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When in-control process parameters are estimated, Phase II control chart performance will vary among
practitioners due to the use of di↵erent Phase I data sets. The typical measure of Phase II control chart
performance, the average run length (ARL), becomes a random variable due to the selection of a Phase I
data set for estimation. Aspects of the ARL distribution, such as the standard deviation of the average run
length (SDARL), can be used to quantify the between-practitioner variability in control chart performance.
In this article, we assess the in-control performance of the exponentially weighted moving average (EWMA)
control chart in terms of the SDARL and percentiles of the ARL distribution when the process parameters
are estimated. Our results show that the EWMA chart requires a much larger amount of Phase I data
than previously recommended in the literature in order to su�ciently reduce the variation in the chart
performance. We show that larger values of the EWMA smoothing constant result in higher levels of
variability in the in-control ARL distribution; thus, more Phase I data are required for charts with larger
smoothing constants. Because it could be extremely di�cult to lower the variation in the in-control ARL
values su�ciently due to practical limitations on the amount of the Phase I data, we recommend an
alternative design criterion and a procedure based on the bootstrap approach.

Key Words: Bootstrap; Estimation E↵ect; SDARL; SPC; Standard Deviation of Average Run Length;
Statistical Process Control.

1. Introduction

THE exponentially weighted moving average
(EWMA) control chart was first introduced by

Roberts (1959). The EWMA chart statistic is a
weighted average of measurements, giving heaviest
weights to the most recent observations. This pro-
vides the chart with the advantage of being sensitive
to small- and moderate-sized sustained shifts in the
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process parameters. As a consequence, the EWMA
chart is one of the primary alternatives to Shewhart
control charts when small shifts in the parameters
are to be detected quickly. The EWMA chart has
received a great deal of attention in the statistical
process control (SPC) literature. See, for example,
Crowder (1987, 1989), Robinson and Ho (1978), Lu-
cas and Saccucci (1990), Steiner (1999), Jones et al.
(2001), Jones (2002), Simöes et al. (2010), and Zwet-
sloot et al. (2014, 2015).

Phase II control charts are designed for moni-
toring processes and detecting deviations from the
in-control values of the process parameter(s). Be-
cause the true values of the in-control parameters are
rarely known in practice, practitioners typically be-
gin by collecting baseline information on the process.
Practitioners gather m samples each of size n � 1
that constitute the Phase I data set. The Phase I
data are used to evaluate the stability of the process
and determine an in-control reference sample from
which estimates of the process parameters can be
obtained. These parameter estimates are then used
to design a suitable Phase II control chart, with the
aim of quickly detecting out-of-control conditions.
For overviews of Phase I methods, see Chakraborti
et al. (2009) and Jones-Farmer et al. (2014).

When we refer to the “amount of Phase I data”
in our paper, we refer to the total number of ob-
servations in Phase I, i.e., mn. We do not consider
applications in which there are two or more com-
ponents of variation in the data, although these oc-
cur frequently in practice and deserve study. The use
of control charts when there are several components
of variation was discussed by Woodall and Thomas
(1995).

The performance of control charts with estimated
parameters has received a great deal of attention in
the SPC literature. See, for example, Quesenberry
(1993), Chen (1997), and Jones et al. (2001, 2004).
Jensen et al. (2006) and Psarakis et al. (2014) pro-
vided reviews of the literature on the performance of
control charts with estimated parameters. The gen-
eral consensus is that the use of parameter estimates
results in control charts with less predictable statisti-
cal performance than those with known parameters.

Phase II control chart performance is commonly
evaluated using characteristics of the run length dis-
tribution. The run length of a control chart is a ran-
dom variable defined as the number of the plotted
statistics until the chart signals. One of the most

common measures of Phase II control chart per-
formance is the average run length (ARL). When
parameters are estimated the control chart perfor-
mance will depend on the estimated parameters and
will thus vary among practitioners. This is because
practitioners use di↵erent Phase I data sets, which
result in di↵erent parameter estimates, control lim-
its, and chart performance (i.e., di↵erent ARL val-
ues). We refer to this variation as practitioner-to-
practitioner variability. Equivalently, this variation
can be viewed as sampling variation for a single
practitioner. Most often, charts are evaluated and
the amount of Phase I data necessary for desired
chart performance is determined based on the ex-
pected value of the ARL (AARL), averaging across
the practitioner-to-practitioner variability.

The performance of the EWMA control chart with
estimated parameters was first investigated by Jones
et al. (2001), who derived the run length distribu-
tion of the chart. Jones et al. (2001) studied the
run length distribution conditioned on specific val-
ues of the parameter estimates and also studied the
unconditional run length distribution averaged over
all possible values of the parameter estimates. They
showed that the EWMA chart performance deterio-
rates substantially when parameters are estimated,
particularly with small amounts of Phase I data.
Similar to Quesenberry (1993), Jones et al. (2001)
made sample-size recommendations based on the in-
crease in the rate of early false alarms of a chart
with estimated parameters over one with known pa-
rameters. This approach resulted in recommenda-
tions that more Phase I data are required for EWMA
charts with small smoothing constants. Smaller val-
ues of the smoothing constant are typically recom-
mended for detecting sustained shifts of smaller mag-
nitude (Crowder (1987), Lucas and Saccucci (1990)).

Depending solely on the run length distribution
averaged over all values of the parameter estimates
does not reflect sampling variation or the amount
of variation in the chart performance among prac-
titioners. Although Jones et al. (2001) reported the
standard deviation of the unconditional run length
distribution (SDRL), that measure was also aver-
aged over all possible values of the parameter esti-
mates. Jones et al. (2001) additionally reported the
unconditional 10th, 50th, and 90th percentiles of the
run length distribution, which gives a better idea of
how the EWMA chart performance varies according
to the di↵erent values of the parameter estimates.
It is di�cult, however, to use multiple percentiles
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to make recommendations on the amount of Phase
I data for control charts with estimated parame-
ters. Our approach is to use the standard deviation
of the ARL (SDARL) as a measure of the amount
of practitioner-to-practitioner variability in control
chart performance. Recently, several authors have
used the SDARL as a metric for determining the nec-
essary amount of Phase I data for control charts with
estimated parameters (see, e.g., Jones and Steiner
2012; Zhang et al. 2013; Zhang et al. 2014; Lee et al.
2013; Aly et al. 2015; Saleh et al. 2015; and Faraz
et al. 2015). These studies frequently show that im-
practically large amounts of Phase I data are needed
for a practitioner to have confidence that his/her in-
control ARL is near the desired value. The extent of
this phenomenon was first recognized by Albers and
Kallenberg (2004).

The findings of the studies accounting for the
between-practitioner (or sampling) variability imply
the necessity of having an alternative technique for
controlling the chart performance. Recently, Jones
and Steiner (2012) and Gandy and Kvaløy (2013)
proposed a design procedure based on the boot-
strap which guarantees, with a specified probability,
a certain conditional performance for control charts.
Their approach is to adjust the control limits such
that p% of the in-control ARL values are at least
a specified value; for example, at least 90% of the
charts with a particular design would have in-control
ARL values of 200 or more. The main objective of
this approach is to limit the proportion of low in-
control ARL values resulting from the use of insuf-
ficient amounts of Phase I data. Gandy and Kvaløy
(2013) showed that even with the use of relatively
small amounts of Phase I data, the out-of-control
ARLs using this approach increase only slightly com-
pared to the case when the standard design method
is used.

In our article, we extend the work of Jones et
al. (2001) by evaluating the performance of the
EWMA chart with estimated parameters while con-
sidering the practitioner-to-practitioner variability
using the standard deviation of the average run
length (SDARL) metric. We also study the e↵ect
of the smoothing constant on the practitioner-to-
practitioner variability. Because it has been shown
that the standard deviation estimator has a strong
e↵ect on control chart performance (Saleh et al.
(2015)), we further assess the performance of the
EWMA chart using several estimators for the pro-
cess standard deviation. Additionally, we design the

EWMA chart using this bootstrap approach and in-
vestigate the e↵ect of adjusting the control limits on
the out-of-control performance of the chart.

In Section 2, we give an overview of the EWMA
control chart with estimated parameters and present
the estimators used for the in-control process param-
eters. In Section 3, we highlight the importance of in-
corporating the practitioner-to-practitioner variabil-
ity when assessing the EWMA chart. In Section 4,
we evaluate the EWMA chart in terms of the AARL,
SDARL, and some percentiles of the ARL distribu-
tion. In Section 5, we investigate the in-control and
out-of-control performance of the EWMA chart when
the control limits are determined using the bootstrap
approach. Finally, we give concluding remarks and
recommendations in Section 6.

2. EWMA Chart with Estimated
Parameters

We observe Xi1,Xi2, . . . ,Xin, i = 1, 2, 3, . . . ,
independent random samples of size n at regu-
lar time intervals. For each sample, it is assumed
that Xi1,Xi2, . . . ,Xin are independent and identi-
cally distributed (i.i.d) normal random variables with
mean µ and standard deviation �. The objective is
to detect any change in µ from its in-control value
µ0. We further assume that the in-control process
standard deviation value is �0.

The EWMA chart statistic at time i is defined as

Zi = � Xi +(1� �)Zi�1, (1)

where Xi is the ith sample mean and �, 0 < �  1, is
a smoothing constant. The initial value Z0 is usually
set to be equal to the process target or to the estimate
of the mean from the Phase I data. If � = 1, the
EWMA statistic is equal to the most recent sample
mean, which is equivalent to the Shewhart X-chart
statistic. Under the normality assumption, Crowder
(1987, 1989) and Lucas and Saccucci (1990) provided
the optimal values of � that correspond to di↵erent
magnitudes of mean shifts. The EWMA chart signals
when the statistic Zi exceeds the limits given by

µ0 ± L

s
�

n(2� �)
[1� (1� �)2i]�0, (2)

where L is chosen to satisfy a specific in-control per-
formance. The time-varying control limits in Equa-
tion (2) are the “exact” limits for the EWMA chart.
As i increases, the term (1��)2i approaches zero and
the limits in Equation (2) converge to the asymptotic
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limits given by

µ0 ± L

s
�

n(2� �)
�0. (3)

For simplicity, we consider in our study the EWMA
chart designed using the asymptotic limits defined in
Equation (3).

Following a similar procedure to that of Jones et
al. (2001), the chart statistic in Equation (1) can be
rewritten as

Yi = �Wi + (1� �)Yi�1, (4)

where Wi is the standardized sample mean defined
as

Wi =
Xi �µ0

�0/
p

n
, i = 1, 2, 3, . . . ,

for any target mean value µ0 and standard devia-
tion �0. If µ0 and �0 are unknown, they are typically
replaced with their corresponding estimators to give

Ŵi =
Xi �µ̂0

�̂0/
p

n
,

or equivalently

Ŵi =
1
Q

✓
⌫i + � � Zp

m

◆
, (5)

where Q = �̂0/�0 is the ratio of the estimated in-
control standard deviation to the actual in-control
standard deviation, ⌫i =

p
n(Xi �(µ0 + �))/�0 is

the standardized Phase II sample mean with � repre-
senting the mean shift, � =

p
n�/�0 is the standard-

ized mean shift, and Z =
p

mn(µ̂0 � µ0)/�0 is the
standardized di↵erence between the actual in-control
mean and the estimated in-control mean. If the pro-
cess is in control, then � = � = 0. We assume, with-
out loss of generality, that µ0 = 0 and �0/

p
n = 1

and, because of standardization, the control limits in
Equation (3) become

±L

s
�

(2� �)
. (6)

In our article, we consider estimating the in-
control process mean µ0 by the overall sample mean
defined as

µ̂0 =
Pm

i=1 Xi

m
, (7)

where Xi is the ith Phase I sample mean. The process
standard deviation, �0, is estimated by one of the

following estimators:

�̂1 = R̄/d2(n),
�̂2 = S̄/c4(n),
�̂3 = Spooled/c4(v + 1),
�̂4 = c4(v + 1)Spooled,

�̂5 = Spooled, (8)

where R̄ = (
Pm

i=1 Ri)/m, Ri is the ith Phase
I sample range, S̄ = (

Pm
i=1 Si)/m, Si is the

ith Phase I sample standard deviation, Spooled =p
(
Pm

i=1 S2
i )/m, v = m(n�1), and c4(·) and d2(·) are

control chart constants. Tabulated values for c4 and
d2 are widely available, e.g., in Montgomery (2013,
p. 720). Each of the estimators �̂1, �̂2, and �̂3 are un-
biased estimators for �0, while �̂4 and �̂5 are biased.

Although the range-based estimator is easier for
practitioners to calculate, it has the highest mean-
squared error (MSE) among the estimators in Equa-
tion (8). Mahmoud et al. (2010) recommended that
�̂1 not be used in quality-control applications. Pool-
ing the sample standard deviations provides lower
values of MSE than averaging them (Derman and
Ross (1995), Vardeman (1999), Mahmoud et al.
(2010)). Among the di↵erent forms of the pooled es-
timator, Derman and Ross (1995) recommended the
use of �̂5, while Vardeman (1999) and Mahmoud et
al. (2010) showed that �̂4 has the lowest MSE.

3. Importance of Considering
the Practitioner-to-Practitioner

Variability

When the parameters are known, a control chart’s
ARL is a constant value; however, when the parame-
ters are estimated, the ARL becomes a random vari-
able due to the Phase I sampling. Control charts with
estimated parameters have most often been evalu-
ated in terms of the average ARL (AARL). The use
of the AARL, however, does not reflect other impor-
tant properties of the ARL. Because the ARL dis-
tribution can be skewed, the mean of the distribu-
tion (AARL) may not give an accurate measure of
the location. More importantly, the AARL does not
account for the variability in the ARL values. It is
possible to have an AARL value close to the desired
value, ARL0, but with the individual ARL values
widely dispersed. The larger the variability in the
in-control ARL values among practitioners, the less
confident one would be in a particular chart’s per-
formance. Basically, sampling variation a↵ects each
practitioner.
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FIGURE 1. Relative Frequency Histograms of In-Control ARL Values Based on �̂3 and n = 5. (a) � = 1.0, L = 2.807, and
m = 100; (b) � = 0.5, L = 2.777, and m = 200; (c) � = 0.2, L = 2.636, and m = 300; (d) � = 0.1, L = 2.454, and m =
400.

Figure 1 presents relative frequency histograms
of 100,000 simulated in-control ARL values for four
EWMA smoothing constants based on Jones et al.’s
(2001) sample-size recommendations. Table 1 pro-
vides the percentiles of these values. The standard
deviation estimator used was �̂3. The smoothing con-
stant, �, and the control chart constant, L, are those
producing a chart with known parameters with a
specified in-control ARL value of ARL0 = 200. Jones

et al. (2001) determined, when n = 5, that m should
be of at least 400 if � = 0.1, 300 if � = 0.2, 200
if � = 0.5, and 100 if � = 1.0. Figure 1 shows
that the in-control ARL values of charts designed
using this amount of data are quite variable. Ta-
ble 1 emphasizes this sampling variation. For exam-
ple, if � = 0.1 and 400 samples of size 5 are used
to estimate the parameters, then 80% of the practi-
tioners would have an in-control ARL value between

TABLE 1. Percentiles of the In-Control ARL Distribution Based on Jones et al.’s (2001) Sample Size Recommendations

� m Min. 5th 10th 25th 50th 75th 90th 95th Max.

1.0 100 52.6 116.6 129.7 155.8 191.5 236.4 287.3 324.0 774.8
0.5 200 71.0 133.9 144.4 164.2 189.7 219.8 251.4 272.1 487.1
0.2 300 64.6 140.0 150.6 167.8 187.5 208.6 229.2 242.3 369.9
0.1 400 66.9 142.6 153.6 170.3 186.9 203.1 218.2 227.9 311.6
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153.6 and 218.2 and 90% between 142.6 and 227.9.
A chart with an ARL of 143, for example, would
give false signals more frequently than desired. Con-
versely, a chart with an ARL of 228 would give less
frequent false signals than the value specified, but
will be somewhat less sensitive to process changes.
Notice that the median of the in-control ARL values
corresponding to this case is 186.9, which is relatively
close to 200.

The results in Figure 1 and Table 1 show the ne-
cessity of an alternative metric to measure the per-
formance of control charts with estimated parame-
ters. A straightforward measure of the practitioner-
to-practitioner variability in control charts with es-
timated parameters is the standard deviation of the
ARL (SDARL). The SDARL metric was proposed
by Jones and Steiner (2012), who used it to deter-
mine the e↵ect of the amount of Phase I data on
the risk-adjusted cumulative sum (CUSUM) control
chart. Saleh et al. (2015) evaluated the Shewhart
X- and the individuals X-control charts in terms of
the SDARL metric. They concluded that account-
ing for the between-practitioner variability requires
a far larger amount of Phase I data than that rec-
ommended by Quesenberry (1993) in order to reduce
the variability among practitioners to an acceptable
level. Also, Zhang et al. (2013, 2014) and Lee et al.
(2013) used the SDARL metric in evaluating the per-
formance of the exponential CUSUM chart, the ge-
ometric chart, and the Bernoulli CUSUM chart, re-
spectively. Aly et al. (2015) used the SDARL met-
ric in evaluating several di↵erent simple linear pro-
file monitoring approaches when the in-control pro-
file parameters are estimated. The use of the SDARL
metric shows that the required amount of data to ad-
equately reduce the variation in the in-control ARL
to a reasonable level is often prohibitively large.

4. EWMA Performance Assessment

The in-control performance of the EWMA chart
with estimated parameters was evaluated using the
Markov chain approach described in Appendix A.
The number of states used was 201. This number was
found to balance a high level of accuracy and the ac-
ceptable time of computation. The calculations were
performed using the SAS® statistical software, and
results were validated using a Monte Carlo simula-
tion. The process mean was estimated using the esti-
mator in Equation (7) and the process standard de-
viation was estimated by each of the five estimators
given in Equation (8). Di↵erent values of m, ranging

from 30 to 5000, with sample sizes n = 1, 5, and 10
were considered. We used the same four combinations
of control chart design parameters (�, L) as consid-
ered by Jones et al. (2001): (0.1, 2.454), (0.2, 2.636),
(0.5, 2.777), and (1.0, 2.807). Under the known in-
control parameters assumption, these design param-
eters produce ARL0 = 200.

Tables 2 and 3 display the in-control AARL and
SDARL values, respectively, for each of the standard
deviation estimators and values of m for samples of
size n = 5. The last column in each table, m = 1,
refers to the case when the in-control process param-
eters are known. The bolded values correspond to the
sample size recommendations of Jones et al. (2001)
on the amount of Phase I data to use.

Although Jones et al.’s (2001) recommendations
regarding the amount of Phase I data were based on
reducing the occurrence of early false alarms, they
also provided practitioners with AARL values close
to ARL0 as shown in Table 2. However, the results
in Table 3 show that these values of m are asso-
ciated with large values of the SDARL. Account-
ing for practitioner-to-practitioner variability in the
ARL reveals that the recommended amount of data
is not nearly large enough to ensure that individual
practitioners will obtain an in-control ARL close to
the specified value. Additionally, our results suggest
that the larger the smoothing constant, the larger the
SDARL will be for a given amount of data. For exam-
ple, given m = 30, � = 0.1, and the process standard
deviation estimator �̂3, the in-control AARL = 133.9
with SDARL = 81.2. If � increases to 0.5 and 1.0, the
in-control AARL increases to 183.6 and 212.3 and
the corresponding SDARL increases as well to 123.5
and 142.7, respectively. Recall that, when � = 1, the
EWMA chart is equivalent to the Shewhart chart.
Thus, we can conclude that Shewhart charts have
higher levels of between-practitioner variability than
the EWMA chart.

Another aspect of control chart performance that
can be seen from Table 3 is the e↵ect of the estima-
tor of the process standard deviation on the control
chart performance. For a given value of � and small
m, EWMA charts based on the standard deviation
estimator �̂4 have the smallest values of the SDARL.

In order to achieve stable in-control ARL perfor-
mance when process parameters are estimated, the
required amount of Phase I data should yield an in-
control AARL value close to ARL0 and an SDARL
value that is su�ciently small. Zhang et al. (2014)
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TABLE 2.In-Control AARL for Each Standard Deviation Estimator when m Phase I Samples, Each of Size n = 5,
Are Used to Estimate the In-Control Values of the Process Parameters. Bolded values correspond to

the sample size recommendations of Jones et al. (2001)

m

�̂ � 30 50 100 200 300 400 500 600 700 800 900 1,000 3,000 5,000 1

�̂1 0.1 134.9 147.4 163.7 176.9 182.9 186.4 188.7 190.3 191.5 192.4 193.2 193.8 197.7 198.6 199.9
0.2 153.4 162.8 175.2 184.9 189.2 191.6 193.1 194.2 195.0 195.6 196.1 196.5 198.9 199.5 200.3
0.5 186.9 187.8 191.6 194.9 196.4 197.2 197.7 198.0 198.3 198.5 198.6 198.7 199.5 199.7 199.9
1.0 216.7 208.2 203.5 201.6 201.0 200.8 200.6 200.5 200.4 200.3 200.3 200.3 200.1 200.0 200.0

�̂2 0.1 134.4 147.1 163.5 176.8 182.9 186.4 188.6 190.3 191.5 192.4 193.2 193.8 197.7 198.6 199.9
0.2 152.5 162.3 174.9 184.8 189.1 191.6 193.0 194.1 194.9 195.5 196.0 196.4 198.9 199.5 200.3
0.5 185.2 187.0 191.2 194.7 196.2 197.2 197.6 197.9 198.2 198.4 198.6 198.7 199.5 199.6 199.9
1.0 214.4 207.1 202.9 201.3 200.8 200.7 200.5 200.4 200.3 200.3 200.2 200.2 200.1 200.0 200.0

�̂3 0.1 133.9 146.8 163.3 176.7 182.8 186.3 188.6 190.2 191.4 192.4 193.1 193.7 197.7 198.6 199.9
0.2 151.6 161.7 174.6 184.6 189.0 191.4 193.0 194.1 194.9 195.5 196.0 196.4 198.9 199.5 200.3
0.5 183.6 186.1 190.7 194.5 196.1 196.9 197.5 197.8 198.1 198.3 198.5 198.6 199.5 199.6 199.9
1.0 212.3 206.0 202.4 201.0 200.7 200.5 200.4 200.3 200.2 200.2 200.2 200.1 200.0 200.0 200.0

�̂4 0.1 131.0 144.9 162.2 176.1 182.4 186.0 188.3 190.0 191.2 192.2 193.0 193.6 197.7 198.5 199.9
0.2 147.5 159.1 173.1 183.8 188.4 191.0 192.6 193.8 194.6 195.3 195.8 196.2 198.9 199.4 200.3
0.5 177.3 182.3 188.8 193.5 195.4 196.4 197.1 197.5 197.8 198.1 198.3 198.4 199.4 199.6 199.9
1.0 204.4 201.4 200.2 199.9 199.9 199.9 199.9 199.9 199.9 199.9 199.9 199.9 199.9 199.9 200.0

�̂5 0.1 132.4 145.9 162.7 176.4 182.6 186.1 188.5 190.1 191.3 192.3 193.1 193.7 197.7 198.6 199.0
0.2 149.6 160.4 173.9 184.2 188.7 191.2 192.8 193.9 194.7 185.4 195.9 196.3 198.9 199.4 200.3
0.5 180.4 184.2 189.7 194.0 195.7 196.7 197.3 197.7 198.0 198.2 198.4 198.5 199.4 199.6 199.9
1.0 208.3 203.7 201.3 200.5 200.3 200.2 200.1 200.1 200.1 200.1 200.1 200.0 200.0 200.0 200.0

suggested that an SDARL within 10% of the ARL0

may be reasonable, although still reflecting a signifi-
cant amount of variation. Consequently, based on our
results, a practitioner would need about 600 samples
of size n = 5 if � = 0.1, 700 if � = 0.2, 900 if � = 0.5,
and 1000 if � = 1.0 to obtain SDARL values of no
more than 20 (10% of 200). These recommendations
hold if any of the standard deviation estimators is
used except for the estimator �̂1. If �̂1 is used, a
practitioner would need a larger amount of Phase I
data; 700 samples of size n = 5 if � = 0.1, 800 if
� = 0.2, and 1000 if � = 0.5 or 1.0. In most applica-
tions, it will not be realistic to obtain this amount of
stable Phase I data from the process.

Tables 4, 5, and 6 provide practitioners with the
in-control ARL percentiles for di↵erent values of m,
of a fixed sample size n = 5 when (�, L) = (0.1,
2.454), (0.2, 2.636), and (0.5, 2.777), respectively.

The values presented were calculated using 20,000
simulated in-control ARL values when the process
standard deviation is estimated by �̂3. We also show
the minimum and maximum values obtained in our
simulations. These tables may help practitioners to
assess the performance of their chart according to
their available amount of Phase I data.

Furthermore, we studied the required amount of
Phase I data of various values of the intended in-
control ARL (ARL0). Tables 7–8 display the in-
control AARL and SDARL values for di↵erent values
of ARL0 when � = 0.1 and 0.5, respectively. The last
row in each table, entitled m =1, refers to the case
when the in-control process parameters are known.
The bolded and italicized SDARL values in Tables
7–8 are those that have an SDARL value within 10%
of ARL0. As shown, the required number of sam-
ples m increases with an increase in the ARL0 value.
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TABLE 3.In-Control SDARL for Each Standard Deviation Estimator when m Phase I Samples, Each of Size n = 5,
Are Used to Estimate the In-Control Values of the Process Parameters. Bolded values correspond to

the sample size recommendations of Jones et al. (2001)

m

�̂ � 30 50 100 200 300 400 500 600 700 800 900 1,000 3,000 5,000 1

�̂1 0.1 84.5 69.5 52.8 38.2 31.0 26.5 23.4 21.1 19.3 17.9 16.8 15.7 8.4 6.4 0.0
0.2 102.2 79.0 56.9 40.2 32.6 28.0 24.8 22.5 20.7 19.3 18.2 17.1 9.6 7.4 0.0
0.5 133.8 95.4 64.7 44.7 36.2 31.2 27.8 25.3 23.4 21.9 20.7 19.5 11.2 8.7 0.0
1.0 156.2 106.5 69.7 47.4 38.3 33.0 29.4 26.8 24.7 23.1 21.8 20.6 11.8 9.2 0.0

�̂2 0.1 82.8 68.6 52.1 37.8 30.6 25.9 23.1 20.8 19.0 17.6 16.4 15.5 8.3 6.2 0.0
0.2 99.2 77.5 55.9 39.5 32.0 27.1 24.3 22.1 20.3 18.9 17.7 16.8 9.4 7.2 0.0
0.5 128.4 92.9 63.0 43.6 35.4 30.2 27.2 24.8 22.9 21.4 20.1 19.1 11.0 8.4 0.0
1.0 149.0 103.3 67.7 46.2 37.4 31.9 28.7 26.1 24.1 22.6 21.2 20.2 11.6 8.9 0.0

�̂3 0.1 81.2 67.6 51.4 37.3 30.2 25.9 22.7 20.4 18.7 17.4 16.0 15.2 8.1 6.1 0.0
0.2 96.6 75.8 54.8 38.7 31.2 26.9 23.8 21.6 19.9 18.6 17.3 16.4 9.2 7.0 0.0
0.5 123.5 90.1 61.4 42.5 34.3 29.7 26.5 24.1 22.3 20.9 19.5 18.6 10.7 8.2 0.0
1.0 142.7 99.7 65.7 45.0 36.2 31.3 27.9 25.4 23.5 22.0 20.6 19.6 11.3 8.7 0.0

�̂4 0.1 78.8 66.3 50.9 37.1 30.0 25.7 22.7 20.4 18.7 17.4 16.0 15.2 8.1 6.1 0.0
0.2 93.0 74.2 54.2 38.5 31.1 26.8 23.8 21.5 19.9 18.5 17.2 16.4 9.2 7.0 0.0
0.5 118.1 87.7 60.6 42.3 34.2 29.6 26.4 24.1 22.3 20.9 19.5 18.6 10.7 8.2 0.0
1.0 136.0 97.0 64.9 44.7 36.1 31.2 27.8 25.4 23.5 22.0 20.6 19.6 11.3 8.7 0.0

�̂5 0.1 80.0 67.0 51.2 37.2 30.0 25.7 22.7 20.4 18.7 17.4 16.0 15.2 8.1 6.1 0.0
0.2 94.8 75.0 54.5 38.6 31.1 26.8 23.8 21.6 19.9 18.5 17.2 16.4 9.2 7.0 0.0
0.5 120.8 88.9 61.0 42.4 34.3 29.7 26.5 24.1 22.3 20.9 19.5 18.6 10.7 8.2 0.0
1.0 139.3 98.3 65.3 44.8 36.1 31.3 27.9 25.4 23.5 22.0 20.6 19.6 11.3 8.7 0.0

For example, an EWMA chart with � = 0.1 requires
about 400 in-control samples of size n = 5 when
ARL0 = 100, but this increases to 1000 samples of

size n = 5 when ARL0 = 500. This phenomenon oc-
curs because the larger the in-control ARL, the wider
the control limits and the further the estimated con-

TABLE 4. Percentiles of the In-Control ARL Distribution for � = 0.1 when m Phase I Samples, Each of Size n = 5,
Are Used to Estimate the In-Control Values of the Process Parameters and the Standard Deviation Estimator Is �̂3

m Min. 5th 10th 25th 50th 75th 90th 95th Max.

50 14.2 52.4 65.6 96.7 139.6 186.7 235.8 268.4 620.1
100 26.2 81.1 96.9 127.7 161.9 195.9 228.4 250.3 471.2
200 45.7 112.3 127.4 152.5 176.8 201.0 223.0 236.5 342.0
400 66.9 142.6 153.6 170.3 186.9 203.1 218.2 227.9 311.6
600 94.2 155.8 164.6 177.4 190.6 203.6 215.7 223.1 304.9
800 114.4 163.7 170.9 181.5 192.4 203.5 214.1 220.2 264.4

1,000 118.1 168.4 174.5 183.8 193.7 203.7 212.6 218.2 257.5
2,000 150.1 180.2 184.0 190.1 196.1 203.3 209.5 213.3 238.9
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TABLE 5. Percentiles of the In-Control ARL Distribution for � = 0.2 when m Phase I Samples, Each of Size n = 5,
Are Used to Estimate the In-Control Values of the Process Parameters and the Standard Deviation Estimator Is �̂3

m Min. 5th 10th 25th 50th 75th 90th 95th Max.

50 19.5 63.1 78.3 109.4 150.0 201.5 258.9 301.5 1,110.7
100 36.0 93.7 109.1 136.4 168.9 206.0 245.5 271.6 527.7
300 64.6 140.0 150.6 167.8 187.5 208.6 229.2 242.3 369.9
500 95.5 155.6 163.4 176.7 191.9 208.1 223.2 233.0 304.4
700 105.7 163.6 170.3 181.4 194.2 207.6 220.6 228.7 296.7

1,000 136.1 170.2 175.8 185.2 195.7 207.0 217.5 224.1 267.5
2,000 149.3 180.2 184.1 190.7 198.0 205.8 213.0 217.5 250.5
5,000 174.0 188.1 190.5 194.7 199.4 204.2 208.6 211.4 227.9

TABLE 6. Percentiles of the In-Control ARL Distribution for � = 0.5 when m Phase I Samples, Each of Size n = 5,
Are Used to Estimate the In-Control Values of the Process Parameters and the Standard Deviation Estimator Is �̂3

m Min. 5th 10th 25th 50th 75th 90th 95th Max.

50 27.3 81.4 95.5 125.1 168.6 227.8 301.3 358.3 1,012.2
200 71.0 133.9 144.4 164.2 189.7 219.8 251.4 272.1 487.1
500 115.2 157.6 164.9 178.8 195.6 214.1 232.0 243.7 334.4
700 125.1 163.9 170.7 182.5 196.9 212.2 227.0 236.6 314.0
900 128.6 168.2 174.1 184.8 197.3 210.9 224.0 232.3 335.6

1,000 138.4 169.7 175.5 185.7 197.5 210.4 223.1 231.0 285.3
3,000 161.4 182.4 186.1 192.3 199.2 206.7 213.5 217.5 244.8
5,000 170.2 186.4 189.0 193.8 199.4 205.1 210.4 213.5 235.0

TABLE 7. In-Control AARL and SDARL Values for Di↵erent ARL0 for � = 0.1 when m Phase I Samples,
Each of Size n = 5, Are Used to Estimate the In-Control Values of the Process Parameters and

the Standard Deviation Estimator Is �̂3

ARL0 = 100 ARL0 = 200 ARL0 = 370 ARL0 = 500
(L = 2.148) (L = 2.454) (L = 2.702) (L = 2.815)

m AARL SDARL AARL SDARL AARL SDARL AARL SDARL

50 78.6 28.0 146.8 67.6 258.2 144.9 341.1 208.9
100 86.0 20.8 163.3 51.4 290.2 111.2 384.6 160.4
300 93.9 11.7 182.8 30.1 331.1 67.0 442.2 97.8
400 95.2 10.0 186.3 25.9 338.8 57.7 453.4 84.4
500 96.1 8.8 188.6 22.7 344.0 51.1 460.9 74.9
600 96.7 7.9 190.2 20.4 347.7 46.1 466.3 67.7
700 97.1 7.2 191.4 18.7 350.5 42.3 470.4 62.1
800 97.4 6.7 192.4 17.4 352.7 39.2 473.6 57.7
900 97.7 6.2 193.1 16.0 354.5 36.4 476.2 53.6

1,000 97.9 5.9 193.7 15.2 355.9 34.4 478.3 50.7
1,100 98.1 5.5 194.3 14.4 357.1 32.5 480.1 47.9
1 100.1 0.0 199.9 0.0 370.7 0.0 500.5 0.0
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TABLE 8. In-Control AARL and SDARL Values for Di↵erent ARL0 for � = 0.5 when m Phase I Samples,
Each of Size n = 5, Are Used to Estimate the In-Control Values of the Process Parameters and

the Standard Deviation Estimator Is �̂3

ARL0 = 100 ARL0 = 200 ARL0 = 370 ARL0 = 500
(L = 2.534) (L = 2.777) (L = 2.978) (L = 3.071)

m AARL SDARL AARL SDARL AARL SDARL AARL SDARL

50 93.1 37.0 186.1 90.1 347.1 196.5 470.4 285.9
100 95.7 25.5 190.7 61.4 353.6 131.6 477.4 189.7
500 98.9 11.1 197.5 26.5 365.7 56.3 493.3 80.8
600 99.1 10.1 197.8 24.1 366.5 51.3 494.3 73.5
700 99.2 9.4 198.1 22.3 367.0 47.4 495.0 68.0
900 99.4 8.2 198.5 19.5 367.8 41.6 496.0 59.6

1,000 99.4 7.8 198.6 18.6 368.0 39.5 496.4 56.7
1,100 99.5 7.4 198.7 17.7 368.2 37.6 496.7 53.9
1,200 99.5 7.1 198.8 17.0 368.4 36.0 496.9 51.6
1,300 99.6 6.8 198.9 16.3 368.6 34.6 497.1 49.6
1 100.0 0.0 199.9 0.0 370.5 0.0 499.9 0.0

trol limits are in the tails of the distribution of the
control chart statistic. It is well-known that estimat-
ing more extreme quantiles of a distribution requires
larger samples to achieve the same precision as when
estimating more central quantiles.

To study the e↵ect of the sample size n, we con-
sidered the in-control AARL and SDARL values for
n = 1 and n = 10. In each case, the control lim-
its for 10,000 charts were estimated. Markov chains
were used to approximate the ARL for n = 10 and
simulation with 10,000 run lengths were used to es-
timate each in-control ARL when n = 1. The results
are given in Tables 9 and 10 for n = 10. We restrict

our attention to the two most e�cient estimators of
the standard deviation. These tables show that the
data requirements, in terms of the total number of
observations, are similar as for the case n = 5.

Tables 11 and 12 contain the in-control values of
AARL and SDARL for the EWMA chart when n = 1
and the process standard deviation is estimated by
the moving-range estimator, defined as

MR =
MR
1.128

=
1

1.128
1

m� 1

mX
i=2

|Xi �Xi�1|.

Again, as with n = 5 and n = 10, several thousand
observations are needed for the in-control SDARL

TABLE 9. In-Control AARL Values for the EWMA Chart with n = 10 and ARL0 = 200

m

�̂ � 30 50 100 200 500 1,000 5,000 1

�̂3 0.1 129.8 143.8 161.7 175.7 188.2 193.4 198.5 200.0
0.2 143.6 156.4 171.7 183.0 192.3 196.1 199.3 200.0
0.5 168.4 176.5 186.0 192.0 196.6 198.1 199.5 200.0
1.0 192.5 193.8 196.6 198.3 199.3 199.8 199.9 200.0

�̂4 0.1 127.1 143.0 160.9 175.5 188.1 193.5 198.5 200.0
0.2 141.8 154.9 170.6 182.7 191.9 195.8 199.4 200.0
0.5 166.3 175.7 185.2 191.4 196.3 198.1 199.5 200.0
1.0 189.5 191.8 195.5 197.6 199.0 199.5 199.8 200.0
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TABLE 10. In-Control SDARL Values for the EWMA Chart with n = 10 and ARL0 = 200

m

�̂ � 30 50 100 200 500 1,000 5,000 1

�̂3 0.1 66.2 56.9 44.1 31.5 18.8 12.0 4.3 0.0
0.2 70.7 57.8 43.0 30.2 17.7 11.8 4.8 0.0
0.5 76.8 59.4 42.5 29.1 18.1 12.4 5.5 0.0
1.0 81.7 60.7 42.3 29.5 18.5 13.2 5.8 0.0

�̂4 0.1 64.5 56.5 43.8 31.6 18.4 11.8 4.3 0.0
0.2 69.7 57.4 42.7 30.0 17.8 11.7 4.8 0.0
0.5 75.3 59.3 42.2 29.1 18.0 12.6 5.5 0.0
1.0 79.7 60.0 42.6 29.5 18.5 13.0 5.8 0.0

values to be relatively small, say within 10% of the
desired in-control ARL value of 200. One has very
little to no control over the in-control ARL value if
one follows the common recommendation of 25–50
individual observations in Phase I. This result was
also demonstrated by Saleh et al. (2015) for � = 1.

We also investigated the required number of Phase
I individual observations when changing the value of
the desired in-control ARL for the EWMA chart. Ta-
ble 13 and Table 14 contain our results when � = 0.1
and � = 0.5, respectively. The bolded and italicized
values can be used to identify the number of obser-

vations required to have the SDARL value be within
10% of the desired in-control ARL0 value. Higher
numbers of observations are required for the larger
value of �. In addition, the required number of obser-
vations increases as the desired value of the in-control
ARL0 increases.

5. Adjusting the EWMA
Control Limits

In order to overcome the problem of the often
low in-control ARL values when using estimated pa-
rameters, Jones and Steiner (2012) and Gandy and

TABLE 11. In-Control AARL Values for the EWMA Chart with n = 1 and ARL0 = 200

m

�̂ � 30 50 100 200 500 1,000 5,000 1

MR 0.1 248.5 192.6 183.6 184.0 194.1 196.8 199.0 200.0
0.2 352.6 247.7 212.0 201.6 199.8 199.4 200.3 200.0
0.5 721.0 365.1 258.0 223.9 208.8 204.9 200.5 200.0
1.0 976.4 458.8 275.0 233.5 210.1 206.3 200.3 200.0

TABLE 12. In-Control SDARL Values for the EWMA Chart with n = 1 and ARL0 = 200

m

�̂ � 30 50 100 200 500 1,000 5,000 1

MR 0.1 2,061.0 234.7 123.3 80.6 51.3 33.0 15.1 0.0
0.2 1,517.5 439.9 181.8 100.4 60.0 40.8 17.9 0.0
0.5 3,833.3 1,228.1 307.8 144.8 75.1 48.4 21.9 0.0
1.0 5,622.3 1,301.7 299.9 159.3 79.1 54.7 22.9 0.0
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TABLE 13. In-Control AARL and SDARL Values for Di↵erent ARL0 for � = 0.1 when m Phase I Samples,
Each of Size n = 1, Are Used to Estimate the In-Control Values of the Process Parameters and

the Standard Deviation Estimator Is MR

ARL0 = 100 ARL0 = 200 ARL0 = 370 ARL0 = 500
(L = 2.148) (L = 2.454) (L = 2.702) (L = 2.815)

m AARL SDARL AARL SDARL AARL SDARL AARL SDARL

100 92.3 46.3 183.6 123.3 372.3 395.6 482.7 459.3
250 95.2 27.4 189.1 69.9 349.5 165.1 474.4 246.8
500 97.0 20.0 194.1 51.3 362.0 109.5 482.8 163.8

1,000 98.5 13.7 196.8 33.0 363.5 76.5 494.1 122.3
2,000 98.8 9.6 197.0 23.9 366.8 56.5 488.1 78.5
3,000 99.1 8.0 197.3 19.6 369.6 43.9 496.7 65.6
4,000 99.0 6.7 199.2 17.1 369.1 37.9 497.6 54.5
5,000 98.8 6.0 199.0 15.1 369.1 35.1 498.0 50.3
6,000 98.9 5.6 198.0 13.7 371.9 32.4 499.7 47.3
1 100.0 0.0 200.0 0.0 370.0 0.0 500.0 0.0

Kvaløy (2013) argued that determining the control
limits should be based on the conditional in-control
ARL instead of the unconditional one. Their proposal
was to adjust the control limits in a way that guar-
antees, with a suitably high prespecified probability,
that the conditional in-control ARL meets or exceeds
the desired level.

Gandy and Kvaløy’s (2013) approach is based on
bootstrapping the Phase I data to construct an ap-

proximate confidence interval for the control lim-
its. The general bootstrap procedure, introduced by
Efron (1979), is a resampling technique used to esti-
mate the sampling distribution of any sample statis-
tic. In quality-control applications, control charts de-
signed based on bootstrap methods have been sug-
gested as alternatives for the standard design meth-
ods. See, for example, Bajgier (1992), Seppala et al.
(1995), Liu and Tang (1996), and Jones and Woodall
(1998). Recently, Chatterjee and Qiu (2009) prop-

TABLE 14. In-Control AARL and SDARL Values for Di↵erent ARL0 for � = 0.5 when m Phase I Samples,
Each of Size n = 1, Are Used to Estimate the In-Control Values of the Process Parameters and

the Standard Deviation Estimator Is MR

ARL0 = 100 ARL0 = 200 ARL0 = 370 ARL0 = 500
(L = 2.534) (L = 2.777) (L = 2.978) (L = 3.071)

m AARL SDARL AARL SDARL AARL SDARL AARL SDARL

100 118.6 117.2 258.0 307.8 502.3 700.2 747.4 1,174.0
250 104.6 45.9 226.2 132.5 416.4 286.9 563.5 365.4
500 101.9 30.1 208.8 75.1 395.9 165.3 533.6 231.6

1,000 101.4 20.9 204.9 48.4 379.9 103.0 517.4 152.8
2,000 99.7 14.2 200.9 34.3 375.0 72.8 509.9 106.6
3,000 99.4 11.4 201.2 27.6 371.4 60.3 506.0 88.0
4,000 99.4 10.0 199.1 23.6 373.3 50.8 504.1 71.7
5,000 99.2 8.8 200.5 21.9 372.8 45.1 502.0 64.4
6,000 99.3 8.1 200.0 19.6 373.2 43.3 500.7 60.7
7000 99.5 7.7 200.2 18.4 370.9 37.1 500.2 49.1
1 100.0 0.0 200.0 0.0 370.0 0.0 500.0 0.0
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osed estimating the control limits of the CUSUM
chart using the bootstrap. Prior work on the boot-
strap methods used in quality control focused on de-
termining estimated control limits, not on controlling
the conditional ARL performance of control charts.

In order to best describe Gandy and Kvaløy’s
(2013) approach, let us first define P as the true in-
control distribution, P̂ as the estimated in-control
distribution, ✓ = (µ,�) as the vector of process pa-
rameters, ✓̂ = (µ̂, �̂) as the vector of estimated pro-
cess parameters, and q as the control chart limit sat-
isfying a specific in-control ARL. The quantities P̂
and ✓̂ are obtained from m in-control Phase I samples
each of size n. The quantity q is a function of P and
✓ or their estimates. For example, q(P, ✓̂) represents
the value of control limits conditioned on ✓̂ under the
true in-control distribution P . For simplicity, in this
study, we evaluate a limit q for the absolute value of
the EWMA chart statistic, defined in Equation (4),
divided by the quantity

p
�/(2� �). Therefore, the

control limit q that produces the desired in-control
ARL is equal to the value of L defined in Equation
(6).

When parameters are unknown, the observed con-
trol chart performance depends on q(P, ✓̂), which
is unknown because P is unobservable. Gandy and
Kvaløy (2013) proposed using the estimator q(P̂ , ✓̂)
to build a lower one-sided confidence interval for
q(P, ✓̂) using the bootstrap technique. Let (1�↵⇤)%
be the percent of the in-control ARL values equal to
or higher than the ARL0, then we can write

P (q(P̂ , ✓̂)� q(P, ✓̂) > p↵⇤)
= P (q(P, ✓̂) < q(P̂ , ✓̂)� p↵⇤) = 1� ↵⇤, (9)

where p↵⇤ is a constant. The quantity p↵⇤ is unknown
because it represents the (↵⇤) quantile of the un-
observed sampling distribution of q(P̂ , ✓̂) � q(P, ✓̂).
Note that Gandy and Kvaløy (2013) incorrectly re-
ferred to p↵⇤ as the (1 � ↵⇤) quantile. This was
a typographical error because it should be the ↵⇤

quantile. Gandy and Kvaløy (2013) proposed us-
ing the bootstrap technique to estimate the distri-
bution of q(P̂ , ✓̂) � q(P, ✓̂) with the distribution of
q(P̂ ⇤, ✓̂⇤)� q(P̂ , ✓̂⇤), where P̂ ⇤ and ✓̂⇤ = (µ̂⇤, �̂⇤) are
the estimated in-control distribution and process pa-
rameters from the bootstrap samples, respectively.
If B is the number of bootstrap samples, then p↵⇤

is approximated with p⇤↵⇤ , which represents the (↵⇤)
quantile of [q(P̂ ⇤i , ✓̂⇤i ) � q(P̂ , ✓̂⇤i )], i = 1, 2, 3, . . . , B.
The upper bound q(P̂ , ✓̂)� p⇤↵⇤ is then taken as the
adjusted control limit.

The simulation steps followed in our article are the
same as those listed in Gandy and Kvaløy (2013, p.
651). In our simulation procedure, we used m = 50
samples of size n = 5, ↵⇤ = 0.1, � = 0.1, B = 1,000
bootstrap samples, and the process standard devia-
tion estimator �̂3. We assumed, without loss of gen-
erality, that the unknown true in-control distribution
is N(0,

p
n). We assumed that the desired in-control

ARL0 is 200. Because we found that the Shewhart
chart has higher levels of between-practitioner vari-
ability than the EWMA chart, we additionally de-
signed it using this bootstrap approach. The same
simulation settings were used for the Shewhart chart.
The procedure followed in calculating the control
limits, q(P̂ , ✓̂), q(P̂ ⇤i , ✓̂⇤i ), and q(P̂ , ✓̂⇤i ), for each of the
Shewhart and EWMA control charts is discussed in
detail in Appendix B. Once the limit (q(P̂ , ✓̂)� p⇤↵⇤)
was determined, the corresponding in-control and
out-of-control ARLs were calculated. For the EWMA
chart, the Markov chain approach described in Ap-
pendix A was used in calculating the ARL.

Figures 2–3 contain the boxplots of the in-control
and out-of-control ARL distributions, respectively,
for the EWMA and Shewhart control charts. For
both the EWMA and Shewhart charts, the limits
computed with the bootstrap adjustment are indi-
cated as “Adjusted Limits”. For reference, charts
with “Unadjusted Limits” were computed with m =
50 samples of size n = 5 using (�, L) = (0.1, 2.454) for
EWMA charts and L = 2.807 for Shewhart charts.
The out-of-control ARL values were computed with
a mean shift of � = 1, and the boxplots were con-
structed from 2000 ARL values. In Figure 2, one can
see, as expected, that the adjusted limits resulted in
about 90% of the in-control ARL values for both the
EWMA and Shewhart charts of at least 200 when
computed using the bootstrap approach. Interest-
ingly, more than 75% of the EWMA charts and 50%
of the Shewhart charts with unadjusted limits had
an in-control ARL below 200, indicating a higher in-
cidence of false alarms.

An interesting feature of Figure 2 is that the
EWMA charts based on the bootstrap design have
a much more variable in-control ARL distribution
than the charts based on unadjusted limits. Although
the in-control ARL distribution of the EWMA chart
is extremely skewed to the right and more variable
than that of the unadjusted limits, the out-of-control
ARL distribution of the EWMA chart with the ad-
justed limits is very tight, as shown in Figure 3. The
EWMA design based on the bootstrap approach has
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FIGURE 2. In-Control Distribution of the Conditional ARL when m = 50 and n = 5. The boxplots show the 5th, 10th,
25th, 50th, 75th, 90th, and 95th percentiles of the conditional in-control ARL distribution.

a slightly more variable out-of-control ARL distri-
bution than the standard design. The median out-
of-control ARL is around 12 for the adjusted limits
and 9 for the unadjusted limits. This small loss in
out-of-control performance comes with “guaranteed”
in-control performance with 90% of the bootstrap ad-
justed charts having in-control ARL values above 200
as compared with only 25% of the charts with unad-
justed limits. Although the increased variability in
the in-control ARL distribution of the EWMA charts
based on the adjusted limits was initially surprising
to us, we quickly realized that we are not too con-
cerned about charts with large in-control ARL values

as long as they can quickly detect an out-of-control
event.

Another interesting feature of Figures 2 and 3 is
that the out-of-control ARL values of the Shewhart
chart with the adjusted limits are considerably higher
than those of the EWMA chart with either adjusted
or unadjusted limits. Hence, if the goal is to avoid fre-
quent false alarms and to detect this sustained shift
quickly, then the EWMA chart remains much pre-
ferred to the Shewhart chart.

Figure 4 shows the relationship between the in-
control ARL values and the out-of-control ARL val-

FIGURE 3. Out-of-Control Distribution of the Conditional ARL when m = 50, n = 5, and a mean shift � = 1. The boxplots
show the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the conditional out-of-control ARL distribution.
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FIGURE 4. Scatterplot of the In-Control ARL Values vs. the Out-of-Control ARL Values of the EWMA Control Chart
Categorized by the Mean Estimates Overestimating or Underestimating the Process Mean.

ues of the EWMA chart. The scatterplot presents
the out-of-control ARL versus the in-control ARL,
categorized by the standardized mean being under-
estimated (< 0) or overestimated (� 0). The lower
smooth part of the scatterplot represents the case
when the process mean is underestimated. Unexpect-
edly, the high out-of-control ARL values are associ-
ated with the lowest in-control ARL values. It can
be concluded from this figure that the increase in
the out-of-control ARL is due to overestimating the
process mean rather than having a higher in-control
ARL. Another point to note from Figure 4 is that a
positive sustained shift along with an underestimated
in-control mean increases the e↵ective shift size and,
as a consequence, results in a low out-of-control ARL
value. Overestimating the in-control mean, on the
other hand, leads to a decrease in the e↵ective shift
size and, thus, a significant increase in the out-of-
control ARL.

6. Concluding Remarks

In our article, we have extended the work of Jones
et al. (2001) by using the SDARL metric in evaluat-
ing the in-control performance of the EWMA con-
trol chart when the parameters are estimated. Ac-
counting for the practitioner-to-practitioner variabil-
ity led to some quite di↵erent conclusions regard-
ing the chart performance. First, the EWMA chart
requires more Phase I data than previously recom-
mended in order to have consistent chart perfor-

mance among practitioners. Additionally, we found
that charts designed with large values of the EWMA
smoothing constant have more variability in the ARL
distribution; thus, we recommend more Phase I data
be used with larger smoothing constants. Because
EWMA charts are typically used when quickly de-
tecting small sustained shifts is of interest, the charts
are most often designed with small values of the
smoothing constant (� < 0.25).

With our recommendations regarding the required
amount of Phase I data, we can easily see the di�-
culty in controlling the in-control ARL value of an
EWMA chart. We support the use of the bootstrap-
based design approach of Jones and Steiner (2012)
and Gandy and Kvaløy (2013), which was recently
proposed for controlling the probability of the in-
control ARL being at least a specified value. Our re-
sults show that adjusting the EWMA control limits
accordingly can result in a highly skewed in-control
ARL distribution. However, such increases in the
in-control ARL did not have much of an e↵ect on
the out-of-control performance of the chart. In our
opinion, this design approach is very promising and
should be considered while evaluating and compar-
ing control charts. Controlling a percentile of the
in-control ARL distribution can provide satisfactory
chart performance among a wide range of practition-
ers.

We found that, if one considers the necessary
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amount of data for stable performance as determined
by the SDARL, fewer observations are required for
designing an EWMA chart than a Shewhart chart.
Thus, the EWMA chart, with a small smoothing con-
stant, has an advantage over the Shewhart chart,
which would require more Phase I data to achieve
similar stability in terms of ARL performance across
samples. Additionally, based on the bootstrap design
procedure, we found that the EWMA chart is much
preferred to the Shewhart chart because, with the
former, one can simultaneously avoid too frequent
false alarms and detect out-of-control sustained shifts
more quickly.

Several competing process standard deviation es-
timators were used as well in assessing the chart
performance. Among unbiased estimators, Jones et
al. (2001) recommended the use of the estimator
�̂3 = Spooled/c4(v + 1), and our results agree with
this recommendation. However, including the biased
estimators in the comparison, we find it preferable
to use the estimator �̂4 = c4(v + 1)Spooled, espe-
cially when only a small amount of Phase I data is
available. Agreeing with Mahmoud et al. (2010), the
range-based estimator was found to be the least ef-
ficient compared with the other estimators, and we
also recommend against its use.

Appendix A:
Calculating the AARL and SDARL

for the EWMA Chart with Estimated
Parameters Using the Markov

Chain Approach

In our article, the EWMA chart is evaluated using
the in-control AARL and SDARL metrics. The per-
formance metrics were calculated using the Markov
chain approach. Let h be the control limits given in
Equation (6), t be the number of the subintervals
between the upper and lower control limits (namely,
the number of transient states), and w be the width
of each subinterval defined as w = 2h/t. Saleh et
al. (2013, Appendix B) derived the transition prob-
abilities p`j , ` = 1, 2, . . . , t and j = 1, 2, . . . , t, for
the EWMA chart when process parameters are esti-
mated. The probability p`j refers to the probability
of moving from the transient state ` to the transient
state j. They calculated p`j using

p`j = '

✓
Q

⇢
Sj + w/2� (1� �)S`

�

�

� � +
Zp
m

����µ̂0, �̂0

◆

� '

✓
Q

⇢
Sj � w/2� (1� �)S`

�

�

� � +
Zp
m

����µ̂0, �̂0

◆
,

where '(·) is the cumulative standard normal distri-
bution function, the quantities Q and Z are defined
in Equation (5), and S(·) represents the (·)th interval
midpoint. We define R to be a t⇥ t matrix consist-
ing of the probabilities of moving from one transient
state to another such that R = [p`j ], and u to be
a t ⇥ 1 vector of ones. According to Markov chain
approach, the ARL vector is computed as

ARL = (I�R)�1u, (A.1)

where I is the identity matrix of dimension t ⇥ t.
Here, ARL is a (t ⇥ 1) vector containing the ARLs
corresponding to all the possible initial states. We
have Y0 = 0. Hence, for an odd value of t, the (t +
1)/2th element (middle element) corresponds to the
ARL satisfying this assumption. The ARL defined in
Equation (A.1) is a function of the random variables
µ̂0 and �̂0, or more generally the random variables Q
and Z. Hence, we can write the AARL as

AARL = E(ARL) =
Z 1

0

Z 1

�1
ARLgz(z)fQ(q)dzdq

(A.2)
and the SDARL as

SDARL =
⇥
E(ARL2)� [E(ARL)]2

⇤1/2
, (A.3)

where

E(ARL2) =
Z 1

0

Z 1

�1
ARL2gz(z)fQ(q)dzdq. (A.4)

Here, ARL is the element of the vector ARL corre-
sponding to the initial state, and the gz(z) and fQ(q)
are the probability density functions of the random
variables Z and Q, respectively. Because the sam-
ples are assumed to be i.i.d. normally distributed,
the random variables Z and Q are independent. The
variable Z follows the standard normal distribution,
while Q follows a scaled chi (�) distribution. Saleh et
al. (2013) provided the functional form of the proba-
bility density function of Q for each of the standard
deviation estimator given in Equation (7). The inte-
grations in Equations (A.2) and (A.4) were approx-
imated using the Gaussian quadrature method. The
numerical results were validated using Monte Carlo
simulation.
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Appendix B:
Simplifying the Computations in

the Bootstrap Approach

In our article, we design the Shewhart and EWMA
control charts using the bootstrap approach. We
start here with providing the steps of applying Gandy
and Kvaløy’s (2013) algorithm, then we list the cal-
culation steps for each of the Shewhart and EWMA
chart, along with providing some simplification rules
for the Shewhart chart.

Gandy and Kvaløy’s Algorithm

The steps of Gandy and Kvaløy’s (2013) algorithm
for obtaining bootstrap-based control limits can be
summarized as follows:

1. Without loss of generality, we let the true un-
known in-control distribution P be N(0,

p
n).

We generate a Phase I dataset of m samples
each of size n from N(0,

p
n) and compute µ̂

and �̂. We then compute the quantity q(P̂ , ✓̂),
where P̂ = N(µ̂, �̂) is the estimated in-control
distribution and ✓̂ = (µ̂, �̂) is the estimate of
the parameters that are used to run the chart.

2. We then generate B = 1000 bootstrap samples
from P̂ and compute ✓̂⇤ = (µ̂⇤, �̂⇤) for each of
the B samples. It is important to note that µ̂⇤

and �̂⇤ are calculated the same way as µ̂ and �̂
were calculated.

3. We finally compute the quantities q(P̂ ⇤i , ✓̂⇤i ) and
q(P̂ , ✓̂⇤i ) for i = 1, 2, 3, . . . , B. We obtain the
value of p⇤↵⇤ as the ↵ percentile of the bootstrap
distribution of q(P̂ ⇤, ✓̂⇤) � q(P̂ , ✓̂⇤). The final
(adjusted) control limit for the chart is then
taken as q(P̂ , ✓̂)� p⇤↵⇤ .

We generated the ARL distribution by repeating the
steps 1–3 for a number of times (we used 2000 times).
Next, we explain in detail how to compute the di↵er-
ent values of q for the Shewhart and EWMA charts.

Gandy and Kvaløy’s (2013) approach is based on
three limits; q(P̂ , ✓̂), q(P̂ ⇤i , ✓̂⇤i ), and q(P̂ , ✓̂⇤i ). The
three limits are defined as follows:

(a) The quantity q(P̂ , ✓̂) represents the value of
L that produces the desired in-control ARL
when the Phase II data are generated from
P̂ = N(µ̂, �̂) and the limits are constructed us-
ing ✓̂ = (µ̂, �̂).

(b) The quantity q(P̂ ⇤i , ✓̂⇤i ), i = 1, 2, 3, . . . , B, rep-
resents the value of L that produces the desired

in-control ARL when the Phase II data are gen-
erated from P̂ ⇤i = N(µ̂⇤i , �̂⇤i ) and the limits are
constructed using ✓̂⇤i = (µ̂⇤i , �̂⇤i ).

(c) The quantity q(P̂ , ✓̂⇤i ), i = 1, 2, 3, . . . , B, rep-
resents the value of L that produces the de-
sired in-control ARL when the Phase II data
are generated from P̂ = N(µ̂, �̂) and the limits
are constructed using ✓̂⇤i = (µ̂⇤i , �̂⇤i ).

Calculation of q for the Shewhart Control
Chart

Consider the Shewhart control chart where the
chart statistic is the sample mean (X) and the con-
trol limits are µ±L(�/

p
n), with L being the control-

limit constant chosen to satisfy a specific in-control
performance. Finding the quantity q(P̂ , ✓̂) implies
finding L such that

P (µ̂� L�̂/
p

n <X< µ̂ + L�̂/
p

n) = 1� ↵,

where ↵ is the false-alarm probability and X⇠
N(µ̂, �̂/

p
n). This can be simplified to

P

 �����
X �µ̂

�̂/
p

n

����� > L

!
= P (|Z| > L) = ↵.

This follows that L = Z1�↵/2 or equivalently
q(P̂ , ✓̂) = Z1�↵/2. Similarly, q(P̂ ⇤i , ✓̂⇤i ) = L =
Z1�↵/2, i = 1, 2, 3, . . . , B. For Shewhart charts, ↵
is the reciprocal of the in-control ARL. Thus, in our
study, ↵ = 0.005 and thus Z1�↵/2 = 2.807.

For the quantity q(P̂ , ✓̂⇤i ), we need to find L such
that

P (µ̂⇤i � L�̂⇤i /
p

n <X< µ̂⇤i + L�̂⇤i /
p

n) = 1� ↵,

where X⇠ N(µ̂, �̂/
p

n) or equivalently

P

✓
Z <

µ̂⇤i + L�̂⇤i /
p

n� µ̂

�̂/
p

n

◆

� P

✓
Z <

µ̂⇤i � L�̂⇤i /
p

n� µ̂

�̂/
p

n

◆

= 1� ↵. (B.1)

In such a case, a search algorithm is required for find-
ing the value of L that satisfies Equation (B.1). The
search algorithm could be of a binary search type or
any other trial and error type. However, these meth-
ods may take a long time to produce the results. Thus
we provide a short and a quick method for obtaining
the value of L.

Our studies showed that L is always bounded be-
tween two values. Refer to the quantity in Equation
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FIGURE B.1. Scatter Plot for Y and X Obtained Using Di↵erent Combinations of (µ̂, �̂, µ̂⇤, �̂⇤).

(B.1) as P (Z < b2) � P (Z < b1) = 1 � ↵. It can be
deduced that, if µ̂⇤ � µ̂, then necessarily b1 � Z↵/2,
which implies that L  (�̂/�̂⇤)Z1�↵/2 + [

p
n(µ̂⇤ �

µ̂)/�̂⇤]. Also, if µ̂⇤  µ̂, then necessarily b2  Z1�↵/2,
which implies that L  (�̂/�̂⇤)Z1�↵/2 + [

p
n(µ̂ �

µ̂⇤)/�̂⇤]. Hence, an upper bound for L can be defined
as (�̂/�̂⇤)Z1�↵/2+(

p
n|µ̂�µ̂⇤|/�̂⇤), where |·| denotes

the absolute value. Additionally, b2 � b1 > 2Z1�↵/2

because the symmetric interval is the shortest in-
terval for a standard normal density containing a
given probability. Thus, substituting with the expres-
sions of b1 and b2 and solving for L provides that
L � (�̂/�̂⇤)Z1�↵/2. Consequently, we can say that
L 2 (L1, L2), where

L1 =
�̂

�̂⇤
Z1�↵/2 and L2 = L1 + �, (B.2)

where � =
p

n(|µ̂� µ̂⇤|/�̂⇤).

An important finding is that a very strong rela-
tionship was found between the variables Y = L/L2

and X = �/L2. Figure B.1 is a scatterplot of 500
observations of Y and X (obtained using di↵erent
combinations of µ̂, �̂, µ̂⇤, �̂⇤ and a search algorithm
for L).

Using a curve fitting technique, we found that a
cubic regression model between Y and X can fit this
relationship almost perfectly. The best fit was found
to be related to the values of � and x. That is, if
� < 0.626 and x < 0.08, then we use

y = 0.99985� 1.01234x + 4.48698x2 � 3.97727x3.

If � < 0.626 and x � 0.08, then we use

y = 1.00178� 1.09381x + 5.60924x2 � 8.95849x3.

Given the satisfaction of these conditions and the
availability of µ̂, �̂, µ̂⇤, and �̂⇤, we can find the values
of L1, L2 and X and substitute into the fitted model
to obtain the value of L = yL2. The fitted models
do not provide accurate results for the case of � �
0.626, but this case is uncommon. Consequently, if
� � 0.626, a usual trial-and-error search algorithm
is used to find the value of L that satisfies Equation
(B.1).

So, for the Shewhart chart, we can summarize step
3 of our algorithm as follows. Calculate � and x.
If � < 0.626, use the appropriate fitted regression
model based on the value of x to find q(P̂ , ✓̂⇤i ). Oth-
erwise, we apply a search algorithm. An advantage
for having q(P̂ , ✓̂) = q(P̂ ⇤, ✓̂⇤) = Z1�↵/2 is that ad-
justed limit can be reduced to be only taking the
100(1�↵⇤)% percentile of q(P̂ , ✓̂⇤i ), i = 1, 2, 3, . . . , B.

Calculation of q for the EWMA Control
Chart

For the EWMA chart, finding the quantity q(P̂ , ✓̂)
is similar to the case of finding q(P, ✓); i.e., the value
of L that produces the desired in-control ARL when
the in-control process parameters are known. This
is because the in-control distribution is defined with
the same estimated parameters (✓̂) used in building
the control chart limits. Hence, it follows that q(P̂ , ✓̂)
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is equal to 2.454 for � = 0.1. Similarly, q(P̂ ⇤i , ✓̂⇤i ) =
2.454 for i = 1, 2, 3, . . . , B.

However, this result can’t be extended in finding
the quantity q(P̂ , ✓̂⇤i ) because the estimates of the
in-control distribution di↵er from that correspond-
ing to the control limits. Hence, a search algorithm
is required for finding the value of L satisfying an in-
control ARL of 200. The search algorithm would be of
a trial-and-error type and should be associated with
a validation technique (e.g., a Markov chain code) in
each and every iteration. It should be noticed that, if
the Markov chain approach described in Appendix A
is used in the validation process, then the standard-
ized sample mean Ŵ should be based on the quanti-
ties Q = �̂⇤/�̂, ⌫i =

p
n(Xi �(µ̂+�))/�̂, � =

p
n�/�̂,

and Z =
p

mn(µ̂⇤ � µ̂)/�̂.

This method can take a long time to produce re-
sults. A similar simplifying rule to that of the Shew-
hart chart can probably be used for the EWMA
chart, but further investigation is needed to estab-
lish this. As mentioned in the Shewhart chart case,
we have the equality of q(P̂ , ✓̂) and q(P̂ ⇤, ✓̂⇤) and we
let the adjusted limit be the 100(1�↵⇤)% percentile
of q(P̂ , ✓̂⇤i ), i = 1, 2, . . . , B.
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