
Appointment scheduling in tandem-type service systems$

Alex Kuiper n, Michel Mandjes
IBIS UvA, University of Amsterdam, Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 17 July 2014
Accepted 21 April 2015
Available online 28 April 2015

Keywords:
Appointment scheduling
Tandem queue
Phase-type distribution
Healthcare

a b s t r a c t

Appointment-based service systems arise in a broad variety of healthcare settings (for example an
outpatient clinic or a dentist). Where most existing algorithms specifically consider the situation of the
patient undergoing a single service, in many practical situations multiple services have to be sequentially
performed. Modeling the service system as a tandem queue, the main objective of this paper is to
generate schedules that soundly balance the interests of patients (i.e., low waiting times) and staff (i.e.,
low idle times). Importantly, following up on prior work for the single-node queue, we advocate a phase-
type based technique that can deal with any service-time distribution (which may, in addition, vary
across patients). Relying on a novel recursive scheme to evaluate the sojourn-time distribution of clients
in such tandem systems, we show how optimal schedules can be computed. Our technique is illustrated
by extensive numerical experimentation, also leading to practical guidelines that apply to a broad range
of parameter settings.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In healthcare appointment schedules are frequently used to
overcome issues of excessive idle and waiting times. Obviously,
when patients are allowed to freely choose when to arrive at
practitioner, this may result in substantial waiting times (for
patients) during peak moments, while there can be significant
idle times (for medical staff) when there are no clients to be
served.

A complicating factor is that service times are random. As a
result, for any appointment schedule there is still the possibility
that upon arrival a patient has to wait before being served. On the
other hand, it may also happen that a practitioner finishes serving
a patient earlier than that a next patient arrives, resulting in idle
time. ‘Good’ appointment schedules strike an appropriate balance
between these two undesired effects.

1.1. Setup

In more formal terms, an appointment scheduling system can
be described as follows. Suppose that there are n patients, in the
sequel also referred to as clients, to be scheduled, for instance on a
specific day. Let, for each client iAf1;…;ng, Wi denote her waiting
time, whereas Ii stands for the idle time prior to her arrival. A
specific objective could be to determine the scheduled arrival
epochs ðt1;…; tnÞ of the n clients, so as to minimize the total

expected idle and waiting time over the day. This means that we
are to evaluate

min
t1 ;…;tn

Xn
i ¼ 1

EIiþEWið Þ: ð1Þ

Alternatively, the mean idle and waiting times can be weighted
with appropriately chosen scalars, if it is felt that the interests of
the practitioner and the clients should not be evenly valued. This
problem fits in a queueing-theoretic framework: as soon as we
have fixed the clients' arrival times, the resulting queueing system
is, in Kendall's notation, a D=G=1 queue: deterministic (albeit not
equally spaced) interarrival times, general service times, and a
single server. Evaluation of the objective function evidently
requires a technique to determine various queueing-related quan-
tities; we wish to find the arrival epochs that minimize this
objective function.

1.2. Literature

Problems of the sort of (1), and numerous variants, have been
extensively considered in the literature; this body of work dates
back to e.g. [3,23]. The history of research on finding a proper
balance between the practitioner's and patients' interests (for
instance by working with objective function incorporating waiting
times and idle times) is extensively described in Cayirli and Veral
[4]; see in particular Section 3 of that paper. We restrict ourselves
to mentioning a couple of references that directly relate to our
setup. Wang [21] considers the case in which the service times of
the clients have a phase-type distribution, which allows efficient
evaluation of the mean idle and waiting times.
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This idea is further exploited in Kuiper et al. [12]: a systematic
approach is presented in which the (generally distributed) service
times are replaced by their phase-type counterparts (fitting the
first two moments), which is then validated in detail for a wide
variety of service-time distributions and objective functions (i.e.,
not necessarily the linear form featured in (1)). Where Kuiper et al.
[12] and Wang [21] suggest a phase-type fit, the main idea of Lau
and Lau [13] is to use a fit of the first four moments by means of a
beta distribution (having four parameters); this approach turns
out to have attractive computational features.

A fundamentally different approach is followed in De Vuyst
et al. [8]: generating functions are intensively used as a tool for fast
and accurate computation of the underlying objective function. In
Kemper et al. [11] the arrival epochs are determined on a client-
by-client basis, thus substantially simplifying the underlying
optimization problem: for an objective function of the form (1) it
was shown that the arrival epoch of the i-th client should equal
the sum of the medians of the sojourn times of the previous i�1
clients; a somewhat related approach has been proposed by Weiss
[22]. Luo et al. [14] propose heuristics which incorporate a number
of additional features, such as cancellations and no-shows.

As pointed out above, the problem of finding appropriate
schedules critically depends on the availability of the clients'
service-time distributions, as these determine the idle and waiting
times. Importantly, the service times are typically not exponen-
tially distributed; depending on the application at hand they may
have coefficients of variation significantly different from 1. We
refer to, e.g. Appendix A of Cayirli and Veral [4] for a detailed
account of the properties of typical service times; it is reported
that, in the situations studied, the coefficient of variation varies
roughly from 0.35 to 0.85. As a consequence, one would ideally
rely on a methodology that can in principle deal with any service-
time distribution, for instance characterized in terms of its first
two moments (or, equivalently, the mean and coefficient of
variation). As was mentioned above, such a procedure was
proposed (and extensively validated) in Kuiper et al. [12] for the
single-node appointment scheduling system; the underlying idea
is that the service times are approximated by their phase-type
counterparts, for which the distributions of the idle and waiting
times can be explicitly determined and relatively easily numeri-
cally evaluated.

1.3. Contribution

It is important to notice that a practical limitation of the above
setting is that in many situations in healthcare, patients do not
necessarily undergo just one service. Instead, patients may
sequentially be served at multiple service stations (or: nodes).
There are numerous examples of this, such as a patient who first
has an x-ray made and then sees a doctor, or a patient who first
has an intake and is then examined by a doctor. In those contexts,
representing the system as a single queue is obviously not
appropriate: one should rather consider a (two-node) tandem
network (sometimes referred to as an D=G=1-G=1 queue), where
the individual queues correspond to the two service stages.

Importantly, despite the relevance of multi-stage systems, the
vast majority of all papers focuses on single nodes; see e.g. some
remarks on this in Section 2.1 of Cayirli and Veral [4]. Notable
exceptions that do cover multi-node situations are the case study
(backed by Monte Carlo simulation) presented by Rising et al. [16]
and the visual simulation-based approach due to Swisher et al.
[18]. An elementary queueing model, designed for a specific multi-
stage application (i.e., an ear, nose and throat outpatient clinic),
has been developed by Cox et al. [6]. While there is a variety of
situations in which single-stage systems are a sufficiently accurate
representation of the real system, one would ideally like to have

appointment scheduling algorithms that can deal with more
complex structures as well, such as the ones presented by Côté
and Stein [5].

It is noted that, to set up appointment schedules one needs to
be able to evaluate the transient distribution of the underlying
queueing model; this transient distribution facilitates the compu-
tation of an objective function, which is then to be optimized over
the arrival epochs. Single queues typically have a reasonable level
of tractability, but (multi-node) queueing networks are known to
allow such an explicit transient analysis only in specific cases (e.g.
Jackson networks, relying heavily on various restrictive exponen-
tiality assumptions). In light of this, our paper is among the first
contributions to appointment scheduling in a multi-stage context.
Importantly, our framework does not impose any restrictive
assumptions on the service-time distributions.

The approach proposed in this paper uses the transient
distribution of the tandem queue to set up schedules. In systems
in which the number of clients to be scheduled is relatively large
and in which (per node) the clients service times stem from the
same distribution, however, we can work with the corresponding
stationary distributions. The second main novelty of this paper lies
in the way we evaluate such steady-state distributions; it is noted
that the approach we present here is significantly more efficient
than the one we developed earlier in Kuiper et al. [12].

The primary application area of appointment scheduling lies in
healthcare, but there is potential use in several other areas as well.
In industrial applications, where jobs pass through multiple
stations (e.g. machines) in a flow line, the cost function can be
expressed in terms of holding cost and the (opportunity) cost of
station idleness; the idea is then to schedule jobs so as to
minimize this objective function (see e.g. [7]).

1.4. Organization

The structure of the paper is as follows. In Section 2 we state
the scheduling problem for the two-node tandem in terms of idle
and waiting times, which will be addressed in the rest of this
paper. Section 3 explains in detail how one can exploit phase-type
characterizations of the service-time distributions to compute idle
and waiting times; various extensions of the ‘base model’ (viz.
heterogeneous service-time distributions, the situation in which
the second node may ‘block’ the first node) are dealt with in
Section 4. Then, in Section 5, we use the developed methodology
to numerically compute optimal schedules and study the effect of
various parameters on the optimal schedule. We also see that, for
the special case that all service times are equally distributed,
schedules in this transient setting rapidly approach steady-state,
and hence one could approximate the transient schedule by its
stationary counterpart (which has the evident advantage of being
easier to evaluate). In Section 6 we demonstrate an efficient
technique to compute the optimal steady-state schedule, and we
use this procedure to evaluate such schedules (thus showing the
impact of the various model parameters). The paper is concluded
by a brief discussion in Section 7.

2. Problem description

As argued in Introduction, appointment schedules are intended
to properly balance the ‘disutilities’ experienced by both the server
(i.e., the practitioner) and the clients (i.e., the patients). More
concretely, the schedules should be such that the server's idle time
is kept sufficiently low, while at the same time controlling the
clients’ waiting times. In this section, we first recapitulate how a
mathematical framework can be set up in the single-server setting,
and then extend this to the two-node tandem.
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A central role is played by the notion of a risk function,
measuring the system's (aggregate) disutility, which captures the
effect of idle times and waiting times in a single expression. A
common choice (see e.g. [20], [9], [12]) is the (potentially
weighted) sum of the mean idle times and the mean waiting
times, i.e.,

Rðt1;…; tnÞ ¼
Xn
i ¼ 1

βE½Ii�þð1�βÞE½Wi�
� �

with βA ð0;1Þ; ð2Þ

here the tis (for iAf1;…;ng) denote the arrival epochs of the n
clients, Wi is the waiting time of the i-th client, and Ii is the idle
time prior to the arrival of the i-th client. Observe that shifting the
value of β amounts to trading off the interests of the server and the
clients.

The idea is to balance idle and waiting times by optimizing the
risk function (2) over all arrivals epochs 0rt1r…rtn:

min
t1 ;…;tn

Rðt1;…; tnÞ ¼ min
t1 ;…;tn

Xn
i ¼ 1

βE½Ii�þð1�βÞE½Wi�
� �

: ð3Þ

As pointed out in Kemper et al. [11], this optimization problem,
which phrased in terms of mean idle and waiting times, can also
be expressed in terms of the clients' sojourn times. More precisely,
it turns out that, as a direct consequence of the Lindley recursion,

min
t1 ;…;tn

Xn
i ¼ 1

βE½Ii�þð1�βÞE½Wi�
� �¼ min

x1 ;…;xn� 1

Xn�1

i ¼ 1

E½ℓðSi�xiÞ�; ð4Þ

where ℓð�Þ, evaluated in Si�xi denotes the so-called loss function,
defined for any xAR by

ℓðxÞ≔�βx1fxo0g þð1�βÞx1fx40g;

the variable Si is the sojourn time of the i-th client (i.e., waiting
time Wi plus service time Bi), and the non-negative numbers
xi≔tiþ1�ti (with t1 ¼ 0) correspond to the interarrival times.

In the tandem setting clients have to be sequentially served by
two servers. It is throughout assumed that the service times of
client i at node r, for iAf1;…;ng and rAf1;2g, are independent
non-negative random variables Br;i. As before, appointment sche-
dules are sequences of epochs t1;…; tn at which the n clients are
supposed to arrive at the first node. However, now both servers
generate their own risk, so that the problem we are faced with is
to find t1;…; tn that minimize a risk function that incorporates idle
times and waiting times at both nodes. In self-evident notation, we
are therefore to evaluate

min
t1 ;…;tn

Xn
i ¼ 1

w βE½I1;i�þð1�βÞE½W1;i�
� �þð1�wÞ δE½I2;i�þð1�δÞE½W2;i�

� �� �
;

ð5Þ
with β; δ;wA ð0;1Þ: At each node, we balance the loss incurred by
idle and waiting times, as before, reflected by β and δ respectively,
whereas w weighs the disutilities corresponding to both nodes.
Observe that setting w equal to 1 in (5) reduces to the familiar
D=G=1 queue, i.e., the single-node appointment scheduling
problem.

3. Methodology

The goal of this paper is to devise techniques to solve the
optimization problem in (5) for general service times Br;i. In this
generality this is problematic, as evaluating the objective function
essentially requires us to determine the sojourn-time distributions
of the clients in our tandem system of the D=G=1-G=1 type, for
which no closed-form solution is available. We remedy this by
relying on the approach proposed and validated in Kuiper et al.
[12]: as we explain in Section 3.1, we approximate the service

times by their phase-type counterparts, for which computations
turn out to be feasible.

The second subsection points out how the mean waiting time
and idle times, to be used in (5), can be computed from the mean
sojourn times; it is thus sufficient to be able to determine the
clients’ sojourn-time distributions. Where Kuiper et al. [12]
focused on the single D=G=1 queue, we demonstrate how to
extend this procedure to its tandem counterpart. This tandem
case turns out to be substantially more involved; we present in
Section 3.3 in detail the (recursive) method that yields the
sojourn-time distribution of each of the clients.

3.1. Phase-type distribution

In our study we use the idea, advocated in Tijms [19], to match
the first and second moment of the service-time distribution by a
so-called phase-type distribution. Observe that it is equivalent to
fitting the mean and the squared coefficient of variation SCV; the
SCV of a random variable is defined as its variance divided by the
square of the mean. In line with Kuiper et al. [12], we choose to use
a mixture of two Erlang distributions (EK�1;K ðμ; pÞ) in case the
service-time distribution has an SCV smaller than 1; an exponen-
tial distribution in case SCV equals one; and a hyperexponential
distribution (H2ðμ; pÞ) in case of an SCV larger than 1.

Next, we point out how to express the mixture of Erlang
distributions, the exponential distribution, and hyperexponential
distribution as a phase-type distribution. A phase-type distribu-
tion is characterized by a ‘dimension’ mAN, an m-dimensional
row vector α with nonnegative entries adding up to 1, and an
ðm�mÞ-dimensional matrix S ¼ ðsijÞmi;j ¼ 1 such that siio0, sijZ0,
and

Pm
j ¼ 1 sijr0 for any iAf1;…;mg. If B has a phase-type

distribution with representation ðα; SÞ—which we denote by
B¼ dPhðα; SÞ;—then its first moment equals

E½B� ¼ �αS�11m; ð6Þ
where 1m is an all-one column vector of dimension m; higher
moments can be given in closed form as well, as can be found in e.
g. ([2], SectionIII.4).

As indicated above, the following three types of phase-type
distributions cover all values of the mean and SCV.

� In case SCVo1, we use an EK�1;K ðμ; pÞ distribution, which
corresponds to an Erlang distribution of K�1 phases and mean
ðK�1Þ=μ with probability p, and an Erlang distribution with K
phases and mean K=μ with probability 1�p: Then m¼K, and
the vector α is such that α1 ¼ 1 and αi ¼ 0 for i¼2,…,K. In
addition sii ¼ �μ for i¼1,…,K and si;iþ1 ¼ �sii ¼ μ for
i¼ 1;…;K�2, while sK�1;K ¼ ð1�pÞμ; all other entries are 0.
The corresponding SCV equals

K�p2

ðK�pÞ2
;

which lies between 1=ðK�1Þ and 1=K for KAf2;3;…g. We can
thus uniquely identify an EK�1;K ðμ; pÞ distribution matching the
first two moments of the target distribution, as long as SCVo1.

� In case SCV¼ 1, we use an Exp(μ) distribution. Then m¼1,
α1 ¼ 1 and S ¼ s11 ¼ �μ.

� In case SCV41, we use a H2ðμ; pÞ distribution: we sample from
Expðμ1Þ distribution with probability p, and from an Expðμ2Þ
distribution with probability 1�p. Then m¼2, and
α1 ¼ p¼ 1�α2. Also, sii ¼ �μi, for i¼1,2, while the other two
entries of S equal 0. Notice that we have three parameters that
we can freely choose to make sure that the first two moments
match; to reduce the number of degrees of freedom by 1, we
impose the additional condition of balanced means, i.e.,
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μ1 ¼ 2pμ and μ2 ¼ 2ð1�pÞμ for some μ40: The corresponding
SCV then equals

1
2pð1�pÞ�1;

which is larger than or equal to 1 (where we remark that it is
obviously equal to 1 only if p¼ 1=2, corresponding to the
exponential distribution).

3.2. Computing expected idle and waiting times

Section 3.3 presents an algorithm to compute the clients’
sojourn-time distributions in both queues (where it is recalled
that the sojourn time is the sum of the waiting time and the
service time). Above we pointed out for the single-server queue
that, with Si denoting the sojourn time of the i-th client, our
objective function can be expressed in terms of the loss function
ℓð�Þ, evaluated in Si�xi. This suggests that we need to know the
full distribution of the sojourn times to be able to evaluate the
objective function. Perhaps counter-intuitively, this is not the case,
as we explain in this section: as it turns out, one only needs to
know the mean sojourn times.

We show that the expected idle and waiting times at both
nodes can be expressed in terms of the expected sojourn times. Let
us first consider the first node. Realize that for all iAf1;…;ng, in
self-evident notation,

E½S1;i� ¼ E½W1;i�þE½B1;i�: ð7Þ
E½B1;i� being known, we have found E½W1;i� (in terms of the
expected sojourn times, that is).

Now notice that the time the i-th client leaves the system can
be expressed in two ways. In the first place it is the sum of the idle
and service times of the first i clients, but in the second place also
the arrival epoch of the i-th client plus her sojourn time. As a
consequence, we have, for any client i,

Xi
j ¼ 1

E½B1;j�þE½I1;j�
� �¼ tiþE½S1;i� ¼

Xi�1

j ¼ 1

xjþE½S1;i�: ð8Þ

Hence we can recursively compute the expected idle time at the
first server, prior to the arrival of the i-th client through

E½I1;i� ¼ E½S1;i��E½B1;i�þ
Xi�1

j ¼ 1

xj�E½B1;j��E½I1;j�
� �

:

A similar procedure works for the second node. Instead of looking
at the first node only, we now consider Si, i.e., the client-specific
sojourn time when traversing both nodes:

E½Si� ¼ E½W1;i�þE½B1;i�þE½W2;i�þE½B2;i�: ð9Þ
Noting that E½W1;i� follows from Eq. (7), we are left to compute
E½W2;i�. We now have, similar to (8),

Xi
j ¼ 1

E½B2;j�þE½I2;j�
� �¼ Xi�1

j ¼ 1

xjþE½Si� ð10Þ

(notice that E½I2;1�40 whereas E½I1;1� ¼ 0). From the above we
conclude that by knowing the clients' expected sojourn time at the
first server and in the total system, we are able to compute all
expected idle and waiting times by the above formulas. In the next
subsection we show how we can recursively generate the sojourn-
time distributions.

3.3. Recursive procedure to compute the sojourn-time distribution

In this subsection we describe an algorithm that determines
the sojourn-time distributions, assuming that the service times at

both nodes have phase-type distributions. For the first node, the
procedure relies on the principles developed in Wang [21]; the
derivation of the sojourn-time distribution for the entire system
(i.e., for each client i the time spent at the first node plus the time
spent at the second node), however, is novel and more involved.
More specifically, there are various ways to represent the jobs
flowing through the tandem network, each having its own
probabilistic description (and associated state space); the one we
have chosen to work with in this paper keeps the dimensionality
relatively low. It is noted that, when setting up such a description,
there are various additional subtleties to be dealt with; see the
way we introduce the ‘idle states’ † (single node), and †1 and †2
(tandem case) below.

In the sequel we assume that, for each server, the service times
are independent and identically distributed, and that there is an
independence between these two sequences of random variables.
Let the service time at the first node follow a phase-type
distribution in Phðαð1Þ; Sð1ÞÞ, whereas for the service time at the
second node we have the representation Phðαð2Þ; Sð2ÞÞ; the dimen-
sions of both phase-type distributions are m1 and m2, respectively.

It is noted, however, that the procedure we developed extends
to independent, non-identically distributed service times, albeit at
the expense of rather ‘heavy’ notation. This explains why we
restrict ourselves to the case of (per node) identically distributed
service times in this section; presenting the procedure directly in
full generality obscures the reasoning behind it (but we point out
how to deal with the ‘heterogeneous case' in the next section).

3.3.1. Recursive procedure for the first node
To compute the sojourn-time distribution at the first server, we

aim to derive the phase-type representation of the sojourn-time
distribution of each client i at this node, that is, S1;i ¼ dPhðαð1Þ

i ; Sð1Þi Þ,
where the subscript ‘1’ is added to denote that for the moment we
are only considering the first server. We first define the following
bivariate process:

fNiðtÞ;KiðtÞ; tZ0g ð11Þ

for client i¼1,…,n. Here Ni(t) is the number of clients present in the
system, t time units after the arrival of the i-th client; obviously
NiðtÞAf1;…; ig. The second component, KiðtÞAf1;…;m1g, represents
the phase of the client in service t time units after the arrival of the i-
th client. Observe that one state needs to be added to the state space
f1;…; ig � f1;…;m1g, corresponding to the situation that at time t all
i clients have left. We associate the symbol ‘†’ with this state.

In the sequel the probabilities

pðiÞj;kðtÞ≔P NiðtÞ ¼ j; KiðtÞ ¼ kð Þ

play a crucial role, with tZ0, i¼ 1;…;n, j¼ 1;…; i, and
k¼ 1;…;m1. It is evident that

PðS1;irtÞ ¼P ðNiðtÞ;KiðtÞÞ ¼ †ð Þ ¼ 1�
Xi
j ¼ 1

Xm1

k ¼ 1

pðiÞj;kðtÞ: ð12Þ

In addition, we introduce the vector PiðtÞ (of dimension m1i),
defined by

pðiÞi;1ðtÞ;…; pðiÞi;m1
ðtÞ; pðiÞi�1;1ðtÞ;…; pðiÞi�1;m1

ðtÞ;…; pðiÞ1;1ðtÞ;…; pðiÞ1;m1
ðtÞ

� �
:

The sojourn-time distribution of the i-th client can be computed
from PiðtÞ, as, by virtue of Eq. (12),

F1;iðtÞ≔PðS1;irtÞ ¼ 1�PiðtÞ1m1 i;

here 1m1 i represents an all-one column vector of dimension m1i.
The question we now focus on, is how PiðtÞ can be computed, for

A. Kuiper, M. Mandjes / Omega 57 (2015) 145–156148



tZ0, and iAf1;…;ng. In the sequel, 0m�n denotes an ðm� nÞ all-
zero matrix.

� Considering the first client, to arrive at t1 ¼ 0, it is a standard
result that P1ðtÞ ¼αð1ÞexpðSð1ÞtÞ; conclude that, as a conse-
quence,

ðαð1Þ
1 ; Sð1Þ1 Þ ¼ ðαð1Þ; Sð1ÞÞ;

thus defining the phase-type representation of S1;1.� Concerning the second client, arriving x1 after the first client,
realize that there are two scenarios: she can find still some
work in the system upon her arrival, and she can find the
system empty. It can be argued that it thus follows that the
initial distribution of the phase-type distribution, associated
with the sojourn time of client 2, reads

αð1Þ
2 ¼ ðP1ðx1Þ;αð1ÞF1;1ðx1ÞÞ;

a (row) vector of dimension 2m1. It then follows (with the same
arguments as the ones used in [12], [21]) that

P2ðtÞ ¼ ðP1ðx1Þ;αð1ÞF1;1ðx1ÞÞexpðSð1Þ2 tÞ ð13Þ
(being an object of dimension 2m1 as well); here, with
sð1Þ≔�Sð1Þ1m1 , and

Sð1Þ2 ≔
Sð1Þ Sð1Þαð1Þ

0m1�m1 Sð1Þ

 !
:

We have thus identified ðαð1Þ
2 ; Sð1Þ2 Þ, i.e., the phase-type repre-

sentation of S1;2.� The sojourn-time distributions of the other clients can be found
recursively in a similar manner. To this end, we introduce the
matrix T i of dimension ði�1Þm1 �m1 through

T i≔ 0m1�m1 ;…;0m1�m1 ; s
1ð Þα 1ð Þ� �T

;

in addition, we introduce

Sð1Þi ≔
Sð1Þi�1 T i

0m1�ði�1Þm1
Sð1Þ

0
@

1
A:

Then the row vector PiðtÞ (of dimension m1i) can be found from
Pi�1ðtÞ (of dimension m1ði�1Þ) by the recursion

PiðtÞ ¼ Pi�1ðxi�1Þ;αð1ÞF1;i�1ðxi�1Þ
� �

expðSð1Þi tÞ; tZ0: ð14Þ
This provides us with ðαð1Þ

i ; Sð1Þi Þ.

Realize that for the specific phase-type distributions we are
working with, the matrix Sð1Þ is upper triangular (in the hyper-
exponential case in fact even diagonal), and hence so are the
matrices Sð1Þi , for iAf1;…;ng. As a consequence, the eigenvalues
can be read off from the diagonal. This property facilitates easy
computation of the matrix exponent expðSð1Þi tÞ; in case of the
EK�1;K ðμ; pÞ distribution all eigenvalues are μ; and, in case of the
H2ðμ; pÞ all eigenvalues are entries of the vector μ.

3.3.2. Recursive procedure for the two-node tandem
Where we above determined the sojourn-time distribution at

the first queue, this subsection describes the extension of an
algorithm that facilitates the computation of the distribution of
the total sojourn time. More specifically, for each client we
determine the phase-type distribution of the time she spends in
the system, denoted by Si ¼ dPhðαi; SiÞ: Such a sojourn time Si
covers the waiting times and service times at both nodes, and can
be used to evaluate our objective function, by using the approach
presented in Section 3.2.

To this end, we define the ‘tandem counterpart’ of (11): for
client i¼1,…,n, we record the process,

fL1;iðtÞ; L2;iðtÞ; tZ0g;
with, for r¼1,2, Lr;iðtÞ≔ðNr;iðtÞ;Kr;iðtÞÞ. Here Nr;iðtÞ is the number of
clients present at the r-th server (i.e., clients who are waiting plus
potentially a client who is in service), and Kr;iðtÞ represents the
phase of the client in service on the r-th server (for r¼1,2), t time
units after the arrival (at the first node) of the i-th client. Again we
have to augment the state space; we do so by adding states ‘†1’

(‘†2’, respectively), representing the situation that no clients are
present at node 1 (node 2).

We will study the probabilities, for j1; j2AJ i, where

J i≔ j1Af1;…; i�1g; j2Af1;…; i�1g : j1þ j2Af1;…; ig� �
;

and krAf1;…;mrg,
pðiÞj1k1 ;j2k2 ðtÞ≔P L1;iðtÞ ¼ ðj1; k1Þ; L2;iðtÞ ¼ ðj2; k2

� �Þ;
as well as, for jrAf1;…; ig, krAf1;…;mrg,
pðiÞ
†1 ;j2k2

ðtÞ≔P L1;iðtÞ ¼ †1; L2;iðtÞ ¼ ðj2; k2Þ
� �

;

pðiÞj1k1 ;†2 ðtÞ≔P L1;iðtÞ ¼ ðj1; k1Þ; L2;iðtÞ ¼ †2
� �

:

If the number of clients in both queues is positive (say j1 and j2),
the client in service at the r-th node can be in mr states. This
explains why we, in this situation, work with the vector (of
dimension m1m2)

pðiÞ
½j1 ;j2�ðtÞ ¼ ðpðiÞj11;j21ðtÞ;…; pðiÞj11;j2m2

ðtÞÞ;…; ðpðiÞj1m1 ;j21
ðtÞ;…; pðiÞj1m1 ;j2m2

ðtÞÞ
� �

:

In addition, we have the vector of dimension m1 covering the cases
that the second queue is empty, and the first is not:

pðiÞ
½j1 ;†2�ðtÞ ¼ pðiÞj11;†2 ðtÞ;…; pðiÞj1m1 ;†2

ðtÞ
� �

;

and a vector of dimension m2 for the cases that the first queue is
empty, and the second is not:

pðiÞ
½†1 ;j2�ðtÞ ¼ pðiÞ

†1 ;j21
ðtÞ;…; pðiÞ

†1 ;j2m2
ðtÞ

� �
:

Let pðiÞ
½j� ðtÞ correspond to all situations in which j clients are present,

t time units after the arrival of the i-th client; by concatenating the
vectors defined above, we obtain the following vector of dimen-
sion m1þm2þðj�1Þm1m2:

pðiÞ
½j� ðtÞ≔ pðiÞ

½j;†2�ðtÞ;p
ðiÞ
½j�1;1�ðtÞ;…;pðiÞ

½1;j�1�ðtÞ;p
ðiÞ
½†1 ;j�ðtÞ

� �
:

Finally, we define PðiÞðtÞ corresponding to all possible system states
t time units after arrival of the i-th client:

PðiÞðtÞ ¼ pðiÞ
½i� ðtÞ;…;pðiÞ

½1�ðtÞ
� �

;

the dimension of this vector is

m½i�≔
Xi
j ¼ 1

ðm1þm2Þþðj�1Þm1m2ð Þ ¼ iðm1þm2Þþ
1
2
iði�1Þm1m2:

In order to compute the sojourn-time distribution, the option of
both queues being empty does not need to be incorporated in the
vector PðiÞðtÞ, since we have

FiðtÞ≔PðSirtÞ ¼ 1�
X

j1 ;j2 AJ i

Xm1

k1 ¼ 1

Xm2

k2 ¼ 1

pðiÞj1k1 ;j2k2 ðtÞ

�
Xi
j1 ¼ 1

Xm1

k1 ¼ 1

pðiÞj1k1 ;†2 ðtÞ�
Xi
j2 ¼ 1

Xm2

k2 ¼ 1

pðiÞ
†1 ;j2k2

ðtÞ

¼ 1�PðiÞðtÞ1m½i�:

The goal is now to construct a (recursive) algorithm to identify
PðiÞðtÞ.
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� For the first client, to arrive at t1 ¼ 0, we have

Pð1ÞðtÞ ¼ ðαð1Þ;0m2 Þexp
Sð1Þ sð1Þαð2Þ

0m2�m1 Sð2Þ

 !
t

 !
:

which is an ðm1þm2Þ-dimensional object. As a consequence, we
have for the phase-type description of the random variable S1 that,
with 0m2 an all-zero row vector of dimension m2,

α1 ¼ ðαð1Þ;0m2 Þ; S1 ¼
Sð1Þ sð1Þαð2Þ

0m2�m1 Sð2Þ

 !
:

� Concerning the second client, arriving x1 time units after the
first client, standard arguments yield that, using standard Kro-
necker notation,

α2 ¼ p 1ð Þ
1;†2½ � x1ð Þ;α 1ð Þ⊗p 1ð Þ

†1 ;1½ � x1ð Þ;0m2 ;α
1ð ÞF1 x1ð Þ;0m2

� �
;

where the dimensions of these five vectors are m1, m1m2, m2, m1

and m2, so that the whole vector has dimension
m½2� ¼ 2ðm1þm2Þþm1m2, as desired. Now we wish to identify
the matrix S2 (of dimension m½2� �m½2�) corresponding to the
phase-type representation of the distribution of S2:

Pð2Þ tð Þ ¼ α2 exp S2tð Þ; tZ0:

To this end, we first define the following two matrices, for ease
sometimes leaving out the dimensions of the 0-matrices,

U2≔

S 1ð Þ �S 1ð Þ1m1A
0ð Þ 0m1�m2

0m1m2�m1 S 1ð Þ⊕S 2ð Þ �S 1ð Þ1m1⊗Im2

0m2�m1 0m2�m1m2 S 2ð Þ

0
BB@

1
CCA

¼
S 1ð Þ s 1ð ÞA 0ð Þ 0
0 S 1ð Þ⊕S 2ð Þ s 1ð Þ⊗Im2

0 0 S 2ð Þ

0
B@

1
CA

and

V2≔

0m1�m1 0m1�m2

�Im1⊗S 2ð Þ1m2 0m1m2�m2

0m2�m1 �S 2ð Þ1m2α
2ð Þ

0
BB@

1
CCA¼

0 0
Im1⊗s 2ð Þ 0

0 s 2ð Þα 2ð Þ

0
B@

1
CA;

where Að0Þ≔αð1Þ � αð2Þ, 1mr the identity matrix of dimension mr

and sðrÞ≔�SðrÞ1mr . It is concluded that U2 is a square matrix with
m1þm2þm1m2 rows and columns, whereas U2 is of dimension
ðm1þm2þm1m2Þ � ðm1þm2Þ. We can now construct the
ðm½2� �m½2�Þ-dimensional matrix S2 by

S2 ¼
U2 V2

0 S1

 !
:

�For the other clients, the same iterative procedure can be
followed. We first define the following two ‘start matrices’,
relating to which server starts serving a new client:

Að1Þ≔αð1Þ � Im2 and Að2Þ≔Im1 � αð2Þ:

In addition, we introduce the following vector of dimension
m1þm2þ jm1m2, for jAf1;…; ig:

�pðiÞ
½j� ðtÞ≔ pðiÞ

½j;†2 �ðtÞ;p
ðiÞ
½j�1;1�ðtÞ;…;pðiÞ

½1;j�1�ðtÞ;αð1Þ � pðiÞ
½†1 ;j�ðtÞ;0m2

� �
:

Regarding the start distribution corresponding to the phase-type
description of the sojourn time Si, it follows that

αi ¼ p
ˇ i�1ð Þ
i�1½ � xi�1ð Þ;…;p

ˇ i�1ð Þ
1½ � xi�1ð Þ;α 1ð ÞFi�1 xi�1ð Þ;0m2

� 	
;

which can be verified to be of dimension m½i�.

Regarding the matrix Si in PðiÞðtÞ ¼αi exp Sitð Þ, this has the form

Si ¼
U i V i

0 Si�1

 !
:

Here

U i≔

S 1ð Þ s 1ð ÞA 0ð Þ 0 0 0 0
0 S 1ð Þ⊕S 2ð Þ s 1ð Þ⊗A 1ð Þ 0 0 0
⋮ ⋱ ⋱ ⋮
0 0 0 S 1ð Þ⊕S 2ð Þ s 1ð Þ⊗A 1ð Þ 0
0 0 0 0 S 1ð Þ⊕S 2ð Þ s 1ð Þ⊗Im2

0 0 0 0 0 S 2ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
;

of dimension ðði�1Þm1m2þm1þm2Þ � ðði�1Þm1m2þm1þm2Þ,
and

V i ¼

0 0 0 0 0
Im1⊗s 2ð Þ 0 0 0 0

0 s 2ð Þ⊗A 2ð Þ 0 0 0
⋮ ⋱ ⋮
0 0 0 s 2ð Þ⊗A 2ð Þ 0
0 0 0 0 S 2ð Þα 2ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
;0

0
BBBBBBBBB@

1
CCCCCCCCCA

of dimension ðði�1Þm1m2þm1þm2Þ �m½i�1�. We conclude that
Si indeed has dimension m½i� �m½i�:

It can be verified that the analysis simplifies greatly in the case
in which both service times have exponential distributions,
Br;i ¼ dPhð1;μrÞ for r¼1,2. In that situation, one needs to record
only the number of clients present at both nodes (as a conse-
quence of the fact that a service time corresponds to just a single
exponential phase).

4. Extensions

In the previous section we have considered our ‘base model’; in
this section we point out how a number of variants can be dealt
with. In the first subsection we consider the situation of hetero-
geneous service times, whereas the second subsection concen-
trates on models in which the second node may ‘block’ the
first node.

4.1. Heterogeneous service-time distributions

The model analyzed in the previous section considers the
situation in which at each station r (for r¼1,2) the n service times,
say Br;1 up to Br;n, are i.i.d. samples, distributed as a random
variable Br; importantly, the distributions of B1 and B2 do not
necessarily coincide. We already indicated in Section 3.3 that our
procedure extends to the situation in which the service-time
distributions (at each of the nodes) are client-specific: i.e., each of
the Br;i has an own distribution. As this extension is notationally
involved, we restrict ourselves to explaining the main ideas behind
it. We let job Br;i corresponds to a phase-type representation
ðαðr;iÞ; Sðr;iÞÞ, for r¼1,2 and i¼1,…,n, with ‘dimension’ mr;iAN.

We start our exposition by pointing out how the recursive
procedure for the first node needs to be adapted. As it turns out,
essentially all steps carry over after minor modifications. The
vector PiðtÞ, defined as in Section 3.3, has now dimension
mi≔m1;1þ⋯þm1;i. Regarding the first client, we obviously have

P1ðtÞ ¼αð1;1ÞexpðSð1;1ÞtÞ:

For the second client, (13) still applies, but with αð1Þ replaced by
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αð1;2Þ and Sð1Þ2 now being the m2 �m2 matrix given by

Sð1Þ2 ≔
Sð1;1Þ sð1;1Þαð1;1Þ

0m1;2�m1;1 Sð1;2Þ

 !
;

where sð1;iÞ≔�Sð1;iÞ1m1;i . This idea carries over to any client i, in the
sense that the recursive relation (14) remains valid, but with αð1Þ

replaced by αð1;iÞ and Sð1Þi now a matrix of size mi �mi defined as

Sð1Þi ≔
Sð1Þi�1 T i

0m1;i�mi� 1
Sð1;iÞ

0
@

1
A;

where T i is a matrix of size mi�1 �m1;i:

T i≔ 0m1;1�m1;i ;…;0m1;i� 2�m1;i ; s
ð1;i�1Þαð1;iÞ

� �T
:

In the same way we can extend the procedure for the two-node
tandem (as developed in Section 3.3) to the situation of hetero-
geneous service times, but this becomes notationally rather
involved. We therefore do not provide all details here, but restrict
ourselves to a couple of general remarks.

In the first place, observe that a full description of our system
now consists, at the moment that i clients have entered the
system, of the number j1 present at the first node and the number
j2 at the second node (where obviously j1þ j2 ¼ jAf0;1;…; ig),
together with the phases of the clients in service. It is seen that
client ℓ≔i� jþ1 is in service at node 2 (if j240), since i� j clients
already left the system. This also means that clients i� jþ1 up to
i� j1 are present at the second node. It thus follows that the client
in service there has a service-time distribution B2;ℓ (represented
by a phase-type distribution of dimension m2;ℓ). Likewise, clients
i� j1þ1 up to i are present at node 1, with client k≔i� j1þ1 in
service (as long as j140), with service-time distribution B1;k

(represented by a phase-type distribution of dimension m1;k).
The above extension allows us to study the effect of all sorts of

correlations. If client i tends to take relatively long at both nodes
(relative to the other clients), one could put this information into
the random variables B1;i and B2;i (for instance by giving them
larger means than the other clients).

4.2. Models with blocking

The general setup we have considered in Section 3.3 is a model in
which there is an infinite buffer (i.e., waiting room) after stage 1, and
thus clients waiting for service at the second node do not prevent the
first node from processing work. Models in which there is such a
blocking effect [7], however, are relevant in specific cases. They turn
out to be relatively easy to model, and simpler than the base model. In
this subsection we show how to adapt the base model to incorporate
two common types of blocking; these adaptations to the model still
follow the recursive methods outlined in Section 3.3. For ease we
consider the case that for a given r the Br;i are distributed as a random
variable Br for all iAf1;…;ng, but the situation of heterogeneity
among the Br;i can be dealt with as described in Section 4.1.

� In a first type of blocking, so-called ‘blocking-before-service’, the
first server can only start a new job when the second server, is
empty. Such a system can obviously be modeled by a single-node
system, in which the phase-type representation of the per client
service-time distribution Bi is derived by taking the convolution of
the individual service times at both nodes (for client i represented
by B1;i ¼ dPhðαð1Þ; Sð1ÞÞ and B2;i ¼ dPhðαð2Þ; Sð2ÞÞ), that is,

Bi ¼ dℙh α 1ð Þ;0m2

� �
;

S 1ð Þ s 1ð Þα 2ð Þ

0 S 2ð Þ

 ! !
:

In addition, the server-specific costs cannot be differentiated
between servers as the servers are considered as a single system.
Therefore, it is natural to compute the objective function as in the
single-node case; see Eq. (2).

� Another type of blocking is called ‘blocking-after-service’, a client
can only move to the second node when this node is idle. It means
that the client stays at the first node when she has been served at
this first node, but cannot move on to the second node (as a
consequence of the fact that there is a client being served there).
With ‘blocking’we refer to the situation that the next client-in-line
cannot commence service at node 1, although the service time of
the client in service has finished. As such, when 1 or 2 clients have
entered the system, no blocking can occur; only for iZ3 one can
be confronted with blocking. (For i¼2 the second server can still be
serving the first client while the second client already finished her
service at the first node, but this case does not require an
adaptation of the algorithm presented in Section 3.3, since the
second client is de facto waiting at the second node.)
When iZ3 clients have entered the system, we adapt the
procedure in the following way. The number of clients at the
second server, as before denoted by j2, is an element of f0;1;2g
(where ‘2’ corresponds to the situation in which there is a client
who blocks the first server, awaiting to be served at the second
server). Furthermore, when jAf3;…; ig clients are present in the
system and j2 ¼ 2 (and hence the number of the clients at the first
node, denoted by j1, equals j�2), then the system can only evolve
by serving the client on the second server, that is, the service-time
of the ði� jþ1Þ-th client at the second server should elapse. More
precisely, let pði;bÞ

½j� ðtÞ correspond to all situations in which j clients
are present in our model with blocking, t time units after the
arrival of the i-th client; we obtain the following vector of
dimension m1þm2þðminfj;2g�1Þm1m2:

p i;bð Þ
j½ � tð Þ≔

p ið Þ
j;†2½ � tð Þ;p

ið Þ
j�1;1½ � tð Þ;p

ið Þ
j�2;2½ � tð Þ

� �
if jZ3;

p ið Þ
j;†2½ � tð Þ;p

ið Þ
j�1;1½ � tð Þ;p

ið Þ
†1 ;j½ � tð Þ

� �
if jr2:

8><
>:

Finally, let P i;bð Þ tð Þ correspond to the probability vector related to
all possible system states t time units after arrival of the i-th
client:

P i;bð Þ tð Þ ¼ p i;bð Þ
i½ � tð Þ;…;p i;bð Þ

1½ � tð Þ
� �

;

the dimension of this vector is less than or equal to m½i�. The
transitions given by the matrix Sbi can be found by

Sbi ¼
Ub

i Vb
i

0 Sbi�1

0
@

1
A;

where the matrices Ub
i and Vb

i can be constructed as in Section 3.3,
but have just ðminfi;2g�1Þ diagonal elements (instead of i�1),
due to the fact that when j2 ¼ i�2 the first node is blocked, and
only the second node is busy. The matrix Sbi can then be used in
P i;bð Þ tð Þ ¼ αb

i exp Sbi t
� �

(where the initial probabilities αb
i are

adapted accordingly).
The above setup enables us to compute the sojourn-time distribu-
tions. We can only use Eqs. (9) and (10) to compute the expected
idle and waiting times, since the sojourn time at the first server is
affected by the performance of the second server; due to the
blocking effect the first server has to be analyzed separately. In the
case of equal weights (i.e., w¼0.5 and β¼ δ) this issue is trivially
resolved. In other situations, one could opt for explicitly keeping
track of the epoch that the first server finishes its service.
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Importantly, where the above setup corresponds to the situation of
no waiting room between the nodes, one can easily generalize the
procedure to the case of bAN positions in the waiting room.

5. Optimal schedules in a transient environment

In this section we present a numerical assessment related to
the transient case, i.e., we determine, for various model instances,
the optimal arrival times for n clients. The methodology outlined
in the previous section enables us to compute the aggregate risk of
a given schedule, and this risk is then to be minimized over the
arrival epochs of the n clients (where the first client arrives at
t1 ¼ 0), so as to obtain the optimal schedule. This minimization can
be done relying on standard numerical packages.

Indeed, the phase-type representation, as obtained by the
recursive method presented in the previous section, allows us to
evaluate the sojourn-time distributions of the individual clients,
and hence also the associated risk. Being able to compute optimal
schedules, the impact of various parameters can be assessed. More
specifically, in this section we perform such sensitivity analysis
with respect to (i) both servers’ SCVs; (ii) both servers’ means; (iii)
the weight parameter w. In all experiments we assume that clients
are homogeneous, in that their service times at node 1 (node 2,
respectively) are identically distributed.

In general, a schedule consisting of n clients can be written as a
vector of n arrival epochs ðt1;…; tnÞ, or, equivalently, n�1 inter-
arrival times x¼ ðx1;…; xn�1Þ. In the sequel we represent the
optimal schedule by the vector of interarrival times x⋆ ¼
ðx⋆1 ;…; x⋆n�1Þ.

5.1. Effect of coefficient of variation

First we examine the effect of the variability of the service
times. In healthcare applications the typical range for the SCV is
0.35–0.85, see Cayirli and Veral [4]. In our experiments, however,
we do not restrict the SCV to this range; realize that the method
can be used in other areas as well, such as the planning of jobs in a
manufacturing environment, in which potentially other
SCVs apply.

In Fig. 1 we consider optimal schedule for various values of the
SCVs, while keeping the mean service times fixed. In Fig. 1 we plot
the optimal interarrival times when varying the SCV of the first
server, whereas in Fig. 1 the SCV of the second server is varied. It is
seen that the schedule has a so-called ‘dome shape’, as described
by Kaandorp and Koole [10]: the optimal interarrival times are
relatively short at the beginning (as there is still little uncertainty

in the system) and the end (as there are few later clients suffering
from long service times) of the schedule.

From the graphs we observe that the variability at the first
server has a more pronounced impact. An explanation lies in the
very nature of the tandem queue: variations in the service times at
the first server are propagated to the second server. As a conse-
quence, fluctuations in the service times at the first server affect
the schedule more than additional variations at the second server.

5.2. Effect of mean

In Fig. 2, we systematically assess the effect of the mean service
times on the schedule. Fig. 2(a) shows how the optimal schedule is
affected by the mean service time at the first node, whereas Fig. 2(b)
visualizes the effect of the mean service time at the second node. It is
observed that these mean service times have less impact than the
SCVs. More precisely, nearly until the last client, the computed
optimal schedules behave virtually identically; only at the very end
of the session we see a (mild) discrepancy. In addition, it is seen that
in Fig. 2(a) the optimal interarrival times for the last client have
clearly distinct values, whereas in Fig. 2(b) these are considerably
closer together.

5.3. Effect of weight

We now assess the effects of the weight parameter w, by varying
w from 0 to 1 (in steps of 0.2). We set the mean service times and
coefficients of variation equal to 1 (at both servers). In the case w¼1
we are optimizing over the first server only, i.e., we are in the setting
of the well-known D=M=1 queue (with non-homogeneous arrival
times), see e.g. Kuiper et al. [12]. The other extreme situation,w¼0, is
equivalent to only optimizing over the second server. The resulting
schedules are presented in Fig. 3. From this graph we observe that
the interarrival times essentially decrease in w. The reason for the
phenomenon is that, in order to control the sojourn times in node
2 relatively long interarrival times are needed (compared to the
sojourn times in node 1); this is an immediate consequence of the
fact that node 2 is facing a non-deterministic arrival process (as
opposed to node 1). As a result, giving node 1 more weight (i.e.,
increasing w) leads to ‘more predictability in the objective function’,
and hence shorter optimal interarrival times. Similar graphs are
obtained when choosing other values for the mean service times and
coefficients of variation.
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Fig. 1. The other parameters are kept such that EB1 ¼ EB2 ¼ 1 and w¼0.5. (a) SCV1 varies, while SCV2¼1. (b) SCV2 varies, while SCV1¼1.
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5.4. Comparison with single-server system

Finally we study the difference between the two-node tandem
with a corresponding single-node system. We consider the situa-
tion of a tandem network (with both mean service times equal to
1), and a single-server queue (with mean service time equal to 1).
We set all SCVs equal to a half (which is a common setting in
healthcare, being in the interval identified in Cayirli and Veral [4]).
As observed above, the second node is fed by a non-deterministic
arrival process, thus explaining that the optimal interarrival times
in the two-node case are higher than those for the single node.

To be able to compare the per-client loss of the tandem
network with the loss in the single-node setting, we consider
the average of the two expected waiting times, and for the idle
times we did the same. We see for both systems that the mean
waiting times are increasing functions (turning from concave to
convex somewhere in the middle). For the mean idle times we
observe the familiar dome-shape pattern, cf. Fig. 4(a). Obviously
the mean per-client loss in the two-node tandem is substantially
higher than in the single-node system, as a result of the extra
variation the second node is facing.

To further explore the effect of the tandem structure on the
schedule, in relation to the corresponding single-node system, we
also consider the corresponding optimal steady-state schedule; in

Section 6 we point out how this schedule can be efficiently
evaluated. It is stressed that transient solutions converge relatively
rapidly to their steady-state counterparts, as is pictorially illu-
strated in Fig. 4(a); there we additionally plotted the optimal
interarrival times in steady state, leading to the horizontal lines at
1.5363 and 1.4761 for the two-node tandem and the single-node
system respectively. Another motivation for using steady-state
schedules is that they are easier to compute and conceptually
simpler than transient schedules, as they consist of just a
single value.

6. Optimal schedules in steady state

In this section we consider the situation that the number of
clients grows large, assuming that at both nodes the service-time
distribution is identical across the clients. As a consequence, the
optimal interarrival time tends to a constant, the steady-state
optimal interarrival time, which we explain how to evaluate. As
before, we restrict ourselves to the situation of phase-type service
times at both nodes. The second part of this section presents a
series of experiments.

The evaluation of the steady-state optimal interarrival time
relies directly on the transition matrix computed, so as to compute
the invariant distribution of the embedded discrete-time Markov
chain. This idea reduces the computational effort drastically, in
that it is not necessary to compute specific integrals and summa-
tions in the way proposed in Section 5.2 of Kuiper et al. [12]
(borrowing elements from Wang [21]). To the best of our knowl-
edge, this new approach to compute the stationary distribution of
a D=G=1 or D=G=1-G=1 queue has not been pointed out before.

6.1. Procedure

The optimal interarrival time in steady state is particularly
important, because, as indicated by the experiments reported in
Kuiper et al. [12], schedules for a finite number of clients converge
rapidly to their steady-state counterparts. In addition, as we will
show, the steady-state solution can be determined with relatively
low computational effort. It is further remarked that it can be used
as an upper bound for transient schedules (e.g. the dashed lines in
Fig. 4(a)). Our approach originates naturally from the phase-type
framework featuring in Section 3.3. The method borrows elements
from the one presented for the single node in Kuiper et al. [12], but
is significantly more efficient.
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Fig. 2. The other parameters are kept such that scv1 ¼ scv2 ¼ 1 and w¼0.5. (a) EB1 varies, while EB2 ¼ 1. (b) EB2 varies, while EB1 ¼ 1.
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Fig. 3. The optimal schedule is computed for different weights wA ½0;1�: The other
parameters are kept such that EB1 ¼ EB2 ¼ 1 and SCV1 ¼ SCV2 ¼ 1.
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With bu denoting the largest of the two mean service times, the
optimal interarrival time, to be denoted by x⋆, should evidently be
larger than bu; we denote ρ≔bu=x⋆: It is further noted that, in
contrast to the transient setting, the number of clients can attain
any positive integer. However, when ρo1 holds, the stationary
probability of having more than, say, M clients in the system decay
essentially geometrically in M. This fact justifies truncating the
state space such that, at both queues, we do not allow more than
M clients to be simultaneously present.

In our stationary setting, the optimization problem can be
rephrased as

min
x

w βE½I1ðxÞ�þð1�βÞE½W1ðxÞ�
� �þð1�wÞ δE½I2ðxÞ�þð1�δÞE½W2ðxÞ�

� �
;

ð15Þ

where Wk(x) (Ik(x), respectively) is the steady-state waiting time
(idle time, respectively) at node r (r¼1,2) given the interarrival
times are x. The mean idle and waiting times can be derived from
the steady-state sojourn-time distribution, as pointed out in
Section 3.2.

Now consider the number of clients in both queues, as well as
the phase of the client in service (if any), just before arrival epochs
(at the first node), i.e., the epochs nx� , for nAN). This process
evidently constitutes a discrete-time Markov chain. Since the
number of clients is truncated at M we can work with the matrix
SM that we identified in Section 3.3. The transition matrix of the
embedded discrete-time process follows from the matrix expo-
nent QM ¼ exp SMxð Þ, where a minor correction needs to be
applied, in order to take care of the arrival that takes place
immediately after the ‘embedded epochs’. In more detail, let
πM�1 be the stationary probabilities, with the state space trun-
cated at M�1. Starting with this vector πM�1 of dimension
m½M�1�þ1 (including the state of no clients in the system), we
first perform a ‘shift’ by one (cf. the transient setting), due to the
client arriving at nx, resulting in a vector of dimension m½M�. This
vector can be multiplied by the transition matrix of the embedded
discrete-time Markov chain QM , and, because πM�1 was the
stationary distribution, this should equal πM�1 again. Written in
a compact way, we are therefore to solve

πM�1 ¼ tðπM�1ÞQM ; ð16Þ

where the function tð�Þ corresponds to the shift operation applied
to the vector πM�1, as described above. Using the normalizing
equation πM�1 � 1m½M�1�þ1 ¼ 1 and Eq. (16), we find the equili-
brium distribution. Having found this vector, the objective

function can be evaluated, by the phase-type representation for
the steady-state sojourn-time distribution, given by
PhðtðπM�1Þ; SMÞ. Having a procedure to evaluate the objective
function for given x, we can then optimize it over x⋆4bu.

Along the same lines one can derive the steady-state sojourn-time
distribution for the first server only, which is computationally less
involved. Combining both steady-state sojourn-time distributions, we
can find all expected idle and waiting times by the relations derived in
Section 3.2.

6.2. Computational results

In this subsection we evaluate the effect of (i) both SCVs (ii) the
heterogeneity in the mean service times, i.e., EB1 and EB2, and (iii)
the weight w on the steady-state optimal arrival time. To this end,
we have considered 9 scenarios: all combinations of 3 different
values of the weight w and three different values of EB2 (fixing,
without loss of generality, EB1 at 1). For all these scenarios we let
the SCVs of the two service times vary. In Fig. 5 the resulting
graphs are given. The computational time per data point to
compute the steady-state optimal interarrival time is less than
1 min, which is considerably less, roughly ten times, than comput-
ing the corresponding transient schedule for n¼25 clients.

Perhaps the most striking observation from Fig. 5 is that, when
moving from the top/right graph to the bottom/left graph, the level
curves per figure change from nearly flat (gradient is ‘orientated in the
SCV2 direction’) to almost vertical (gradient is ‘orientated in the SCV1

direction’). Evidently, if w is close to 1 and service times in the first
queue are substantially bigger than those in the second queue, then
the impact of SCV2 is small. Likewise, for w small and service times in
the first queue being small relative to those in the second queue, then
the impact of SCV1 is small.

It is further observed that the level curves are nearly linear in SCV1

and SCV2. The exceptions to this rule are Fig. 5(a) and (i); in Fig. 5(a)
both the weight of node 1 and the service time at node 2 are relatively
high, whereas in Fig. 5(i) the weight of node 2 and the service time at
node 1 are high. In addition, in some of the scenarios the distance
between the contour lines is nearly constant.

An evident global conclusion is that both SCVs have a significant
impact on the schedule. In the case that both nodes are equally
important (w¼ 1

2) and have similar means, that is, Fig. 5(e), we see
that the first server's SCV has more impact than the second server.
This finding is in line with the observations made in Section 5, where
we argued that this is a consequence of the fact that the variability of
the first queue propagates to the second queue.
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Fig. 4. The parameters are set such that every server operates with mean 1 and squared coefficient of variation of 0.5. (a) Comparing the optimal solution x⋆ . (b) Comparing
the individual losses corresponding to x⋆ .
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Moreover, our procedure makes it possible to verify whether it is
justified to make use of steady-state schedules rather than their
transient counterparts. In specific situations already after three clients
the optimal interarrival times are hardly distinguishable from those
obtained when evaluating the steady-state schedule; see e.g. the
examples in Section 5 on transient schedules. This fact can be used
by managers: the steady-state schedules depicted in Fig. 5 can then
serve as some sort of ‘cookbook’ to determine the optimal interarrival
times in the specific situation they encounter. A pragmatic view is that
one could use the equidistant schedule as resulting from a steady-state
analysis, which is in particular cases already close to optimal, and that
one further improves it by slightly modifying the schedule at the start
and end of the schedule (so as to obtain a dome-shape pattern, similar
to the ones found in the section on transient schedules).

7. Conclusion and discussion

In this paper we have considered the problem of finding appoint-
ment schedules that balance the clients’ mean waiting times and the

server's idle times. We have extended the approach that was devel-
oped in Kuiper et al. [12] for the single-node queue to its tandem
counterpart. A key step in our procedure is that we approximate the
service times by appropriately chosen phase-type random variables.
Importantly, phase-type distributions allow for (relatively) easy calcu-
lations; in particular, the sojourn-time distributions of the individual
clients can be determined recursively. Furthermore, we show how to
efficiently compute the steady-state sojourn-time distribution. Having
the sojourn-time distribution at our disposal, optimization techniques
can be used to determine optimal schedules. We note that it was
shown in Kuiper et al. [12] that replacing service-time distributions
(Weibull and lognormal) by their phase-type counterparts (of low
dimension) hardly affects the optimal schedule.

The experiments in Sections 5 and 6 (for schedules in a transient
environment and in stationarity, respectively) give insight into the
behavior of the optimal schedules under a broad variety of parameter
settings (corresponding to the weights between both servers, and the
mean and SCV of each server).

There are several directions for further research. (i) In the first
place, one could study the optimal schedules in alternative multi-
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Fig. 5. The optimal interarrival times xn as a function of SCVs for different scenarios. The SCV1 is varying along the horizontal axis, while SCV2 is varying along the vertical
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node settings, such as the fork-join queue. In addition, it would be
interesting to systematically assess the impact of the risk function
on the optimal schedule; in this paper all results are based on a
specific risk function (the linear one, that is). One could also
investigate the sequential approach (as proposed in Kemper et al.
[11] for the single node), which assigns optimal arrival times
sequentially to individual users (i.e., the schedule gradually fills).
(ii) In the second place, the optimal schedule can be studied
in situations in which additional features play a role, such as
‘urgent clients’ (whose arrivals correspond to a Poisson process, or
more realistically by the processes identified by Alexopoulos et al.
[1]), different types of clients (each type being characterized by its
own service-time distribution), and no-shows; it is observed that
the latter can be easily incorporated in the phase-type representa-
tion ðα; SÞ by adapting the initial probability vector α.

It is also remarked that in the heterogeneous scenario, there is
the issue of identifying the order of the clients that minimizes the
objective function. We have observed that the ‘variation’ at the
first server (expressed in terms of SCV1) propagates to the second
server. As this variation results in higher idle and waiting times, it
is anticipated that SCV1 has a crucial impact on the objective
function. This suggests the heuristic, for situations in which the
SCV2s are roughly equal, to schedule clients in ascending order of
their SCV1s. Unfortunately, even for the single-node system there
are hardly rigorous results for such properties yet, notable excep-
tions being Kemper et al. [11] (focusing on the sequential approach
mentioned above), Rohleder and Klassen [17] (focusing on simula-
tion studies where clients with low variance are scheduled first)
and Mak et al. [15] (focusing on a ‘distribution-free’ setup,
minimizing the worst-case expected waiting and overtime over
all probability distributions with given moments).
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