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Practical Principles in Appointment Scheduling

Alex Kuipera*† and Michel Mandjesb

Appointment schedules aim at achieving a proper balance between the conflicting interests of the service provider and her
clients: a primary objective of the service provider is to fully utilize her available time, whereas clients want to avoid excessive
waiting times. Setting up schedules that strike a good balance is severely complicated by the fact that the clients’ service times
are random. Because of the lack of explicit expressions, one has often set up schedules relying on simulation techniques. In this
paper, we take a radically different approach: we use newly developed analytical techniques to numerically determine optimal
schedules (i.e., schedules that optimize a given objective function that incorporates the interests of the service provider as
well as the clients) and compare them with a number of easily evaluated heuristics; in our setup, it is throughout assumed that
a given fraction of the clients does not show up. Our results are particularly useful in situations in which there is a significant
variation in the service times, which is typically the case in various healthcare-related settings. Copyright © 2015 John Wiley
& Sons, Ltd.
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1. Introduction

One of the challenges in healthcare engineering concerns setting up well-balanced appointment schedules. The goal of such schedules
is to regulate supply and demand: when no appointment schedule is used, this likely leads to all sorts of unwanted effects, such as
excessive waiting times for patients during peak periods as well as long idle times for the medical staff during quiet hours.

An appointment schedule is essentially the sequence of epochs at which the individual patients are supposed to arrive. Those
schedules are meant to soundly balance the interests of the medical staff and its clients. Clearly, the doctor’s valuable time should not
to be wasted, and therefore, idle time should be avoided. At the same time, it is increasingly realized that one should set up schedules
such that they offer the patients an acceptable service level (for instance expressed in terms of the waiting times that they experience).

To the best of our knowledge, the problem of setting up appointment schedules was first studied by Bailey1 and Welch and Bailey2

in 1952 and has gained increasing interest ever since; we refer to, for example, Cayirli and Veral3 for a good overview of the work on
appointment scheduling. A wide range of approaches has been developed; we here review the ones that are particularly relevant in
the context of the setting discussed in the present paper.

Most papers focus on the situation that patients’ service times are random, where it is typically assumed that the individual service
times are independent and identically distributed. The variability of the service-time distribution is often expressed in terms of the
squared coefficient of variation, in the sequel denoted by SCV, defined for a random variable B � 0 by

SCV :D
VarŒB�

EŒB�2
;

where CV equals
p

SCV. In healthcare settings, the CV typically lies in the interval Œ0.35, 0.85�, as reported by Cayirli and Veral.3

In many studies, one relies on extensive and often case-specific simulations; see, for example, Bailey,1 Welch and Bailey,2 and Ho and
Lau.4, 5 A more generic approach is to assume a specific service-time distribution that allows explicit expressions for the waiting-time
and idle-time distributions, so as to analytically generate schedules. The easiest distribution to work with is the exponential distribu-
tion, as studied by Hassin and Mendel,6 but this choice, corresponding with CV D 1, typically overestimates the variability. One has
therefore looked into methods in which the service-time distribution is fitted by a distribution that provides more freedom but that
still allows a (semi-)analytic solution. More specifically, a fit with the beta distribution was advocated by Lau and Lau,7 whereas a phase-
type distribution was proposed by, for example, Wang8 and Kuiper et al.9 In the latter reference, the validity of the phase-type approach,
in which the first two moments of the patients’ service-time distribution are fit (or, equivalently, the mean and the CV), has been thor-
oughly examined for typical service-time distributions observed in healthcare. We finally mention that one can rely on discrete-time
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versions of the continuous schedules, thus facilitating a very fast evaluation of any specific schedule; see, for example, Brahimi and
Worthington10 and De Vuyst et al.11

A fundamentally different approach was followed by Zacharias and Pinedo.12 In that setup, service times are deterministic and equal
to the slot size, such that the fact the patients possibly not show up is the only stochastic element in the model. No-shows are indeed
a prevalent problem in many healthcare scheduling practices as they correspond to typically 5% up to 30% of all patients, as reported
by Cayirli and Veral.3 Moreover, in an assessment by Ho and Lau4 of environmental factors that affect appointment schedules, it was
found that no-shows and the service-time variability have a profound impact on the appointment schedule, which motivates why a
proper design should take both factors into account.

As the main contribution of the present paper, we present a technique to generate schedules that incorporate random service
times and no-shows. In addition, we provide a comparison of such schedules with those resulting from straightforward heuristics (with
scenarios in which the parameters match those observed in practice). Our framework relies on the phase-type approach as proposed
by Kuiper et al.,9 which we have adapted to incorporate no-shows. Another approach that covers both stochastic effects is by Vissers
and Wijngaard.13 Their main idea is to modify the mean and the variance of the patients’ service times in their simulation studies to
account for no-shows.

At the time appointment scheduling research took off, computational power was limited, and one therefore primarily focused on
various heuristics. Perhaps the most classical example is the equidistant schedule in which the slot sizes equal the patients’ average
service time. However, as is known already from the pioneering work of Welch and Bailey,2 such a scheme performs badly in many
cases; to remedy this, they propose to overbook the first slot with an additional patient. It was shown by Ho and Lau4 that this rule,
often referred to as the Bailey–Welch rule, is fairly robust over a broad range of situations. It has been proven by Kemper et al.,14

however, that equidistant schedules ultimately lead to long waiting times when the number of patients grows large (with the mean
waiting of the nth patient roughly behaving as

p
n); hence, in that regime, the Bailey-Welch rule may lead to schedules that are highly

unattractive to patients.
The remainder of the paper is organized as follows. In Section 2, we introduce the concept of a risk function that balances the interests

of the service provider (doctor) and the patients, and then we extend the phase-type approach given in Kuiper et al.9 The framework
thus obtained enables us to evaluate an optimal schedule, that is, the schedule that minimizes the risk function. Then, in Section 3,
we compute commonly used scheduling heuristics and numerically compare them with the optimal schedule. We conclude our paper
with a discussion of the results in Section 4.

2. Modeling approach

In this section, we outline the stochastic model and method used for evaluation and optimization of appointment schedules. The main
focus is on extending the framework given in Kuiper et al.9 to a setup that incorporates patients’ no-shows. This extension, as relevant
as it is, requires to deal with some subtleties. First, we describe the risk function that represents the expected loss per patient in terms
of mean idle times and mean waiting times. Then we describe the phase-type approach and point out how the recursive method
should be adapted to deal with no-shows. We assume patients (also referred to as clients) and the specialist or doctor (also referred to
as practitioner) to be punctual.

2.1. Framework, risk function

In mathematical terms, the appointment scheduling problem aims at determining epochs t1 up to tn at which the n clients are supposed
to enter. We denote by V :D .t1, : : : , tn/ the resulting appointment schedule. In the context of the present paper, the service times B1

up to Bn are assumed independent and identically distributed (but this assumption can be alleviated). We write Ii for the practitioner’s
(random) idle time prior to the ith arrival, and Wi for the (random) waiting time of the ith client; it is clearly ruled out that both are
positive.

The risk associated with client i, defined as weighted sum of the expected idle and the expected waiting time, is given by

R.˛/i .t1, : : : , ti/ D ˛EŒIi�C .1 � ˛/EŒWi�,

where the ˛ 2 .0, 1/ is a weight factor that embodies the importance of the practitioner’s (idle) time versus the clients’ (waiting) time.
Realize that (obviously) the random variables Ii and Wi are affected by the arrival epochs t1, : : : , ti . The aggregate risk is given by

R.˛/.t1, : : : , tn/ D

nX
iD1

R.˛/i D

nX
iD1

.˛EŒIi�C .1 � ˛/EŒWi�/. (1)

Because we consider expected idle and waiting times, we do not have to compute explicit idle and waiting-time distributions to evaluate
Eqn (1). Instead, we rely on the definition of the sojourn time as the sum of waiting and service time, that is,

Si D Wi C Bi (2)

in combination with the fact that the makespan equals the sum of idle and service times:
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ti C Si D

iX
jD1

�
Ij C Bj

�
. (3)

If we take the expected value in Eqns (2) and (3), we end up with a formula for the expected waiting time and a recursion for the
expected idle time of the ith client in terms of her expected sojourn time:

EŒWi� D EŒSi� � EŒB�; (4)

EŒIi� D ti C EŒSi� � i EŒB� �
i�1X
jD1

EŒIj�. (5)

We thus conclude that having knowledge of the sojourn-time distribution (and in particular its mean) enables a recursive algorithm to
find the mean waiting times and the mean idle times, with which we can evaluate our objective function.

The next step is to introduce phase-type distributions, which are intended to approximate the service-time distribution B. As we will
see, they are relatively easy to work with; more specifically, we can compute the corresponding sojourn-time distribution (and hence
its mean). It is well known that phase-type distributions, which are mixtures and convolutions of exponential distributions, can be used
to approximate any distribution with positive support arbitrarily accurately; see, for example, Asmussen et al.15 and Tijms.16

2.2. Phase-time distribution

We approximate the service-time distribution B by a phase-type counterpart based on the mean and the SCV, in the way proposed by
Tijms.16 The candidate distributions that we rely on in this paper are the mixture of Erlang distributions EK�1,K.�; p/ and the hyperex-
ponential distribution H2.�; p/. These phase-type distributions are characterized by an m-dimensional (row) vector ˛, where m 2 N ,
with nonnegative entries adding up to 1, and an .m �m/-dimensional matrix S D .sij/

m
i,jD1 such that sii < 0, sij � 0 and

Pm
jD1 sij � 0 for

any i 2 f1, : : : , mg. For the two specific phase-type distributions mentioned in the previous text, the representations in terms of m, ˛,
and S are given as follows:

� In case SCV < 1, we use an EK�1,K.�; p/ distribution. In this case, m D K , and the vector ˛ is such that ˛1 D 1 and ˛i D 0 for
i D 2, : : : , K . In addition, sii D �� for i D 1, : : : , K and si,iC1 D �sii D � for i D 1, : : : , K � 2, while sK�1,K D .1 � p/�; all other
entries of S are 0.
� In case SCV � 1, we use a H2.�; p/ distribution. Then m D 2, and ˛1 D p D 1� ˛2. Also, sii D ��i , for i D 1, 2, while the other two

entries of S equal 0.
� If SCV D 1, then the exponential distribution, Exp.�/, is used.

Observe that the first case (SCV < 1) is particularly relevant in healthcare as it contains the typical CV values in the range of 0.35 to 0.85.
We write for a phase-type distributed random variable B that B Dd Ph.˛, S/. An attractive feature of phase-type distri-

butions is that the moments have explicit forms (see, e.g., Asmussen17); for the mean, we have (em being an m-dimensional
column vector consisting of ones)

EŒB� D �˛S�1em, (6)

which can be evaluated fast for the phase-type representations that are being considered, because S is an upper diagonal matrix in
case of a mixture of Erlangs or a diagonal matrix for the hyperexponential distribution.

Now suppose there are no-shows, in the sense that each scheduled arrival corresponds to a no-show with probability q 2 .0, 1/.
Then the phase-type distribution should be adapted reflecting the fact that each client requires no service with probability q and a
service time B with probability .1 � q/. As a consequence, the vector ˛ is multiplied by .1 � q/, that is, B Dd Ph..1 � q/˛, S/.

2.3. Recursive approach

The key idea is to use the recursive procedure proposed by Wang8 to compute each client’s sojourn-time distribution. These are of
phase-type, and hence, the objective is to identify the ˛ and S featuring in its representation Ph.˛, S/. The basic idea is that at each
moment in time, we keep track of the number of clients in the system together with the phase of the client in service; the current
state of the system is given by these two variables. Notice that the ith client’s sojourn time is only affected by her i � 1 predecessors.
Because typically the number of clients to be scheduled is relatively small, the dimensionality issue is not prevalent; our numerical
techniques provide us with accurate output for problems of a realistic size. When considering very large numbers of clients, one can
opt for neglecting some of the dependence between the clients by introducing a lag order, as proposed in Vink et al.18; if the lag order
is k, then this means that only clients i � k up to i � 1 can affect the sojourn time of the ith client.

To outline the procedure under no-shows (with probability q), define the bivariate process fNi.t/, Ki.t/, t � 0g for client i D 1, : : : , n,
where Ni.t/ 2 f0, : : : , i � 1g represents the number of clients in front of the ith arriving client, t time units after his or her arrival. The
second component, Ki.t/ 2 f1, : : : , mg, represents the actual phase of the client in service at t time units after the arrival. We introduce
the corresponding probabilities, for t � 0, i D 1, : : : , n, j D 0, : : : , i � 1, and k D 1, : : : , m:

p.i/j,k .t/ D P .Ni.t/ D j, Ki.t/ D k/ .
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In addition, the vector Pi.t/ (of dimension mi) plays a crucial role; it is given by

�
p.i/i�1,1.t/, : : : , p.i/i�1,m.t/, p.i/i�2,1.t/, : : : , p.i/i�2,m.t/, : : : , p.i/0,1.t/, : : : , p.i/0,m.t/

�
.

The sojourn-time distribution of the ith client can be computed from Pi.t/ through the following identity, with emi as an all-ones vector
of dimension mi:

Fi.t/ :D P .Si � t/ D 1 �
i�1X
jD0

mX
kD1

p.i/j,k .t/ D 1 � Pi.t/emi .

Considering the first client, which is evidently to arrive at t1 D 0, it is only his or her service-time distribution that determines his or her
sojourn time: for t � 0,

P1.t/ D .1 � q/˛ exp.St/

(which is an m-dimensional object). Considering the second client, arriving x1 :D t2 � t1 time units after the first client, he or she either
shows up with probability .1� q/ (thus increasing the number of clients by one), or he or she does not show up with probability q. For
any t � 0, with 0m denoting an all-zeros vector of dimension m, this leads to

P2.t/ D ..1 � q/.P1.x1/,˛F1.x1//C q.0m, P1.x1/// exp.S2t/,

which is an object of dimension 2m; here, with s :D �Sem and 0m,m denoting an .m �m/-dimensional all-zeros matrix,

S2 :D

�
S s˛

0m,m S

�
.

For the other clients, the vector Pi.t/ (dimension mi) can be found from Pi�1.t/ (dimension m.i � 1/) by the recursion, for t � 0,

Pi.t/ D ..1 � q/.Pi�1.xi�1/,˛Fi�1.xi�1//C q.0m, Pi�1.xi�1/// exp.Sit/,

where xi�1 :D ti � ti�1 (which is commonly known as the inter-arrival time) and the matrix Si is defined recursively by

Si :D

�
Si�1 T i

0m,.i�1/m S

�
,

with T i a matrix of dimension .i � 1/m �m defined by

T i :D .0m,m, 0m,m, : : : , 0m,m, s˛/T.

In the previous text, we have outlined the procedure for evaluating the aggregate risk of any schedule V . Using this recursive pro-
cedure, we can use standard numerical tools to optimize over all possible schedules, so as to find optimal schedule. In other words,
we identify the x?i s that minimize the risk function (for a given weight ˛), thus finding the optimal schedule V? D .t?1 , : : : , t?n / by
t?i D

Pi�1
jD1 x?j for i D 2, : : : , n. We will use this procedure in Section 3 to evaluate commonly used scheduling heuristics and compare

those with the optimal schedule V?.

3. Experiments and results

The primary objective of this section is to examine how frequently used scheduling heuristics perform relative to each other, and
relative to optimal schedules (i.e., schedules that minimize R.˛/.t1, : : : , tn/ for some ˛ 2 Œ0, 1�). We do so by evaluating the so-called
efficient frontier, consisting of all combinations of the averaged (over all clients) mean waiting times and aggregated mean idle times
when varying the weight ˛. In our computations, we rely on the phase-type approach, augmented to incorporate no-shows, as has
been described in Section 2; it was validated in Kuiper et al.9 that the underlying phase-type service-time distributions very well match
the Weibull and log-normal distributions that have been observed in practice (as was pointed out by Cayirli and Veral).3

We consider five heuristics, each of them based on the average service time EŒB�; we refer to, for example, Ho and Lau4 for a simu-
lation study (using the uniform and exponential distribution) on the performance of various scheduling heuristics of this and related
types. It is remarked that in these heuristics, the no-show probability q is not taken into account, despite the fact that the no-shows
(obviously) reduce the expected service time needed per client. Later, we also consider the counterparts of these schedules in which it
is corrected for no-shows; they are obtained by replacing EŒB� by .1 � q/EŒB�.

A An equidistant schedule:
ti D .i � 1/EŒB� for all i.

1
1

3
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B The Bailey–Welch rule with two clients at the first time slot:
t1 D t2 D 0; ti D .i � 2/EŒB� for i > 2.

C Adaptation of the Bailey–Welch rule with three clients at the first time slot:
t1 D t2 D t3 D 0; ti D .i � 3/EŒB� for i > 3.

D Adaptation of the Bailey–Welch rule with four clients at the first time slot:
t1 D t2 D t3 D t4 D 0; ti D .i � 4/EŒB� for i > 4.

A2 Block appointment rule of two clients arriving for a double slot:
ti D tiC1 D 2.i � 1/EŒB� for i D 1, 3, 5, : : : .

It was shown by Ho and Lau4 that the original Bailey–Welch rule (rule B, that is) performs reasonably well in that it generates a
value of the risk function that is close to optimal; this is, however, just for a specific choice of ˛. Rule A was not studied in their paper,
but is, owing to its simplicity, of particular interest to a practitioner. Rules C and D are adaptations of the original Bailey–Welch rule,
intended to further reduce the idle time (obviously at the expense of additional waiting time). Rule A2, also known as the two-at-a-time
scheduling rule, is a naïve solution to reduce the practitioner’s idle time; the advantages of rule A2 are studied in the paper by Soriano19

and compared with the equidistant schedule as described in A.
In our numerical experiments, we consider the following three scenarios. (i) First we assess the scheduling heuristics based on the

average service time EŒB� D 15 (min) and 15 clients to be scheduled. (ii) Then, so as to assess the effect of having more clients in the
system, we double the number of clients to 30. (iii) Finally, we study schedules in which the no-show correction is applied; that is, EŒB� is
replaced by .1 � q/EŒB�.

The experiments are carried out in MATLAB R2014b. The optimization procedure consists of four stages, whereas for evaluation
of practical scheduling heuristics, only the first three steps are applicable.

1. The n clients’ service-time distributions are approximated by phase-type counterparts based on its first two moments, as
described in Section 2.2.

2. For each schedule V , formed by n � 1 inter-arrival times, each client’s sojourn-time distribution is computed by the recursive
approach outlined in Section 2.3.

3. Using the clients’ sojourn-time distributions in Eqn (6), the expected idle and waiting times are computed by the formulas in
Eqns (5) and (4).

Figure 1. Various appointment schedules in the setting of SCV D 0.4225 and no-show probability q D 17.5%, where the number of clients n is varied horizontally, and where
there is a correction in the heuristics for the no-show probability q in the bottom graphs
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4. By using MATLAB R2014b’s built-in optimization routines, for a specific choice of ˛, the aggregate risk of Eqn (1) is minimized
over all possible schedules V using a start vector in which each entry equals the expected service time with a no-show correction.
The resulting optimized appointment schedule is V?.

The five scheduling rules (A, : : : ,A2) are evaluated for specific scenarios (i.e., with particular values of SCV, q, and n), in terms of the
expected idle and waiting times they correspond with. In addition, we compute the optimal schedules V? for different ˛s in .0, 1/,
so as to minimize Eqn (1), letting ˛ run from 0.5 to 0.99 in steps of 0.01. Informally, for ˛ D 0.5, the value assigned to the time of an
individual client equals that assigned to the practitioner’s time (which is not very common in the medical context); ˛ D 0.99 entails
that the time of the practitioner is valued 99 D 0.99=0.01 times more than the time of an individual client. Choosing ˛ D 1 corresponds
to the trivial schedule in which all clients arrive at time zero, such that the risk function has the value (in the case the schedules are not
corrected for no-shows)

1

n

n�1X
iD1

iEŒB� D
.n � 1/

2
EŒB�,

as the (expected) idle times are zero; an explicit analysis is also possible in case the no-show probability is incorporated. Computing
the optimal schedules V? for each ˛ results in what we call efficient frontier; owing to the fact that these are obtained by optimizing
the risk function, no schedule can perform better than these schedules.

First, we study the impact of the number of clients on the schedules. To this end, we choose SCV D 0.4225 and q D 0.175 and set
the number of clients first to 15 and then to 30. In Figure 1, we plot the heuristics and the efficient frontier based on the optimized
schedules V? for a range a values of ˛. It is first observed that implementing the no-shows correction in the scheduling rules has a
substantial effect. Furthermore, comparing Figure 1(a) with Figure 1(b) shows for the situation that no no-shows correction has been
applied that the heuristics converge to each other as the number of customers grows; for large n, the scheduling rules are very similar
as they correspond to equal slot sizes in a stationary queue with load smaller than 1 (apart from the beginning of the session). In
Figure 1(c) and (d), the heuristics will always differ as the system considered behaves essentially as a queue with load 1, so that there is
no convergence to steady state.

In a second series of experiments, we let the number of clients be n D 15 and consider in both scenarios (i.e., with or without no-
shows correction) four settings that match the boundaries settings of typical healthcare situations that have been reported by Cayirli

Figure 2. Various appointment scheduling heuristics based on the average service time EŒB�, where the number of clients n equals 15, in four healthcare settings: SCV

increases from left to right and no-show probability q increases from top to bottom
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and Veral3: we take (i) the CV (SCV) equal to 0.35 (0.1225) and 0.85 (0.7225), and (ii) we let the no-show probability q have the values 0.05

and 0.30. We do not apply the no-show correction in the heuristics.

Comparing the scheduling rules without a correction, Figure 2, with the scheduling rules that have been corrected for no-shows,

Figure 3, it is observed that the corrected scheduling rules are more defensive in that they lead to lower expected idle times (and hence

higher expected waiting times). Furthermore, we remark that the corrected scheduling rules cover only a small range of various trade-

offs in terms of ˛. Zooming in on Figure 2(b) and (c) (equivalently, for the corrected versions, Figure 3(b) and (c )), one finds that from

the two environmental factors an increase in the service-time variability has a greater impact on the schedule than an increase in the

no-show probability.

It is remarkable that many heuristics lie close to the efficient frontier, indicating that the risk function Eqn (1) is relatively flat. This

does not apply to A2, which schedules clients evenly over the session but now with two clients per double slot. At first sight, it seems

to improve upon rule A in the sense that it reduces the practitioners idle time, but it has the drawback that if both clients show up one

of the clients has an expected waiting time that is at least equal to the average service time.

Finally, all figures show that the ordering of the scheduling rules (except for rule A2) is preserved in all settings. Comparing the

heuristics in terms of idle time, the expected idle time is reduced by planning additional clients at the beginning of the session, and

therefore, the ordering from low to high in expected idle times is D, C,B,A. Analogously, planning additional clients at the beginning

results in an increase in the waiting times. So the ordering from low to high in expected waiting times is A,B, C,D. For rule A2, we

know that it has less idle time than A, because even numbered clients arrive one time slot earlier than in rule A. On the other hand,

rule B has lower expected idle times than A2, because all arrival epochs are set equal to or earlier than the epochs set by A2. For the

waiting times, such a comparison cannot be made, because under the no-shows rule, A2 does not necessarily lead to lower waiting

times than rule B (or C and D).

Figure 3. Various appointment scheduling heuristics based on the no-show corrected average service time .1 � q/EŒB�, where the number of clients n equals 15, in four
healthcare settings: SCV increases from left to right and no-show probability q increases from top to bottom

Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015, 31 1127–1135

1
1

3
3



A. KUIPER AND M. MANDJES

4. Conclusion and discussion

In this paper, we have considered appointment schedules in a setting with service-time variability. We have pointed out how to
adapt the approach proposed by Kuiper et al.9 so as to incorporate the possibility of clients not showing up. Despite the fact that
service-time variability and no-shows are highly relevant to healthcare we are among the first to systematically assess both effects in a
computational study.

Phase-type distributions are used to approximate the clients’ service-time distributions based on the first two moments. It is
known from literature that the first two moments mainly dictate the performance of an appointment schedule as reported by Cayirli
and Veral.3 Furthermore, they point out that typical distribution functions in healthcare are either Weibull or log-normal. In Kuiper
et al.,9 the choice of using phase-type distributions is justified by a series of numerical experiments. These experiments assess the
performance of the phase-type approach with the simulated optimal appointment schedules.

In our numerical study, we have compared a number of heuristic schedules by evaluating for each of them the sum of the expected
idle times as well as the average of the expected waiting times. From the two stochastic components, we find that the service-time
variability (expressed in terms of the SCV) has a more significant impact than the no-show probability. Secondly, the optimization
procedure enables us to find the optimal schedule for a specific choice of the weight factor ˛ that sets the trade-off between idle
and waiting times. Therefore, we are able to relate practical principles in appointment scheduling to their intrinsic trade-offs in terms
of idle and waiting times. Finally, the optimization procedure itself can be used to generate optimal appointment schedules under
service-time variability and in the presence of no-shows.

There are several directions for further research. In the first place, one could consider alternative risk functions. In the present paper,
we have considered the sum of the expected idle and waiting times, but in principle, there is no clear reason for this choice (besides
perhaps this form having become the standard risk function, or the fact that it may be easier to evaluate than other functional forms).
Given the fact that, for both the practitioner and clients, a modest amount of slack time is hardly negatively perceived, one could argue
that a quadratic loss function may be more appropriate than a linear one. The choice of the risk function, however, may have a very
substantial impact on the optimal schedule, as can be found in Kuiper et al.9

Another relevant feature concerns the choice of an appropriate weight factor, embodied by the parameter ˛ in the context of our
paper. This parameter essentially represents the value of the practitioner’s time relative to clients’ time. There is obviously no clear
recipe to choose the ‘right’ ˛. It is increasingly felt that clients should not suffer from inefficiencies, but there is also a strong societal
pressure to use the practitioner’s time well so as to prevent excessive healthcare costs. For example, Robinson and Chen20 present
attempts to find the ‘implied value’ of the practitioner’s time with respect to the clients’ time.
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