
16 1,2 1,1 1,1 36 1,1 1,1 2,3 56 1,1 1,1 1,1
17 2,2 2,2 1,2 37 1,1 1,1 1,1 57 1,1 1,1 1,1
18 1,1 1,1 1,1 38 1,3 1,1 1,1 58 3,3 3,3 3,3
19 2,3 1,1 1,2 39 2,2 2,2 2,3 59 1,1 1,1 1,1
20 1,1 1,1 1,1 40 1,1 1,1 1,2 60 1,1 1,1 1,1

Categories: 1 = product is OK, 2 = product will lead to malfunction, and 3 = visual
shortcoming.

Table III. Estimated parameters of the full model
˛j1 ˛j2 ˛j3 ˇj

A 0.5832 0.2610 0.1558 0.2597
(0.0600) (0.0531) (0.0434) (0.1159)

B 0.6687 0.2216 0.1098 0.0741
(0.0596) (0.0525) (0.0393) (0.0553)

C 0.7211 0.1530 0.1259 0.5591
(0.0525) (0.0413) (0.0378) (0.2635)

Standard errors between brackets. Categories: 1 =
product is OK, 2 = product will lead to malfunction,
and 3 = visual shortcoming.

4.2. Results

The estimated parameters are in Table III, and a graphical representation of the ˛jk is given in Figure 4. These show that all appraisers
seem to agree that this sample consists mostly of acceptable products, although in a truly random sample, this is expected to be even
more clearly so. A is more strict than C is. It seems moreover that, for the nonconforming products, most problems arise because of a
malfunction, not a visual shortcoming, but this result may not hold for the total population of casings.

The estimates for ˇj show that B has a particularly high repeatability, while C has a low repeatability. The point estimate for C lies
outside the confidence intervals of ˇ of A and B.

4.3. Probabilities of inconsistent classification

The estimates and standard errors of the ICPs are given in Table IV. As reflected in the high ˇj , C uniformly has the highest probability of
inconsistent classification. Moreover, for all appraisers, the most inconsistent classifications are among products that were classified as
3. This may be explained by esthetic value being very subjective when not objectively described. A classification ‘OK’ is uniformly most
likely to be a classification that is not inconsistent with QX .

As mentioned before, these figures are not based on a random sample, so the relative sizes of the ICP are more reliable than their
absolute values.

4.4. Hypothesis testing

We perform various likelihood ratio tests on the parameters of the model. The null hypotheses with the corresponding loglikelihood
values and p-values are given in Table V.

2
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0
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Figure 4. Estimated parameters full model. Vertical lines are point estimates, and arrows mark confidence interval. Categories: 1 = product is OK, 2 = product will lead to
malfunction, and 3 = visual shortcoming

Table IV. Probabilities of inconsistent classification
j ICPj1 ICPj2 ICPj3

A 0.0636 0.1053 0.1183
B 0.0167 0.0364 0.0416
C 0.0809 0.1980 0.2034

Categories: 1 = product is OK, 2 = product will lead to
malfunction, and 3 = visual shortcoming.

Table V. Tested hypotheses involving multiple appraisers
Type H0 logL p-value

Unrestricted model �218.91 —

Systematic

˛A D ˛B D ˛C �220.75 0.4537
˛A D ˛B �219.47 0.5739
˛A D ˛C �220.54 0.1969
˛B D ˛C �219.46 0.5806

Repeatability

ˇA D ˇB D ˇC �222.17 0.0389
ˇA D ˇB �220.11 0.1229
ˇA D ˇC �219.63 0.2327
ˇB D ˇC �222.16 0.0108

Exchangeability

˛A D ˛B D ˛C ,ˇA D ˇB D ˇC �223.81 0.1346
˛A D ˛B,ˇA D ˇB �220.99 0.2469
˛A D ˛C ,ˇA D ˇC �220.85 0.2769
˛B D ˛C ,ˇB D ˇC �222.56 0.0634

Likelihood ratios calculated with respect to unrestricted model.

There is evidence that there are differences in repeatability (p D 0.0389), which seems mostly due to differences in repeatability
between appraiser B and C (p D 0.0108). There is no indication of any systematic difference between appraisers.

Other test results are given in Table VI and are about informative versus uninformative measurements. The first three represent an
inability to concentrate. If ˇj is infinite, then each object will yield the same response pattern distribution. This can be conceived as
some kind of guessing, which is ruled out by the low p-values. The latter three represent a special case of guessing, in which the guesses
are uniformly distributed. These hypotheses are also ruled out.

Note that ˇj !1 cannot be plugged into the likelihood directly. We used that

lim
ˇj!1

Lj

	˚
˛jc

�
cD1,:::,C

,ˇj



D log

IY
iD1

CY
cD1

˛
#fYijkDcg
jc D

IX
iD1

CX
cD1

#
˚

Yijk D c
�

log˛jc.
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Table VI. Tested hypotheses and results
Null hypothesis Likelihood ratio p-value

H0 : ˇA !1 62.95 0.000
H0 : ˇB !1 78.74 0.000
H0 : ˇC !1 31.35 0.000

H0 : ˇA !1,˛A D
˚

C�1
�C

cD1
98.26 0.000

H0 : ˇB !1,˛B D
˚

C�1
�C

cD1
142.9 0.000

H0 : ˇC !1,˛C D
˚

C�1
�C

cD1
112.0 0.000

Table VII. Results of goodness
of fit tests

Appraiser Gj p

A 0.504 0.777
B 4.545 0.103
C 4.772 0.092

Table VIII. Contributions to the goodness-of-fit G-statistic
eee FA, EEE .eee/ E ŒFA, EEE .eee/� G FB, EEE .eee/ E ŒFB, EEE .eee/� G FC, EEE .eee/ E ŒFC, EEE .eee/� G

.2, 0, 0/ 32 32 0.0 40 39 1.6 41 39 4.2

.1, 1, 0/ 3 3.8 �1.4 0 1.2 0.0 3 4.7 �2.8

.1, 0, 1/ 3 2.2 1.7 1 0.6 1.0 3 3.9 �1.6

.0, 2, 0/ 14 13 1.5 13 13 0.9 6 6.4 �0.8

.0, 1, 1/ 1 1.0 �0.0 1 0.2 3.2 3 0.8 7.7

.0, 0, 2/ 7 7.7 �1.4 5 6.2 �2.1 4 5.2 �2.1

4.5. Diagnostics

Because there are six possible response patterns (two repeated measurements over three classes), five parameters are necessary to fit
all the associated frequencies (saturated model). In the proposed model, three parameters are needed. We can perform a goodness-
of-fit test with df D 5 � 3 D 2, as described in Section 2.3. The test results are given in Table VII, and the actual and fitted response
patterns are given in Table VIII.

It seems that all appraisers pass the goodness-of-fit test, although depending on the significance level, the results might be seen as
weak evidence for a bad fit for C.

4.6. Conclusions from the case study

Although there are no significant systematic differences between appraisers, there were differences in repeatability. In particular, there
was a significant difference between operators B and C, the former being more consistent.

As a result of the investigations, a discussion between the two operators was organized, with the task of formulating standard
operating procedures in order to obtain consistent classifications for all operators. Moreover, parts 19, 21, 25, and 45 were classified least
consistent and were brought to a discussion with other operators and management as well. Where no agreement could be obtained,
higher management made a choice.

5. Conclusions

This paper proposes a method to quantify measurement error of nominal measurement systems in situations when no gold standard is
available. Without a gold standard, the event of a measurement error is undetectable, and estimation of false classification probabilities
FCPa D P ŒY D ajX ¤ a� is thus problematic (Akkerhuis et al. 9, 10). Therefore, this paper proposes a method to estimate the random
component of measurement error only: the probabilities of inconsistent classification ICPa D P

�
Y D aj QX ¤ a

�
, with QX the modal or

most likely measurement outcome. We conceive the situation X D QX as an absence of systematic measurement error, which results
in ICP D FCP. Although it may seem like an important limitation of ICP that it does not express systematic error, it is not unsurprising
when compared with standard practices for numerical MSA without gold standard. In numerical measurement, it is a common practice
to divide measurement error into a systematic and a random component. Systematic error is operationalized by ‘bias’: the difference
between the expected measurement outcome and the true value EŒY��X . In nominal measurement, ‘difference’ is not defined because
of the measurement scale, but probabilities P

�
QX ¤ X

�
offer another way of quantification. For both expressions, it is clear that its

estimation is unattainable without a gold standard.
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Random measurement error for numerical measurement is operationalized by the difference between measured and expected
outcomes Y � EŒY�, where EŒY� is comparable with the QXi in the nominal case. It can be quantified by a gage R&R study without a gold
standard being available. Because differences are undefined on a nominal scale, this paper proposes to quantify random measurement
error of nominal measurement by probabilities of inequality P

�
Y D aj QX ¤ a

�
. In that sense, the approach proposed in this paper moves

closer toward what is already common practice for numerical MSA, by acknowledging that, without a gold standard, only the random
component of measurement error is estimable.

Acknowledgements

The authors thank Mark Vertogen for his valuable contribution and pleasant collaboration in the case reported in this paper.

References
1. Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 1960; 20:37–46.
2. Fleiss JL. Measuring nominal scale agreement among many raters. Psychological Bulletin 1971; 76:378–382.
3. AIAG. Measurement System Analysis: Reference Manual 3rd ed. Automotive Industry Action Group: Detroit, MI, 2003.
4. Pepe MS. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford University Press: Oxford, UK, 2003.
5. Tanner MA, Young MA. Modeling agreement among raters. Journal of the American Statistical Association 1985; 80:959–968.
6. Agresti A. A model for agreement between ratings on an ordinal scale. Biometrics 1988; 44:539–548.
7. De Mast J. Agreement and kappa-type indices. The American Statistician 2007; 61(2):148–153.
8. Erdmann TP, De Mast J, Warrens MJ. Some common errors of experimental design, interpretation and inference in agreement studies. Statistical

Methods in Medical Research 2012; 24:920–935.
9. Akkerhuis TS, De Mast J, Erdmann TP. The Statistical Evaluation of Binary Tests without Gold Standard: Robustness of Latent Variable Approaches,

2015. Submitted for publication.
10. Akkerhuis TS, De Mast J, Erdmann TP. Estimation of the Random Error of Binary Tests using Adaptive Polynomials, 2015. Submitted for publication.
11. De Mast J, Van Wieringen WN. Modeling and evaluating repeatability and reproducibility of ordinal classifications. Technometrics 2010; 52:94–106.
12. Nelder JA, Mead R. A simplex method for function minimization. The Computer Journal 1965; 7:308–313.
13. Kallenberg WCM, Oosterhoff J, Schriever BF. The number of classes in chi-squared goodness-of-fit tests. Journal of the American Statistical Association

1985; 80:959–968.
14. Van Wieringen WN, Van den Heuvel ER. A comparison of methods for the evaluation of binary measurement systems. Quality Engineering 2005;

17:495–507.
15. Danila O, Steiner SH, MacKay RJ. Assessment of a binary measurement system in current use. Journal of Quality Technology 2010; 42:152–164.

Authors’ biographies

T. S. Akkerhuis is Consultant and PhD Student at the Institute for Business and Industrial Statistics at the University of Amsterdam.

J. de Mast is Principal Consultant and Professor of Methods and Statistics for Operations Management at the Institute for Business and
Industrial Statistics of the University of Amsterdam.

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1993–2003

2
0

0
3


	Quantifying the Random Component of Measurement Error of Nominal Measurements Without a Gold Standard
	Abstract
	Introduction
	Statistical modeling
	Modeling of measurement outcomes
	Estimation of inconsistent classification probabilities
	Diagnostics and tests
	Probabilities of mis- and inconsistent classification

	Evaluation by means of simulation
	Effect of different concentration 
	Effects of non-uniformities in bold0mu mumu *
	Effect of number of classes C
	Effect of sample size I and number of repeated measurements K

	Real-life case
	Background
	Results
	Probabilities of inconsistent classification
	Hypothesis testing
	Diagnostics
	Conclusions from the case study

	Conclusions
	Acknowledgements
	References


