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Abstract

We signal and discuss common methodological errors in agreement studies and the use of kappa indices,

as found in publications in the medical and behavioural sciences. Our analysis is based on a proposed

statistical model that is in line with the typical models employed in metrology and measurement theory.

A first cluster of errors is related to nonrandom sampling, which results in a potentially substantial bias in

the estimated agreement. Second, when class prevalences are strongly nonuniform, the use of the kappa

index becomes precarious, as its large partial derivatives result in typically large standard errors of the

estimates. In addition, the index reflects rather one-sidedly in such cases the consistency of the most

prevalent class, or the class prevalences themselves. A final cluster of errors concerns interpretation

pitfalls, which may lead to incorrect conclusions based on agreement studies. These interpretation issues

are clarified on the basis of the proposed statistical modelling. The signalled errors are illustrated from

actual studies published in prestigious journals. The analysis results in a number of guidelines and

recommendations for agreement studies, including the recommendation to use alternatives to the

kappa index in certain situations.
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1 Introduction

Diagnostic tests, clinical diagnoses and ratings can be perceived as measurements on a nominal
scale. They classify subjects into a set of unordered categories, aiming to reflect an empirical
property of the subjects that is not observed directly. This underlying property is often referred
to as the ‘true value’ or ‘actual state’, but is called the ‘measurand’ in measurement theory and
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metrology (see, for example, the International Standardization Organization’s Guide to the
Expression of Uncertainty in Measurement1).

The quality or reliability of nominal measurements is often expressed in terms of
agreement, typically in the form of a � (kappa) index. Introduced by Cohen,2 it is a measure
of agreement between repeated classifications that corrects for agreement ‘by chance’, that is, for
agreement achieved by blind classifications.3–5 The � index is surrounded by quite some controversy,
and a number of papers have identified paradoxical behaviour.6–12 Still, it has a prominent place in
literature, education and practice in the social and medical sciences.

This article aims to signal and comment on a number of common methodological errors made in
agreement studies and applications of the � index found in scientific publications in prestigious
journals. Some of these errors concern the design of agreement studies, and their ramifications
include a potentially serious bias in the estimated � index. Other errors are related to the
standard error of the estimated agreement; the parameters of many agreement studies are such
that this standard error, and consequently the confidence margins on the estimated � index, is so
large as to make the studies’ results fairly useless. Finally, there are a number of interpretation
pitfalls, stemming from the ambiguity of the concept of chance agreement, and from the strong
under-weighting of the agreement on less prevalent classes in the case of strongly nonuniform class
prevalences. As a consequence of these interpretation pitfalls, reported � values may not reflect the
authors’ intention.

The next section gives a statistical model for nominal measurements, and defines the � index in
terms of this statistical model. Three clusters of problematic issues concerning the � index are
introduced, which are explained in the three subsequent sections and illustrated with examples of
agreement studies in the literature of the social and medical sciences. The final section presents our
recommendations for agreement studies. Throughout the article, issues are illustrated with actual
papers from the literature. Please note that these examples are not in any way intended to discredit
the work of their authors, but instead, are presented to draw attention to methodological
shortcomings in practices in the medical and behavioural sciences.

2 Experimental design and statistical model

As we see it, many of the errors and much of the confusion to be discussed are rooted in the weak
and superficial theoretical foundation of many expositions and discussions of agreement. Many
discussions are framed in terms of sample statistics, without reference to a population model, and
the few population models that are introduced do not capture what we see as essential characteristics
of measurement and measurement reliability. We see the conceptualization and modelling that we
present in this section as an important contribution to the theory of agreement studies.

To assess the quality of a nominal measurement procedure, one could collect data in the following
manner. A sample of n subjects, randomly selected from the population of subjects, are independently
classified once by each ofm appraisers on an unordered scale {0, 1, . . . , a� 1}. The results are denoted
Yij, with i¼ 1, . . . , n indexing subjects, and j¼ 1, . . . , m indexing appraisers. Measurements are
intended to reflect an underlying empirical property of the subjects, named the measurand, and
denoted Xi, which assumes the same values {0, 1, . . . , a � 1}. In the population of subjects, the
measurand is assumed stochastically independent with a discrete distribution given by

pðkÞ ¼ PðXi ¼ kÞ; k ¼ 0, . . . , a� 1, with
Xa�1
k¼0

pðkÞ ¼ 1 ð1Þ
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(the class prevalences). As for the distribution of the Yij, we assume that given a subject’s true state Xi,
the m measurements Yi1, Yi2, . . . , Yim are stochastically independent (the assumption of conditional
independence). Moreover, the distribution of the Yi1, Yi2, . . . , Yim depends on Xi, and we define

qðkjl Þ ¼ PðYij ¼ kjXi ¼ l Þ, ð2Þ

thus specifying the distribution of the measurement errors. Note that, in case of a dichotomous test
resulting in Y¼ 0 (negative) or Y¼ 1 (positive), q(0j0) is the test’s specificity (the probability of a
correct negative), and q(1j1) is the test’s sensitivity (the probability of a correct positive), while p(1) is
the prevalence of the disorder. The model parameters p(k), k¼ 0, 1, . . . , a � 1, and q(kjl), k, l¼ 0,
1, . . . , a � 1, determine the distribution of the Yij and we have

PðYij ¼ kÞ ¼
Xa�1
l¼0

pðl Þqðkjl Þ ¼ qðkÞ ðmarginal distributionÞ: ð3Þ

Situations may deviate from the assumptions above in numerous ways, and one’s objectives may
motivate alternative study designs. For example, the abovementioned assumption of conditional
independence is often violated in practice due to nuisance factors affecting the results. For the
purposes of our exposition, we think it is productive to keep the basic model relatively simple,
and comment, where suitable, on possible extensions.

We now turn to the evaluation of nominal measurements in terms of a probability of agreement.
Two measurements of a subject agree if they are identical (the subject is classified in the same
category both times). PAgreement (or short: PA) is the probability that two arbitrary measurements
of an arbitrary subject agree. Under the model specified by Equations (1)–(2), we have for a subject
with actual state Xi¼ l:

PAðl Þ ¼ PðYij1 ¼ Yij2 jXi ¼ l Þ ¼
Xa�1
k¼0

q2ðkjl Þ,

and for an arbitrary subject:

PA ¼ PðYij1 ¼ Yij2 Þ ¼
Xa�1
l¼0

Xa�1
k¼0

pðl Þq2ðkjl Þ: ð4Þ

Fleiss3 introduced the sample statistic

P̂A ¼
1

nmðm� 1Þ

Xn
i¼1

Xa�1
k¼0

NikðNik � 1Þ

where Nik¼ {#j: Yij¼ k}. De Mast and Van Wieringen13 show that P̂A is an unbiased estimator of PA

(that is, EP̂A ¼ PA).
The probability of agreement is positive, even if measurements are completely unrelated to the

measurand they intend to reflect. To correct for this phenomenon, Cohen,2 Fleiss,3 Conger4 and
numerous others have introduced � indices as a recentred and rescaled version of PA. They are
defined as

� ¼
PA � PAjC

1� PAjC
, ð5Þ

where PAjC is the probability of agreement of random measurements ‘by chance’. The value �¼ 1
corresponds to the agreement that a perfect measurement system would attain, and 0 corresponds to
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the agreement that ‘chance measurements’ would attain. The most common conception of chance
measurements is the one by Fleiss,3 where chance measurements are defined as independent of the
measurand with a probability distribution equal to the marginal distribution of the measurement
system under study when applied to the subjects population under study (as given in (3)). Denoting
chance measurements by Zij, this amounts to

Zij are i:i:d: and PðZij ¼ kÞ ¼ qðkÞ for all i, j, and k:

Under these premises, the probability of agreement of chance measurements equals
PAjC ¼ PðZij1 ¼ Zij2 Þ ¼

Pa�1
k¼0 q

2ðkÞ:
Fleiss’s3 sample statistic

P̂AjC ¼
Xa�1
k¼0

N2
k

ðmnÞ2
,

(with Nk¼ {#(i, j): Yij¼ k}) estimates PAjC with a minor bias.13 The sample �̂ is defined as in (5), but
with the sample statistics P̂A and P̂AjC instead of the corresponding population parameters.

Agreement studies are commonly done as part of scientific endeavour in the social and medical
sciences (and beyond), and the results are frequently reported in the form of � indices. Upon
reviewing a large number of publications reporting on the results of agreement studies, we
identified a number of commonly made methodological errors. We present and discuss these
errors in the next sections, and we give examples of such errors in the existing literature. First,
we speculate on the grounds for these errors.

The presentation and modelling above deviate from many expositions in the literature in two
important aspects. First, they define an experimental model with population parameters, and define
PA and � in terms of these population parameters. Sample statistics P̂A and �̂ are presented as
estimators for PA and �. In the literature, expositions are often framed in terms of sample
statistics only, without referring to a population model (although there are some notable
exceptions11,14–16). This makes it difficult to assess the properties of � statistics as estimators of a
population parameter. For example, inferences based on sample statistics should include an
assessment of the estimate’s standard error or confidence margins.

Another noteworthy characteristic of the given exposition, is that it attributes total dispersion in
the measurements to dispersion in the measurand X, and dispersion in the measurements Y
conditional on X. This is in line with the typical models employed in metrology and measurement
theory.1,17 Much of the literature of agreement studies, however, introduces � statistics in the context
of classifications and cross-tabulations, without reference to a measurand. By doing so, a mapping
that is essentially a measurement is treated as merely a classification. The distinguishing
characteristic of a measurement, is that it is a classification aimed to reflect an empirical property
of the subjects being measured (cf. classical definitions of measurement).18–20 Including this empirical
property as an element of the statistical model, as is done in the model presented above, is not only
more natural, it also allows one to separate the behaviour of the measurand (which is a characteristic
of the subjects population) from the behaviour of the measurement errors (a characteristic of the
classification procedure), and to state assumptions about both explicitly and separately. By defining
� indices in the context of classification and cross-tabulation, as is typically done in the literature, the
assumptions about the measurand’s behaviour are obscured. We speculate that the conception of
agreement in the context of classification rather than measurement is one of the causes of many of
the interpretation problems discussed in a later section.
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Kraemer’s15 population model (her ‘Case 1’), which is restricted to dichotomous classifications,
allows a comparable distinction between ‘characteristics of the population’ and ‘decision-making
errors’. Contrary to our conceptualization, however, Kraemer sees the marginals q(0) and q(1)
as population characteristics, rather than our p(0) and p(1), and this line of reasoning permeates,
implicitly or explicitly, much of the literature on agreement. However, the q(k) reflect both
the distribution of true values in the subject population and the distribution of classification
errors (per Equation (3)). We think it is better to regard the class prevalences p(k) and the
conditional probabilities q(kjl) as the intrinsic characteristics of the subject population and
measurement errors, respectively, and the marginal distribution given by the q(k) as their
combined consequence.

We discuss three problematic issues concerning agreement studies.

(1) Study design: nonrandom sampling
(2) Problems and errors related to nonuniform class prevalences
(3) Interpretation pitfalls

3 Study design: nonrandom sampling

The main error in the design of an agreement study based on �, is that the sample is unrepresentative
for the subject population. It is crucial to work with a representative sample. If one selects a sample
in which the numbers of subjects in the different classes are not representative for the study
population, P̂A will be biased, because PA depends on the class prevalences p(l) (per Equation
(4)), unless PA(l) is equal for all values of l. This bias will mostly be modest, depending on
the differences between the PA(l) for different classes l. However, if one expresses the result in the
form of �, this bias is leveraged substantially by the rescaling based on PAjC, and �̂ will be strongly
biased even if the PA (l) are equal for all l.

We illustrate the large bias that can result from unrepresentative sampling by a study that
appeared in The Lancet, which researched the agreement in detecting the presence or absence of
certain respiratory signs.21 The authors do not state clearly how and from what population the
patients were sampled. Most of the patients in the study had respiratory disorders and all patients
had ‘stable well-defined features and a definitive diagnosis confirmed by investigations’, suggesting
that the patients were not a random sample from the general population. If that is so, the
estimated � values are biased, or only representative for that specific population from which
the sample was taken. We illustrate the possible magnitude of this bias from a numerical
example. In the abovementioned study, a certain chest sign, an ‘increased percussion note’, has
a �̂ value of 0.50. A total of 24 patients were each inspected by four physicians. The number of
physicians that indicated an increased percussion note was 0 for 16 patients, 1 for five patients, 2
for one patient, 3 for none of the patients and 4 for two patients. This could correspond to the
following statistical properties of the test procedure (values chosen for illustration, but not based
on the original study): a prevalence of p(1)¼ 0.10, a specificity of q(0j0)¼ 0.93 and a sensitivity of
q(1j1)¼ 0.92, which gives the reported value �¼ 0.50. Now suppose that the sample is
unrepresentative for the population that the researchers have in mind, because in fact the
prevalence is not 0.10 but 0.01. Then, the population value of � is only 0.10, and the study is
likely to overestimate agreement by a factor 5. Clearly, � depends heavily on prevalence and the
sampling method, and it is crucial that the sample is representative. Therefore, when conducting
an agreement study as in the paper on detecting respiratory signs, the population of subjects for
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which the measurement procedure is intended, must be clearly defined, and when using �, the
sample of subjects must be a random sample from this subject population.

In the statistical model given above, the assumption was made that the m measurements Yi1,
Yi2, . . . , Yim are stochastically independent given the subject’s true value Xi and, therefore, that Xi is
the only factor affecting the stochastic properties of the measurements (the assumption of
conditional independence). If the sample is representative, this assumption is not crucial.
However, if the sample is unrepresentative, a violation of the assumption of conditional
independence creates an even further bias.22 In the study about detecting respiratory signs,21

suppose that an increased percussion note is easier to detect for some patients than for others.
This would be a violation of the conditional independence assumption. If the sample is
unrepresentative in the sense that patients are overrepresented whose increased percussion note is
relatively easy to detect, the expected value of �̂ will increase even beyond 0.50, leading to an even
more serious overestimation.

The importance of a random sample is underappreciated in literature. The Food and Drug
Administration23 mentions that in studies evaluating diagnostic tests, the subjects should include
the complete spectrum of patient characteristics, but does not mention that the sample of subjects
should otherwise be representative for the study population. Several papers about agreement studies
based on � recommend a balanced sample, in which sample prevalences are uniform,6,7,24,25 clearly
in conflict with our observation that a representative sample is essential. Other misconceived
sampling strategies include sampling subjects from the so-called gray area, i.e. subjects that are
hard to judge, or sampling subjects such that roughly one-third is clearly positive, one-third
clearly negative, and one-third hard to judge.

4 Problems and errors related to nonuniform class prevalences

Kraemer et al.26 point out that in the case of scales with 3 or more classes, � indices may obscure a
poor consistency on two classes because it is averaged out with a possibly good consistency on the
remaining classes. We think the situation becomes even more tricky when class prevalences are
nonuniform (that is, p(k) �p(l) for some k 6¼ l). Especially, for tests for disorders, this is typically
the situation, because typically, p(0) � p(1) (the fraction of subjects unaffected by the disorder is
much larger than the fraction affected).

If class prevalences are nonuniform, � and PA by approximation only reflect the consistency in the
most prevalent class. This is because the PA(l) are weighted by the prevalence of each of the classes as
in Equation (4). This is not an error in itself, but it should be borne in mind in interpreting the �
index. For example, if a certain disease has a small prevalence (p(1)& 0.0), the PA estimated from a
random sample of diagnoses almost exclusively reflects the specificity q(0j0):

PA ¼ pð0Þ q2ð0j0Þ þ q2ð1j0Þ
� �

þ pð1Þ q2ð0j1Þ þ q2ð1j1Þ
� �

� pð0Þ q2ð0j0Þ þ ð1� qð0j0ÞÞ2
� �

and similarly for �. Reporting the quality of the diagnostic procedure solely as a � index, would fail
to reflect the procedure’s sensitivity q(1j1), which is an equally important aspect of diagnostic
quality. De Mast et al.22 give a similar warning for pass/fail inspections in industry, where �
indices evaluate an inspection exclusively in terms of the producer’s risk (the probability of a
false rejection), ignoring the consumer’s risk (a false acceptance).

Interpretation of � becomes even more precarious if class prevalences are extremely nonuniform
(one p(l)> 0.95). In such cases, the partial derivatives of � with respect to the parameters q(kjl)
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approach 0, while the partial derivative with respect to the p(l) becomes very large (Figure 1). This
implies that, in the case of extremely nonuniform class prevalences, � responds strongly and rather
one-sidedly to changes in class prevalences.

In summary, the � index confounds various properties of the measurements and the class
prevalences into a single number, and especially for nonuniform class prevalences is driven rather
one-sidedly by either the q(kjl) of the most prevalent class l, or (for extremely nonuniform
prevalences) responds almost exclusively to the class prevalences themselves. As a consequence, it
may be an oversimplification to reject or accept a measurement procedure on the basis of �,
following criteria14,27,28 for values of �. For example, Fleiss et al.28 judge �< 0.40 as poor, �
between 0.40 and 0.74 as fair to good and � between 0.75 and 1.00 as excellent. To illustrate how
uncritical application of such criteria leads to practically questionable decisions, consider a
dichotomous test with specificity and sensitivity q(0j0)¼ q(1j1)¼ 0.95. For many practical
applications, these error probabilities may be acceptable. However, if the prevalence p(1)¼ 0.01
(extremely nonuniform, but a common order of magnitude), then �¼ 0.14, ‘poor’ according to
the abovementioned criteria. Note that as a first-order (Taylor) approximation around these values,

� � 0:14þ 12:3 ð pð1Þ � 0:01Þ þ 2:6 ðqð0j0Þ � 0:95Þ þ 0:3 ðqð1j1Þ � 0:95Þ,

illustrating the fact that for such nonuniform prevalences, � is largely driven by the prevalence (slope
of 12.3), and that it is nearly insensitive to q(1j1) (slope of 0.3).

Instead of the sensitivity and specificity, in different contexts, it might be more important
to consider the positive and negative predictive values of a diagnosis.17 Suppose a diagnosis has a
positive predictive value PðX ¼ 1jY ¼ 1Þ ¼ 0.8 and a negative predictive value
PðX ¼ 0jY ¼ 0Þ ¼ 0.95. Assuming a prevalence of p(1)¼ 0.10, the �¼ 0.39 is poor according to
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Figure 1. Partial derivatives of � for various values of the prevalence p(1), in the situation of a dichotomous scale,

and assuming that q(0j0)¼ q(1j1)¼ 0.95.
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Fleiss et al., but the predictive values may be acceptable for the application under study. A situation
with worse positive predictive value (0.7 instead of 0.8) but higher prevalence (0.25) gives �¼ 0.48,
‘fair to good’ according to the criteria.

Besides an interpretation problem, nonuniform class prevalences also result in a strong sensitivity
of the estimator �̂ to sampling variations, and thus a large standard error of the estimator �̂. De
Mast11 gives an example for a two-point scale, involving 100 subjects rated by two appraisers, where
changing a single data point reduces the estimated agreement �̂ from 1.0 to 0.66.

We conducted a simulation study to determine the standard error of �̂ statistics for dichotomous
tests, where subjects are diagnosed as either negative (0) or positive (1). The standard error depends
on the prevalence p(1), specificity q(0j0), sensitivity q(1j1) and the sample size (the numbers of
subjects n and appraisers m). For each combination of sample size and model parameters, 10 000
samples were created and for each sample, the �̂ statistic was computed, taking the sample standard
deviation of these 10 000 realizations as the estimated standard error. With 99% confidence, the
results in Tables 1 and 2 have a relative error of at most 2% (leading to an absolute error of 0.007 in
extreme cases). Alternatively, the standard error could be approximated based on a multinomial
distribution for the cell counts in a cross-tabulation.26,29,30

Tables 1 and 2 show that the standard error may be unacceptably large, especially if prevalence is
below 0.10 and specificity above 0.90, a very common situation. In this situation, if the number of
subjects is n¼ 50 and the number of appraisers is m¼ 4, the standard error is above 0.08 (and can get
as large as 0.35). The same holds for n¼ 100 subjects and m¼ 2 appraisers, even for lower values of
specificity. Bootstrapping shows that a 95% confidence interval on � has a width larger than 0.35 in
almost all these cases, which makes the estimate practically useless.

A potentially unacceptably large standard error of �̂ is a common problem in applications of � in
literature. A study31 that appeared in Endoscopy is an example of this problem. It assesses inter-
observer agreement of a certain type of endoscopy. Four endoscopists evaluated video sequences
recorded during endoscopies of 51 patients with reflux symptoms. This is very close to the sample
size discussed above. The prevalence is not reported in this article, but if it is low, the standard errors
of the �̂ statistics may be extremely large. For example, the estimated �̂¼ 0.36 for the detection of
‘Methylene blue positivity’ might have a standard error of 0.18 if prevalence was 0.05, and the true
agreement would be ‘somewhere in between 0.09 and 0.79’ (based on a bootstrapped 95%
confidence interval, and taking for illustration that q(0j0)¼ q(1j1)¼ 0.94).

Another illustration of excessive standard errors is a paper32 that appeared in theAnnual Review of
Psychology, which analysed 236 studies on youth psychotherapy. In order to assess the coding
procedures used to categorize the studies, a ‘master coder’ and two students coded 30 randomly
selected studies. Then, �̂ values were computed between the ‘master coder’ and each of the students
and the mean of the two resulting �̂ statistics was taken. For this small sample size (30 subjects and 2
coders), if there are two categories, the standard error of �̂ is larger than 0.10 for almost all parameter
values, which is unacceptably large. If prevalence (which is not reported in this article) is 0.05, the
standard error can get as large as 0.31, again making the value of �̂ almost entirely uninformative.
(The standard error of the mean of the two �̂ statistics is smaller, but still unacceptable.)

5 Interpretation pitfalls

The problematic interpretation of � and its sometimes paradoxical behaviour have been much
discussed in the literature.6–12 The usual way � is interpreted, is as the probability of agreement
corrected for agreement by chance, in the sense that the value of � is zero if PA is equal to the
probability of agreement of chance measurements. However, the concept of ‘chance measurements’
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Table 1. Standard errors of �̂ for m¼ 2

Standard error of kappa for R¼ 10 000 (99% confidence interval maximum� 0.007)

spec.

prev. sens. 0.50 0.75 0.95 0.99

n¼ 30, m¼ 2

0.01 0.50 0.07 0.08 0.10 0.17

0.75 0.08 0.08 0.15 0.27

0.95 0.08 0.09 0.20 0.35

0.99 0.08 0.09 0.21 0.36

0.10 0.50 0.07 0.08 0.15 0.21

0.75 0.08 0.10 0.19 0.22

0.95 0.08 0.12 0.21 0.21

0.99 0.09 0.12 0.20 0.21

0.25 0.50 0.07 0.08 0.13 0.13

0.75 0.08 0.10 0.12 0.12

0.95 0.09 0.11 0.10 0.07

0.99 0.09 0.11 0.10 0.06

0.50 0.50 0.08 0.08 0.10 0.10

0.75 0.08 0.10 0.10 0.10

0.95 0.10 0.10 0.08 0.06

0.99 0.10 0.10 0.06 0.04

n¼ 50, m¼ 2

0.01 0.50 0.06 0.06 0.09 0.19

0.75 0.06 0.06 0.13 0.28

0.95 0.06 0.07 0.17 0.35

0.99 0.06 0.07 0.18 0.37

0.10 0.50 0.06 0.06 0.12 0.16

0.75 0.06 0.08 0.14 0.15

0.95 0.07 0.09 0.15 0.12

0.99 0.07 0.09 0.14 0.11

0.25 0.50 0.06 0.07 0.09 0.10

0.75 0.06 0.08 0.09 0.09

0.95 0.07 0.09 0.08 0.05

0.99 0.07 0.09 0.07 0.04

0.50 0.50 0.06 0.06 0.08 0.08

0.75 0.06 0.08 0.08 0.07

0.95 0.08 0.08 0.06 0.05

0.99 0.08 0.07 0.05 0.03

n¼ 100, m¼ 2

0.01 0.50 0.04 0.04 0.07 0.17

0.75 0.04 0.04 0.10 0.25

0.95 0.04 0.05 0.13 0.30

0.99 0.04 0.05 0.14 0.32

(continued)
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is too ambiguous to provide a well-defined zero point. Chance measurements are a nonexistent
hypothetical concept, and therefore, anything said about their distribution is bound to be
hopelessly arbitrary, and it does not make sense to argue about how appraisers would conduct
‘chance measurements’ in practice.

In fact, an analysis of the chance correction PAjC shows that its premises have implausible or even
irreconcilable implications.11 Chance measurements are assumed to have a distribution equal to the
marginal distribution of the measurements under study (that is, P(Zij¼ k)¼ q(k)). It is hard to
imagine why or by what sort of mechanism blind measurements would happen to have the same
distribution as the measurement procedure under study. But besides being an implausible choice, a
problematic consequence is that �, thus interpreted, is unsuited to compare two different
measurement procedures. For instance, Naranjo et al.33 compare the agreement of a new
procedure for classifying adverse drug reactions to current practice. However, the chance
correction applied to the agreement of the new procedure is based on the marginal distribution of

Table 1. Continued

spec.

prev. sens. 0.50 0.75 0.95 0.99

0.10 0.50 0.04 0.04 0.09 0.11

0.75 0.04 0.05 0.10 0.10

0.95 0.05 0.06 0.10 0.07

0.99 0.05 0.07 0.09 0.06

0.25 0.50 0.04 0.05 0.07 0.07

0.75 0.04 0.06 0.07 0.06

0.95 0.05 0.06 0.05 0.04

0.99 0.05 0.06 0.05 0.03

0.50 0.50 0.04 0.05 0.05 0.05

0.75 0.05 0.05 0.05 0.05

0.95 0.05 0.05 0.04 0.03

0.99 0.05 0.05 0.03 0.02

n¼ 200, m¼ 2

0.01 0.50 0.03 0.03 0.05 0.13

0.75 0.03 0.03 0.07 0.18

0.95 0.03 0.03 0.09 0.22

0.99 0.03 0.03 0.10 0.23

0.10 0.50 0.03 0.03 0.06 0.07

0.75 0.03 0.04 0.07 0.07

0.95 0.03 0.05 0.07 0.05

0.99 0.03 0.05 0.06 0.04

0.25 0.50 0.03 0.03 0.05 0.05

0.75 0.03 0.04 0.05 0.04

0.95 0.03 0.04 0.04 0.03

0.99 0.04 0.04 0.03 0.02

0.50 0.50 0.03 0.03 0.04 0.04

0.75 0.03 0.04 0.04 0.04

0.95 0.04 0.04 0.03 0.02

0.99 0.04 0.04 0.02 0.01
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Table 2. Standard errors of �̂ for m¼ 4

Standard error of kappa for R¼ 10 000 (99% confidence interval maximum� 0.007)

spec.

prev. sens. 0.50 0.75 0.95 0.99

n¼ 30, m¼ 4

0.01 0.50 0.07 0.08 0.10 0.17

0.75 0.08 0.08 0.15 0.27

0.95 0.08 0.09 0.20 0.35

0.99 0.08 0.09 0.21 0.36

0.10 0.50 0.07 0.08 0.15 0.21

0.75 0.08 0.10 0.19 0.22

0.95 0.08 0.12 0.21 0.21

0.99 0.09 0.12 0.20 0.21

0.25 0.50 0.07 0.08 0.13 0.13

0.75 0.08 0.10 0.12 0.12

0.95 0.09 0.11 0.10 0.07

0.99 0.09 0.11 0.10 0.06

0.50 0.50 0.08 0.08 0.10 0.10

0.75 0.08 0.10 0.10 0.10

0.95 0.10 0.10 0.08 0.06

0.99 0.10 0.10 0.06 0.04

n¼ 50, m¼ 4

0.01 0.50 0.06 0.06 0.09 0.19

0.75 0.06 0.06 0.13 0.28

0.95 0.06 0.07 0.17 0.35

0.99 0.06 0.07 0.18 0.37

0.10 0.50 0.06 0.06 0.12 0.16

0.75 0.06 0.08 0.14 0.15

0.95 0.07 0.09 0.15 0.12

0.99 0.07 0.09 0.14 0.11

0.25 0.50 0.06 0.07 0.09 0.10

0.75 0.06 0.08 0.09 0.09

0.95 0.07 0.09 0.08 0.05

0.99 0.07 0.09 0.07 0.04

0.50 0.50 0.06 0.06 0.08 0.08

0.75 0.06 0.08 0.08 0.07

0.95 0.08 0.08 0.06 0.05

0.99 0.08 0.07 0.05 0.03

n¼ 100, m¼ 4

0.01 0.50 0.04 0.04 0.07 0.17

0.75 0.04 0.04 0.10 0.25

0.95 0.04 0.05 0.13 0.30

0.99 0.04 0.05 0.14 0.32

(continued)
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the new procedure, whereas the chance correction applied to the agreement in current practice is
based on the marginals in current practice. Thus, the two � indices employ different chance
corrections and therefore have values on scales with different zero points. The same comment
holds for a study reported in The Lancet34 that compares the agreement of two procedures for
assessing the presence or absence of the ankle jerk in elderly people.

Another problematic consequence is that, on the one hand, chance measurements are
conceived as blind (that is, uninformative about the measurand), but on the other hand, their
distribution given by the q(k) is related to the class prevalences p(k) of the measurand (since the
marginals q(k) are related to the p(k) via (3)); to the authors, these seem two irreconcilable
implications.11

Table 2. Continued

spec.

prev. sens. 0.50 0.75 0.95 0.99

0.10 0.50 0.04 0.04 0.09 0.11

0.75 0.04 0.05 0.10 0.10

0.95 0.05 0.06 0.10 0.07

0.99 0.05 0.07 0.09 0.06

0.25 0.50 0.04 0.05 0.07 0.07

0.75 0.04 0.06 0.07 0.06

0.95 0.05 0.06 0.05 0.04

0.99 0.05 0.06 0.05 0.03

0.50 0.50 0.04 0.05 0.05 0.05

0.75 0.05 0.05 0.05 0.05

0.95 0.05 0.05 0.04 0.03

0.99 0.05 0.05 0.03 0.02

n¼ 200, m¼ 4

0.01 0.50 0.03 0.03 0.05 0.13

0.75 0.03 0.03 0.07 0.18

0.95 0.03 0.03 0.09 0.22

0.99 0.03 0.03 0.10 0.23

0.10 0.50 0.03 0.03 0.06 0.07

0.75 0.03 0.04 0.07 0.07

0.95 0.03 0.05 0.07 0.05

0.99 0.03 0.05 0.06 0.04

0.25 0.50 0.03 0.03 0.05 0.05

0.75 0.03 0.04 0.05 0.04

0.95 0.03 0.04 0.04 0.03

0.99 0.04 0.04 0.03 0.02

0.50 0.50 0.03 0.03 0.04 0.04

0.75 0.03 0.04 0.04 0.04

0.95 0.04 0.04 0.03 0.02

0.99 0.04 0.04 0.02 0.01
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One possible solution is to use an unambiguous zero-point for correcting the raw PA. De Mast
and Van Wieringen13 propose to define PAjC as the agreement of a maximally non-informative
measurement system. Defining chance measurements as having a uniform distribution, that is,
P(Zij¼ k)¼ 1/a for all k values, the resulting chance correction is PUnif

AjC ¼ 1/a, and

�Unif ¼
PA � 1=a

1� 1=a
:

This metric was proposed earlier by Bennett et al.35 and advocated by Brennan and Prediger,36

and others. It has at least two clear and unambiguous interpretations. First, PAjC¼ 1/a is the lower
bound for the probability of agreement attainable by measurement systems on a scale with a
classes.13 Second, chance measurements thus defined represent maximally non-informative
measurements, in the information theoretic sense where information is defined as the negation
of entropy, and the uniform distribution has maximal entropy.37 Thus, �Unif is the probability of
agreement in excess of minimal agreement on the given scale, or in excess of the agreement of
maximally non-informative measurements.

An alternative solution is to interpret � not as a measure of agreement corrected for agreement by
chance, but as a measure of intraclass association. The problematic term PAjC is not interpreted in
itself. Instead, the � index can be shown to have the form of a measure of predictive association by
rearranging its terms.11 Let �G

Z ¼ 1�
Pa�1

k¼0 p
2
k be the Gini dispersion38 of a categorical variable Z

with a probability distribution (p0, p1, . . . , pa�1). Then

� ¼ 1�

1�
Pa�1
l¼0

pðl Þ
Pa�1
k¼0

q2ðkjl Þ

� �

1�
Pa�1
k¼0

q2ðkÞ

¼ 1�
�G

YjX

�G
Y

:

The form 1��YjX=�Y on the right is the general expression of a coefficient of predictive
association, where � can be any measure of dispersion,39 and � thus turns out to be a measure of
association based on Gini’s dispersion measure. Taking for � the entropy �E

Z ¼ �
Pa�1

k¼0 pk log pk
instead of the Gini dispersion, one finds Theil’s uncertainty coefficient,11 which is thus a direct cousin
of �. It is also similar in form to the intraclass correlation coefficient (ICC) used to express the
reliability of interval or ratio scale measurements:

ICC ¼ CorðYi,1,Yi,2Þ ¼ 1�
�2YijjXi

�2Yij

¼ 1�
�V

YjX

�V
Y

,

with �V now the variance instead of the Gini dispersion. Interpreted in this way, � represents
the association between two measurements Yi,1 and Yi,2 of the same subject i. Another analogue
is the coefficient of determination R2 in regression analysis, where Yij¼Xi+ "ij:

R2 ¼ Cor2ðYij,XiÞ ¼
�2Xi

�2Yij

¼ 1�
�2YijjXi

�2Yij

¼ 1�
�V

YjX

�V
Y

:

This gives the interpretation that � represents the fraction of the total dispersion in the
measurements Yij that can be attributed to dispersion in the measurands Xi, that is, as a measure
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of reliability. Interpreting � as a measure of predictive association, much of its paradoxical
behaviour makes sense.

Kraemer et al.26 dismiss the chance-corrected agreement interpretation as a historical curiosum,
but focus on an interpretation as an ICC. Since their elaboration only holds for a¼ 2 classes, they
recommend against the use of � if a� 3. We think that our elaboration, based on the Gini dispersion,
shows that � can be interpreted as a reliability measure when a� 3.

Working with the interpretation of � as a measure of association, it is important to be aware that
such measures express measurement dispersion in relation to a population of subjects (and the class
prevalences or distribution of the measurand in that population). If the same diagnostic test is applied
in another population of subjects, with different class prevalences, then �will be different. Consider, as
an example, a dichotomous diagnostic test, with specificity and sensitivity q(0j0)¼ q(1j1)¼ 0.95.
Depending on the prevalence p(1) of the disorder, � ranges from 0.00 to 0.81 in this case. In view of
this fact that agreement is expressed in relation to prevalences in the subjects population, when
expressing the results of an agreement study in terms of �, it is crucial to define and delineate the
study population of subjects to which it applies, and failure to do somakes the reported �meaningless.

In Section 3, we have given an example of a paper about respiratory disorders21 that does not
clearly specify the relevant subject population. Another interesting example is Naranjo et al.,33 who
assess the reliability of classifying alleged adverse drug reactions (ADRs) by the probability that they
were caused by drug therapy: definite, probable, possible or doubtful. The aim of the authors is to
‘develop a simple method to assess the causality of ADRs in a variety of clinical situations’. They
take a sample of 63 randomly selected cases published in a number of prestigious journals.
The results therefore only apply to those ADRs that are published in prestigious journals, which
cannot be assumed to be representative for the ADRs in clinical situations. The values of � that they
report are therefore meaningless for clinical situations.

6 Conclusion and recommendations

We conclude this article by listing our recommendations for agreement studies. Throughout this
article, we have emphasized the role of the measurand, and our first recommendation is that a
prerequisite for an agreement study is that the measurand is well (that is, clinically) defined.
Without a clinical definition of the measurand, the whole concept of measurement error becomes
meaningless. Second, it is important to clearly define and delineate the population of subjects in
which the measurement procedure should be discriminating. Especially, if the � index is used, the
results are meaningless if the subject population is not well defined. Third, when using �, the sample
of subjects must be a random sample from the defined subject population; however, impractical that
may be, since the estimation bias in �̂ may be substantial otherwise.

To evaluate the quality of the measurements, one may use the � index if one wants a measure of
reliability. We recommend against the interpretation as agreement corrected for agreement
by chance, as the notion of chance agreement is too problematic and ambiguous. Instead, it can
be interpreted as a reliability measure, much alike to the intraclass correlation coefficient used for
interval and ratio scale measurements. However, if a gold standard is available to determine the
measurand of each subject in the study, we recommend against the use of the � index, and instead,
propose to estimate the classification probabilities q(kjl) conditional on the measurand; in the case of
a dichotomous test, this amounts to establishing the sensitivity and specificity. Such studies are
described in Pepe17 and De Mast et al.,11 and since they establish the intrinsic parameters of the
measurement errors, we consider them more informative than agreement studies. If no gold standard
is available, latent class or latent trait methods may be used to estimate the same parameters,40
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although such methods critically depend on the viability of the conditional independence
assumption.

Also, in applications with strongly nonuniform class prevalences, such as diagnoses of disorders
with low prevalences, we recommend against using the � index, because of three problematic
properties in such cases. First, the standard errors of the estimates are typically unacceptably
large. Second, the � index is very sensitive to the class prevalences, and reflects prevalences more
than it reflects the quality of the measurement procedure. Third, � reflects rather one-sidedly the
consistency on the most prevalent class. In such cases, numerical criteria for � intended to evaluate a
measurement procedure may be an oversimplification and lead to practically questionable decisions.
One alternative is a sensitivity/specificity study mentioned above. Another option is to estimate �Unif

as defined in an earlier section. It has a clear interpretation, and it does not suffer from the first two
problems related to nonuniform class prevalences.
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