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Mixed Cumulative Sum–ExponentiallyWeighted
Moving Average Control Charts: An Efficient
Way of Monitoring Process Location
Babar Zaman,a Muhammad Riaz,b*† Nasir Abbasc and Ronald J.M.M. Doesd
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools,
to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts,
whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart,
named mixed CUSUM-EWMA chart, which is used to monitor the location of a process. The performance of the proposed
mixed CUSUM-EWMA control chart is measured through the average run length, extra quadratic loss, relative average run
length, and a performance comparison index study. Comparisons are made with some existing charts from the literature.
An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

T
here are two major types of variations in processes that affect the product characteristics: one is special cause variation and the
other is common cause variation. A process is considered in control in the presence of only common cause variations, but the
presence of special cause variations brings it out of control. Control charts are famous tools to differentiate between these two

states of a process (Shewhart1). Shewhart control charts are mostly used to detect large shifts in location and/or dispersion
parameters. On the other hand, the exponentially weighted moving average (EWMA) control chart and the cumulative sum (CUSUM)
control chart are popular for small to moderate shifts (cf. Roberts2 and Page,3 respectively).

There is a variety of literature on these types of charts for efficient monitoring of process parameters and improving the quality of
the process outputs. In order to enhance the detection abilities of different kinds of charts, researchers have suggested certain
modifications in the literature. Lucas4 proposed a combined Shewhart-CUSUM quality control scheme for efficient detection of small
and large shifts. Lucas and Saccucci5 recommended a combined Shewhart-EWMA control chart for improved performance. Lucas
and Crosier6 proposed fast initial response (FIR) CUSUM charts that provide a head start to the CUSUM statistics, and similarly,
Steiner7 proposed FIR EWMA. Yashchin8 proposed the weighted CUSUM in which he assigned weights to the past information in
CUSUM statistics. Riaz et al.9 used the idea of runs rules to enhance the performance of the CUSUM control charts for small to large
shifts. Riaz et al.10 implemented different runs rules schemes, and Mehmood et al.11 used a variety of ranked set strategies to
enhance performance of Shewhart charts. Abbas et al.12 applied the runs rules idea for the EWMA charts. Recently, Abbas et al.13

introduced the design structure of a mixed EWMA-CUSUM (MEC) control chart for improved monitoring of the process parameters.
In the said MEC chart, the EWMA statistic is used as the input for the CUSUM structure. In this study, we propose a reverse version of
this mixing, that is, a mixed CUSUM-EWMA (MCE) control chart. In this new setup, the CUSUM statistic will serve the input for the
EWMA structure.

The organization of the rest of this study is as follows: Section 2 describes the classical CUSUM and classical EWMA control charts,
the MEC of Abbas et al.,13 and the proposed scheme denoted by MCE; section 3 contains the explanations of the different measures
that will be used to evaluate the performance, the comparisons using these performance measures, and some graphical
presentations; in section 4, an example with a real data set is given for the practical aspects of the proposed scheme; finally, we
conclude the article with a Section 5.
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2. Cumulative sum (CUSUM), exponentially weighted moving average (EWMA), mixed
EWMA-CUSUM, and the proposed mixed CUSUM-EWMA control charts

Cumulative sum and EWMA charts are designed to use the previous information along with the current to detect small to moderate
shifts. Consequently, they are known as memory control charts. Abbas et al.13 proposed a new memory control chart, by mixing the
features of the EWMA and CUSUM control charts (the chart is denoted by MEC). Following them, we propose the reverse order of their
mixture, that is, the CUSUM statistic is used as input for the EWMA chart. The resulting chart is denoted by the MCE control chart. The
description of all these charts (i.e., CUSUM, EWMA, MEC, and MCE) is given in the following subsections.

2.1. Classical cumulative sum scheme

The CUSUM chart was introduced by Page,3 and it uses the cumulative deviation from the target value. It is a favorable tool to detect
small to moderate shifts. The CUSUM chart is based on the following two statistics:

Cþ
t ¼ max 0; Xt � μ0

� �� K þ Cþ
t�1

� �
C�
t ¼ max 0;� Xt � μ0

� �� K þ C�
t�1

� �
)

(1)

where t represents the time or sample number andXt is the mean of X for sample t, Xt~N(μ0,σ0), where μ0 and σ0 are the target mean
and standard deviation, respectively. K= kσo is the reference value and is mostly used half of the shift, that is, k ¼ δ

2, where δ is the
amount of shift given as δ ¼ μ1�μ0j j

σ0 = ffiffi
n

p , μ1 is the out of control mean, and n is the sample size. Cþ
t and C�

t are the upper and lower CUSUM
statistics, respectively, and are plotted against to the control limit H= hσo. Initially, we set Cþ

0 ¼ C�
0 ¼ 0.

2.2. Classical exponentially weighted moving average scheme with time-varying limits

The EWMA control chart was introduced by Roberts,2 and it is also used to detect small to moderate shifts (like the CUSUM chart). The
EWMA statistic is defined as follows:

Zt ¼ 1� λð ÞZt�1 þ λXt (2)

where λ is the sensitivity parameter with 0< λ ≤ 1. Z0 is the starting value and is set to be equal to the target mean μ0. The EWMA
structure has an upper control limit (UCL), lower control limit (LCL), and center line (CL) defined as follows:

LCLt ¼ μ0 � LσX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2� λ
1� 1� λð Þ2t

� �r
CL ¼ μ0

UCLt¼ μ0 þ LσX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2� λ
1� 1� λð Þ2t

� �r

9>>>>>=
>>>>>;

(3)

where L is used as width coefficient between UCL and LCL for the predefined false alarm rate. Steiner7 explained the details of the
EWMA performance with time-varying limits used to monitor the location of the normally distributed process.

2.3. Mixed exponentially weighted moving average–cumulative sum scheme

Abbas et al.13 proposed a new chart bymixing the design structures of the classical EWMA and CUSUM charts. The plotting statistics of the
EWMA in Equation (2) is used as input for the CUSUM chart, and hence, the plotting statistic for the MEC chart is given as follows:

MECþ
t ¼ max 0; Zt � μ0ð Þ � Kzt þMECþ

t�1

� �
MEC�

t ¼ max 0;� Zt � μ0ð Þ � Kzt þMEC�
t�1

� �
)

(4)

where Kzt is the time-varying reference value and is defined as follows:

Kzt ¼ kZ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zð Þ

p
¼ kZσX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2� λ
1� 1� λð Þ2t

� �r
(5)

TheMECþ
t andMEC�

t statistics are the upper and the lower statistics, respectively, for theMEC control chart. Now, these statistics are
plotted against the control limit Hzt , which is defined as follows:

Hzt ¼ hZ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zð Þ

p
¼ hZσX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

2� λ
1� 1� λð Þ2t

� �r
(6)

where hz is the coefficient used to fix the predefined false alarm rate. Any value of MEC + crossing the control limit Hzt indicates
an increase in the process mean, and if MEC� goes beyond Hzt for any value of t, then it will point out a negative shift in the
process location.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 1407–1421
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2.4. The proposed mixed cumulative sum–exponentially weighted moving average scheme

The proposed scheme is also a mixture of the CUSUM and EWMA features but in the reverse order compared with the MEC control
chart. The proposed MCE chart is based on two statistics, which are given as follows:

MCEþt ¼ 1� λCð ÞMCEþt�1 þ λCCþ
t

MCE�t ¼ 1� λCð ÞMCE�t�1 þ λCC�
t

)
(7)

where Cþ
t and C�

t are the classical CUSUM statistics given in Equation (1) and λC is the sensitivity parameter of the proposed chart with
0< λc ≤ 1. The initial values for the statistics given in Equation (7) are taken equal to the target mean of Cþ

t andC�
t , respectively, that is,

MCEþ0 ¼ MCE�0 ¼ μC . For the in control situation, the mean and the variance of the statistics in Equation (7) are time varying up to a
specific value of t, and for t→∞, they become constant. The notations for the mean and variance are given as follows:

Mean Cþ
t

� � ¼ Mean C�
t

� � ¼ μct

Var Cþ
t

� � ¼ Var C�
t

� � ¼ σ2
ct

)
(8)

Using the mean and variance from Equation (8), we define the control limit of the proposed chart as follows:

UCLt ¼ μct þ LCσ ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λC

2� λC
1� 1� λCð Þ2t

� �s
(9)

where LC is the width coefficient, like L in Equation (3), and determines the predefined false alarm rate. Any shift in the positive
direction will be taken care by MCEþt , that is, if any value of MCEþt crosses the control limit in Equation (9), the process mean will
be declared as shifted upwards. Similarly, any shift in the negative direction will be addressed by MCE�t , that is, if any value of
MCEþt goes beyond the control limit, the process mean will be deemed as shifted downwards.
1
4
0
9

3. Performance measures evaluation and comparison

There are different measures, available in the literature, used to judge the performance of a control chart. Some of them are evaluated
for a specific value of δ while others are calculated for a range of δ. A few of them is elaborated in the following lines. The average run
length (ARL) is a famous tool and is widely used by researchers for measuring the performance of memory type control charts. The
performance is assessed by two types of ARLs, that is, ARL0 and ARL1. ARL0 is the expected number of samples before an out of control
point is detected when the process is actually in control. ARL1 is the expected number of samples before an out of control signal is
received when the process is actually shifted to an out of control state. For a fixed value of ARL0, a chart is considered to be more
effective than other charts if it has a smaller ARL1 (Wu et al.14) There are different approaches for evaluating the ARL. In the literature,
we find methods such as Markov chains, integral equations, and Monte Carlo simulations. We have used Monte Carlo simulation to
calculate the ARL measures for the proposed control chart. The algorithm is developed in MATLAB 7.1.2 and is run 104 times to obtain
run lengths. Finally, these run lengths are averaged to obtain the ARL value. The ARLs for the proposed MCE chart are given in Table I.

The extra quadratic loss (EQL) is an alternative measure of the ARL. The ARL value evaluates the performance of a charting structure
at a specific shift point, while EQL describes the overall effectiveness of a control chart for a range of values of the shift δ. It is defined
as follows:

EQL ¼ 1

δmax � δmin
∫

δmax

δmin

δ2ARL δð Þdδ (10)

Hence, EQL is defined as a weighted average of ARLs over the whole process shift domain (i.e., δmin< δ< δmax) using the square of
the shift (δ2) as a weight.

The relative ARL (RARL) describes the overall effectiveness of a particular charting structure relative to a benchmark chart. It
examines how close a particular chart performs to the benchmark chart for each shift in terms of ARL (cf. Wu et al.14 and Ryu et al.15).

RARL ¼ 1

δmax � δmin
∫

δmax

δmin

ARL δð Þ
ARLbenchmark δð Þ dδ (11)

The chart having the lowest values of ARL is generally considered to be the benchmark chart. The RARLmay be observed as RARL=
1 for the benchmark chart and RARL> 1 for the other charts. The aforementioned RARL value 1 shows the inferiority in performance
of a particular chart relative to the benchmark chart. For evaluating the RARL, Zhao et al.16 and Han et al.17 considered the uniform
distribution of δ in their studies.

The performance comparison index (PCI), according to Ou et al.,18 is the ratio between the EQL of a chart and the EQL of the best
chart under the same conditions. This index facilitates the performance comparison and a ranking based on the EQL. The chart with
the lowest EQL has a PCI value equal to one, and the PCI values of all other charts are larger than one.
Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 1407–1421
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PCI ¼ EQL

EQLbenchmark
(12)

Some modifications of these measures may be seen in Zhang and Wu,19 Wu et al.,14 Ryu et al.,15 Ou et al.,20 Ou et al.,18 Ahmad
et al.,21 Ahmad et al.,22 and Ahmad et al.23.

The next subsections will provide a comprehensive comparison of our proposed chart with existing control charts from the
literature. These are the classical EWMA by Roberts,2 the classical CUSUM by Page,3 the runs rules-based EWMA proposed by Abbas
et al.12 and runs rules-based CUSUM by Riaz et al.,9 the FIR CUSUM by Lucas and Crosier,6 weighted CUSUM scheme is proposed by
Yashchin,8 and, finally, the MEC chart by Abbas et al.13. For our study, we have used the following values of the chart parameters:
k=0.5 (cf. Equation (1)) and λC= 0.1, 0.25, 0.5, and 0.75 (cf. Equation (2)). For the ARL performance of the CUSUM chart, we have
reproduced the results of Hawkins24 and Montgomery25 and found similar results.

3.1. Proposed mixed cumulative sum–exponentially weighted moving average (EWMA) versus time-varying EWMA

The ARL values of classical EWMA with time-varying limits (cf. Roberts2) are provided in Table II. The proposed scheme is compared
with the classical EWMA scheme at different values of λc, while k is fixed. We observe that the proposed scheme has better ARL1
performance for different λc values and for different shifts δ. For example, when λc= 0.25, the MCE has a better performance for
δ ≤ 1, whereas for λc= 0.5, the proposed scheme seems superior for δ ≤ 1.75. Similarly, for λc> 0.5, the proposed MCE chart has smaller
ARL1 values for the entire range of δ (cf. Table II vs. Table I).

Similarly, the overall performance of the charts is judged by the EQL, RARL, and PCI measures. The proposed scheme at λ ≥ 0.5 has
efficient performance as compared with the classical EWMA because it has the lowest values of EQL, RARL, and PCI (cf. Table III).

3.2. Proposed mixed cumulative sum–exponentially weighted moving average (EWMA) versus run rules-based EWMA

The runs rules-based EWMA schemes are proposed by Abbas et al.,12and their ARLs values are given in Table IV. The ARL performance
of the proposed scheme is compared with the runs rules-based EWMA schemes at different values of λc with its corresponding λ. The
runs rules EWMA scheme 1 at λ=0.1 has better performance than our proposed scheme, but at λc=0.25, the proposed MCE scheme is
performing better for δ ≤ 0.75. As the values of λc increases (i.e., λc ≥ 0.5), the proposed MCE scheme is really performing better over
runs rules EWMA scheme 1 for different shifts. The runs rules-based EWMA scheme 2 is bit superior when λ ≤ 0.25, but for others
values λ(i.e., λ ≥ 0.5), the proposed scheme is superior for δ ≤ 1.25 (cf. Table IV vs. Table I).

For the EQL, RARL, and PCI measures, the proposed scheme is compared with the runs rules EWMA schemes 1 and 2 separately (cf. Table III).
The proposed MCE scheme is more efficient than the runs rules EWMA schemes for λc≥0.5 because it has smaller EQL, RARL, and PCI values.

3.3. Proposed mixed cumulative sum (CUSUM)–exponentially weighted moving average versus classical CUSUM

The different ARLs values of the classical CUSUM chart proposed by Page3 are given in Table II. The proposed MCE chart is performing
really well for all values of λc. When λc= 0.1, the proposed chart has better ARL1 values for small shifts (i.e., δ ≤ 0.5) as compared with
the classical CUSUM. Similarly, at λc=0.25, the proposed chart also has smaller ARL1 values for δ ≤ 0.75. For all others values of λc, the
proposed scheme is superior to the classical CUSUM for all possible shift amounts (cf. Table I vs. Table II). The EQL, RARL, and PCI of
MCE are significantly smaller as compared with the classical CUSUM and for values of λc ≥ 0.5 (cf. Table III).

3.4. Proposed mixed cumulative sum (CUSUM)–exponentially weighted moving average scheme versus runs rules CUSUM schemes

The runs rules-based CUSUM schemes are proposed by Riaz et al.9 to enhance the performance of the CUSUM control charts . The ARL
performance of their proposed schemes is provided in Table V where WL and AL represents the warning limits action limits,
respectively. The proposed MCE chart is compared with their schemes at different values of λc. The proposed MCE scheme exhibits
superior ARL performance relative to the runs rules-based CUSUM schemes for δ ≤ 0.5 shifts when λc= 0.1 and 0.25. However, for larger
values of λc, the proposed MCE chart shows superiority for moderate and larger shifts. The EQL, RARL, and PCI measures also support
the MCE scheme for relatively larger values of λc (cf. Table I vs Tables V and VI).
Table V. Average run length values of the runs rules cumulative sum (CUSUM) schemes

Copyright © 2014 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 1407–1421
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3.5. Proposed mixed cumulative sum (CUSUM)–exponentially weighted moving average versus fast initial response CUSUM

The FIR CUSUM proposed by Lucas and Crosier6 provides a head start to the CUSUM statistics. The ARLs of the CUSUM with FIR
features are given in Table IV in which the head start is represented by C0. The FIR features decreases the ARL0 values of the CUSUM
chart, and more importantly, this decreased ARL0 becomes very small for large values of C0 (e.g., for C0 = h/2, the ARL0 decreases from
168 to 149). Comparing with the MCE scheme at λc=0.1 and 0.25 with the FIR CUSUM, we may see that the proposed MCE chart
offers relatively better ARL properties, even if the FIR CUSUM is not having a fixed ARL0. This implies that our proposed chart performs
more efficiently (particularly at small and moderate shifts in comparison with the FIR CUSUM chart) (cf. Table I vs. Table IV).
3.6. Proposed mixed cumulative sum (CUSUM)–exponentially weighted moving average versus weighted CUSUM

Yashchin8 proposed the weighted CUSUM in which he assigned weights (denoted by γ) to the past information in CUSUM statistics.
The ARL values of the weighted CUSUM chart are given in Table VII. For δ ≤ 1, the proposed MCE chart is performing really better than
the weighted CUSUM chart for the all values of λc (cf. Table I vs. Table VII).
3.7. Proposed mixed cumulative sum (CUSUM)–exponentially weighted moving average (EWMA) versus mixed EWMA-CUSUM

The MEC scheme is proposed by Abbas et al.,13 and some results are given in Table II. At λc=0.1 and λc= 0.25, the proposed MCE is
compared with the MEC scheme, and it is found that MEC has superior performance with respect to the MCE scheme for δ ≤ 0.5, but if
the value of δ increases (i.e., δ ≥ 0.75), the proposed MCE scheme offers relatively better performance with respect to the MEC scheme
(cf. Table I vs. Table II).

In comparison with FIR EWMA (cf. Steiner7) and an adaptive CUSUM with EWMA-based shift estimator (cf. Jiang et al.26), the MEC
scheme is preferable to our proposed MCE scheme because of its sensitivity for smaller shifts (cf. Abbas et al.13).
3.8. Proposed versus Shewhart schemes

In this subsection, the proposed scheme is compared with the classical Shewhart scheme. For the said scheme, ARL results are
provided in Table II along with some other existing schemes. It is obvious that the proposed MCE scheme offers superior ability
relative to the Shewhart scheme (cf. Table I versus Table II). We have also computed the standard deviation run length (SDRL) results
for the proposed and Shewhart schemes (cf. Table VIII). It is observed that SDRL results of the proposed scheme remain smaller than
those of the Shewhart scheme. A comparative graph of ARL and SDRL of both the schemes is provided in Figure 4 that highlights
relative superiority of the proposed scheme over the Shewhart scheme in terms of ARL and SDRL.

It is interesting to note that the proposed MCE scheme is taking an edge over Shewhart scheme even for larger values of δ for
varying choices of λ, which is not the case with MEC scheme. Moreover, the MEC scheme has relatively smaller SDRLs as compared
with the MCE scheme for smaller values of δ and λ. The differences between SDRL values of MCE and MEC schemes keep decreasing
with the increase in the values of δ and λ (which is mainly the dominance zone for the proposed scheme, cf. Tables I, II, and VIII).
3.9. Graphical presentation

We have provided some graphical presentations of ARL curves to show the superiority of our proposed MCE chart over others. For the
sake of brevity, we have selected only four figures of different charts (discussed in Tables 1–7). In Figure 1, the proposed MCE scheme
is compared with the classical EWMA and the runs rules-based EWMA. The ARL curve of the proposed MCE is at the lower side, which
is evidence of superior performance of the proposed chart over EWMA and runs rules-based EWMA.

In Figure 2, the proposed MCE at λc=0.1 is compared with the classical and weighted CUSUM and the MEC. The proposed MCE
scheme has better performance as compared with the MEC scheme (for moderate to large shifts (δ ≥ 0.5) and for the weighted CUSUM
at all shifts).

In Figure 3, the proposed MCE scheme is compared with the classical EWMA for two-sided shifts. Our scheme has superior
performance over the classical EWMA for all shifts.

The proposed MCE scheme is also compared with the classical Shewhart scheme. Our scheme has superior performance over the
classical Shewhart for all shifts even at small value of λc.
Table VII. Symmetric two-sided weighted cumulative sum scheme at ARL0 = 500

δ
h ¼ 3:16

γ ¼ 0:7

h ¼ 3:46

γ ¼ 0:8

h ¼ 3:97

γ ¼ 0:9

h ¼ 5:09

γ ¼ 1

0 500 500 500 500
0.5 86.3 70.2 54.4 39
1 15.9 13.3 11.4 10.5
1.5 6.08 5.66 5.5 5.81
2 3.52 3.5 3.6 4.02
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Figure 1. Average run length (ARL) comparisons of the proposed mixed cumulative sum–exponentially weighted moving average (MCE) scheme at ARL0 = 500, λc= 0.75,
and kz= 0.5 with other competing charts

Figure 2. Average run length (ARL) comparisons of the proposed mixed cumulative sum (CUSUM)–exponentially weighted moving average (EWMA) (MCE) scheme at
ARL0 = 500, λc= 0.1, and kz= 0.5 with the classical CUSUM, weighted CUSUM, and mixed EWMA-CUSUM schemes

Figure 3. Average run length (ARL) comparison of the proposed mixed cumulative sum–exponentially weighted moving average (EWMA) (MCE) and classical EWMA at
ARL0 = 500

B. ZAMAN ET AL.
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Figure 4. Average run length (ARL) and SDRL comparison of the proposed mixed cumulative sum–exponentially weighted moving average (MCE) and classical Shewhart
at ARL0 = 200

Figure 5. Control chart for the mixed cumulative sum–exponentially weighted moving average (MCE) scheme at λc= 0.25, kz= 0.5, and ARL0 = 500

Figure 6. Control chart for mixed cumulative sum–exponentially weighted moving average (MEC) scheme at λc= 0.25, kz= 0.5, and ARL0 = 500

B. ZAMAN ET AL.
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Figure 7. Control chart for the Shewhart scheme at ARL0 = 500

B. ZAMAN ET AL.
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4. Illustration of the proposed mixed cumulative sum–exponentially weighted moving
average scheme with real datasets

To show the performance of the proposed MCE scheme with real data is important from a practical point of view. The Major League
Baseball is the highest professional baseball league in the United States, and its modern history started in 1901. The Major League
Baseball has experienced a series of historical eras since it begun; during the whole period, offensive performance was observed
to be different than in other periods of baseball history. Hill and Schvaneveldt27 used a data set from the period 1969 to 2008 to judge
the offensive performance in baseball. One metric of offensive performance is measured as home run per game. In order to detect out
of control points in the said dataset, we have used the proposed MCE scheme and received three out of control signals (cf. Figure 5).
We have also considered two competing schemes from the two extreme ends, that is, Shewhart (where larger shifts are of major
concern) and MEC (small and moderate shifts are of major concern). We have constructed the control charts (for the same data
set) of two aforementioned competing schemes and received only one out of control signal for each scheme (cf. Figures 6, 7). The
differences in the detection abilities of these three types of charts convey the message quite efficiently for our study purposes.
5. Conclusions and recommendations

This study has proposed a new control chart by combining the features of CUSUM and EWMA charts, called MCE control chart. The
analysis has revealed that the proposed MCE control chart is very sensitive for the detection of small and moderate shifts and offers a
quite efficient structure as compared with existing counterparts. The relative performance of the proposed chart as compared with
the other charts varies depending on the amounts of shifts. The MCE scheme has superior performance as compared with an
alternative MEC control chart (the MEC scheme) for δ ≥ 0.5 when λc ≥ 0.5. Moreover, the proposed scheme is an efficient competitor
to the usual Shewhart scheme for varying values of λ and δ.

For future research, the robustness of this chart can be checked with non-normal distributions in the comparison of other robust
charting structures, and also, this study can be extended for monitoring the dispersion parameter, as well as for multivariate structure.
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