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The statistical evaluation of the reliability of binary tests and inspections is a challenging endeavor. In
this paper, we propose an approach for the common situation where the true condition of the inspected
items is unobservable (“gold-standard unavailable”), the probabilities of false acceptance and false rejection
vary across items, and rejections are relatively rare. Our approach fits a latent-variable model, where the
variability in misclassification probabilities is driven by a continuous property of a part. To deal with the low
prevalence of rejections, we propose sampling items from multiple sources. The performance and properties
of the estimators are assessed using simulation, asymptotic approximations, and a real-life case at a car-parts
manufacturer.
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1. Introduction

BINARY TESTS and inspection systems classify
items in two categories, such as ‘reject’ (Y = 0)

or ‘accept’ (Y = 1). Examples include leak tests,
visual quality inspections, and inspections based on
Go/No-Go gauges. Diagnostic and screening tests in
medicine are closely related. We conceive of such tests
as a form of measurement, and thus, these classifi-
cations aim to reflect an underlying empirical con-
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dition X of the items that is called the measurand
(ISO (1995)). The measurand can be a dichotomous
property, but in many cases, it is a continuous or
more complex condition (De Mast et al. (2011)).
Measurement-system analysis (MSA) studies how re-
liably test results Y reflect the measurand X and,
for binary measurements, this is often expressed in
terms of misclassification probabilities (De Mast et
al. (2014)).

The motivating example for this paper (Section
4) concerns an optical inspection system in a plant
for car parts. The measurand is the misalignment X
of a clip and the pad to which it is to be fastened.
A part is considered ‘good’ if misalignment is below
the upper specification limit (USL), and ‘defective’
otherwise. The reliability of the inspections can be
quantified by the false-acceptance and false-rejection
probabilities,

FAP = P [Y = 1 | X > USL],
FRP = P [Y = 0 | X  USL].

Recent literature in industrial and medical statis-
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tics has shown that the statistical evaluation of the
reliability of binary tests is challenging (e.g., Krae-
mer (1987), Feinstein (2002), Irwig et al. (2002),
Knottnerus et al.(2002), De Mast et al. (2011),
Danila et al. (2012), De Mast et al. (2014)). In this
paper, we deal with a typical combination of three
challenges. The first challenge is that the true condi-
tions of the items are practically unobservable. This
rules out the use of traditional methods for estimat-
ing the FAP and FRP (as described in AIAG (2003),
Pepe (2003), Danila et al. (2008)), which assume the
availability of a so-called gold standard: a higher-
order, authoritative measurement that is accepted to
constitute a faithful representation of the measurand.

For situations where no gold standard is avail-
able, the literature proposes methods based on la-
tent class models (Hui and Walter (1980), Boyles
(2001), Van Wieringen and De Mast (2008), Danila
et al. (2010), and many others). Such methods are
essentially based on the premise that the FAP and
FRP are constant across items in the populations of
defective and good items, respectively. Technically,
such methods assume that the inspections Y are in-
dependent and identically distributed conditional on
whether the items are defective or good. However,
this assumption is often too simplistic: De Mast et
al. (2011) show that a measurand related to a contin-
uous property, such as misalignment in our example,
violates such conditional independence assumptions.
Artificially treating such measurands as dichotomous
leads to biased estimators (possibly substantially so).
Thus, the second challenge is that we want to avoid
the assumption that the FAP and FRP are constants
in the populations of defective and good items.

The third challenging aspect of the situation that
we consider is that the prevalence of defects in indus-
trial processes is typically very low. Consequently,
a sample from the population of all produced items
would contain no or only very few defective items, re-
sulting in impractically large standard errors in the
estimated FAP.

This combination of three challenges is quite com-
mon, and this paper proposes an approach based
on latent-trait models. A similar model was intro-
duced for ordinal classifications in De Mast and Van
Wieringen (2010) and is related to item-response the-
ory models (Lord (1980)). In the latent-trait model,
the probability of rejection is not assumed constant
within the populations of defective and good items.
Instead, it is a function of an unobserved continu-
ous property X, and the dependence is modeled by

means of a characteristic curve q(x) = P [Y = 0 |
X = x]. This curve is estimated from data collected
in an MSA experiment, as is, under some assump-
tions, the distribution function FX(x) = P [X  x] of
the measurand in the population of items. FAP and
FRP or comparable metrics can be determined from
these two functions, as shown later. Due to the third
challenge (defects are extremely rare in the popula-
tion of items), a random sample of items will contain
no or only very few defective items. Estimation of
the relevant part of the characteristic curve q, how-
ever, requires a sample with fair numbers of good
and defective items. Our solution involves combining
samples from various origins (the total items popula-
tion, the stream of rejected items, and historical data
about the rejection rate) and incorporating the sam-
pling origin in the estimation algorithm to correct for
a potential bias.

The purpose of this paper is to elaborate this ap-
proach for binary inspections and to explore to what
extent it provides an e↵ective solution to the combi-
nation of the three mentioned challenges. We elabo-
rate our approach in the next section. The third sec-
tion presents an evaluation of the approach on the
basis of simulation and asymptotics. Section 4 de-
scribes the motivating case about optical inspections
of car parts, and we draw conclusions in the final
section.

2. Methodology

2.1. Statistical Model

Here we present our experimental model. We con-
sider MSA experiments in which a sample of items
i = 1, . . . , I is (repeatedly) appraised by each of
one or more appraisers a = 1, . . . , A. Repeated ap-
praisals of item i by appraiser a are indexed by
k = 1, . . . ,Kai. The subscript on Kai indicates
that the number of repetitions may di↵er over ap-
praisers and items, and Kai = 0 means that ap-
praiser a did not measure item i. We denote the
result of the kth appraisal by appraiser a for item
i as Yaik. Thus, the outcome of the MSA experi-
ment is the vector of zeros and ones given by Y =
{Yaik}a=1,...,A; i=1,...,I; k=1,...,Kai .

The binary appraisals under study aim to reflect
an unobservable, continuous property X. Without
loss of generality, we assume that we only have an
upper specification limit (USL). An item i is ‘good’
if Xi < USL, and the intended inspection outcome in
that case is Yaik = 1 (‘accept’). If Xi � USL, the item
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is ‘defective’ and the intended outcome is Yaik = 0
(‘reject’). The Xi are assumed to be independently
distributed and, in the population of produced items,
have a normal distribution. The location and scale of
the latent X-continuum are arbitrary and, without
loss of generality, we set E(Xi) = 0 and Var(Xi) = 1.
Without such restrictions, the latent-variable model
is unidentifiable. Thus, the density of Xi in the pop-
ulation of items is the standard normal denoted �.

We assume that, besides Xi, there are no other
properties of the items and no environmental factors
that induce dependencies among repeated appraisals.
In particular, we assume that, conditional on Xi,
the Yai1, . . . , YaiKai are independent and identically
Bernoulli distributed. Careful experimental design
may enable this assumption to be fulfilled, for ex-
ample, by experimental randomization and, in the
case of human appraisers, by presenting the items in
a way they cannot be recognized from the previous
inspection.

We define qa(x) = P [Yiak = 0 | Xi = x] as the
characteristic curve for appraiser a. Our initial choice
for qa(x) is defined by the logistic function

log
✓

qa(x)
1� qa(x)

◆
= ↵a(x� �a), ↵a > 0. (1)

The curve’s inflection point �a, which is also the point
where qa(x) = 0.5, can be interpreted as the decision
threshold that appraiser a appears to apply: items
with Xi > �a are more likely to be rejected than
accepted. The parameter ↵a > 0 is a discrimination
parameter for appraiser a, determining the steepness
of the curve. Larger values of ↵a correspond to a
steeper curve and better reliability of the inspection
results. The characteristic curve in Equation (1) is
symmetric about �a. Figure 1 illustrates the model.

The misclassification probabilities are not equal
for all items, but depend on the measurand Xi. The
average probabilities (weighted by the density of Xi

in the population of items) for appraiser a are:

FAPa =
Z 1

USL
(1� qa(x))�(x)dx

�Z 1

USL
�(x)dx,

FRPa =
Z USL

�1
qa(x)�(x)dx

�Z USL

�1
�(x)dx. (2)

In the situation we consider in this paper, the mea-
surand is unobservable and, as a consequence, the
USL is ill defined. Consequently, also FAPa and
FRPa are ill defined. We propose to work instead
with an alternative proposed by De Mast and Van

FIGURE 1. Probability Density �(x) and Characteristic
Curve qa(x). Box plots represent the distribution of X in a
representative sample from the total items population and
in a sample from the rejected items.

Wieringen (2010). The inconsistent acceptance prob-
ability (IAPa) and inconsistent rejection probability
(IRPa) are the probabilities that appraiser a’s clas-
sification is inconsistent with his or her own decision
threshold �a.

IAPa = P [Y = 1 | X > �a]

=
Z 1

�a

(1� qa(x))�(x)dx)
�Z 1

�a

�(x)dx,

IRPa = P [Y = 0 | X  �a]

=
Z �a

�1
qa(x)�(x)dx

�Z �a

�1
�(x)dx. (3)

Whereas FAPa and FRPa express both the sys-
tematic component of classification error (that is,
|�a � USL|) and the random component (the degree
to which classifications randomly deviate from an ap-
praiser’s own �a), IAPa and IRPa express the random
component only. This can be seen from the following
decomposition of FRPa, where we assume that �a 
USL (and similar decompositions can be given for
FAPa and for �a > USL):

FRPa = P [Y = 0 | X  �a]P [X  �a | X  USL]
+ P [Y = 0 | �a < X  USL]
⇥ P [�a < X  USL | X  USL].

The last term is the contribution to FRPa due to
systematic classification error, which is determined
by the distance between �a and USL. The first term
is IRPa (both terms are multiplied by probability
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weights). Without gold-standard measurement, IAPa

and IRPa, rather than FAPa and FRPa, are often all
that one could hope to estimate.

The relevant aspects of measurement reliability
can now be framed in technical terms. Random mea-
surement error can be quantified by IAPa and IRPa.
Systematic di↵erences between appraisers can be
quantified by di↵erences in their decision thresholds
�a. Further, the percentage of defective items reach-
ing the customer is P [X > USL | Y = 1] and the
percentage of falsely rejected (‘good’) items in the
stream of rejects is P [X  USL | Y = 0]. If USL is
known (or assumed to equal the �a of an appraiser a
who is taken as reference standard), these probabili-
ties can be determined from

P [X > USL | Y = 1]

=
Z 1

USL
(1� qa(x))�(x)dx

�Z 1

�1
(1� qa(x))�(x)dx,

P [X  USL | Y = 0]

=
Z USL

�1
qa(x)�(x)dx

�Z 1

�1
qa(x)�(x)dx.

2.2. Sampling Strategy and Estimation

We propose maximum-likelihood estimators for
the parameters ↵a, �a; a = 1, . . . , A of the charac-
teristic curves qa (model (1)). First, we describe the
sampling strategy that we propose. A representative
sample from the total population of items is the ob-
vious choice, but on second thought, this turns out
to be problematic. As mentioned in the Introduction,
rejection rates in typical manufacturing processes are
low and the steep part of qa (around its inflection
point �a) will usually be in the remote tail of the den-
sity � of X in the items population. Consequently, a
representative sample from the total items popula-
tion of reasonable size will contain no or only a few
x values close to or to the right of �a. This results
in very large standard errors in the estimated IAPa.
Figure 1 illustrates the point: the first box plot be-
low the graph shows the quartiles of the probability
density of X for items in such a sample (the box rep-
resents the 25%, 50%, and 75% quartiles and the end
points of the whiskers delineate a 99% interval). It
can be seen that only a small fraction or even none
of the items have values in the steep part of qa(x).

To estimate the characteristic curves close to and
to the right of �a with acceptably small standard er-
rors, one needs a sample with more evenly spread x-
values. We propose to take samples from various sam-
pling sources and combine them to have a more bal-

anced sample. Besides the total population of items
(Tot-sample), we also propose sampling from the
population of rejected items (Rej-sample) and to in-
corporate aggregate information from historical data
(His-sample). It is essential that, during the period
over which the items are sampled, the circumstances
are constant. This may be realized by ensuring the
three subsamples are taken over the same time pe-
riod.

The idea to sample items from the stream of re-
jects was proposed by Danila et al. (2010). They
called the resulting data a conditional sample, as the
sampling distribution of items sampled from the pop-
ulation of rejected items is obtained by conditioning
on the initial rejection decision. This approach typi-
cally leads to a sample that has a larger proportion
of items in the steep part of the characteristic curve
(see the box plot labeled “Rejected items” in Fig-
ure 1). For an item i sampled from the stream of
rejected items, let di 2 {1, . . . , A} be the appraiser
who rejected it, and let Ydii0 = 0 denote the event
of this rejection. Given that item i has been rejected
by appraiser di, the sampling distribution of Xi is

F di(x) = P [Xi  x | Ydii0 = 0]

=
Z x

�1
�(t)qdi(t)dt

�Z 1

�1
�(t)qdi(t)dt,

(4)

with probability density fdi .

Besides the Tot and Rej samples, a third data
source is a historical dataset of (single) inspection re-
sults (‘reject’ or ‘accept’) of a large number of items,
typically summarized as a total count and a number
of rejected items. Danila et al. (2010, 2012) called
this baseline data and showed that it substantially
increases the precision of the estimators in the la-
tent class models they discussed. A historical rejec-
tion rate is typically easy to obtain. Even if it is not
readily available, it can be obtained during the col-
lection of the Rej-sample for the MSA study (which
typically involves several thousand inspections before
a su�cient number of rejected items are obtained).

Conditional on Xi, the likelihood of all outcomes
for item i is

P [Y1i1 = yai1, . . . , YAiKAi = yAiKAi | Xi = xi]

=
AY

a=1

KaiY
k=1

qa(xi)1�yaik(1� qa(xi))yaik .

This expression uses the conditional independence
of repeated appraisals. To obtain the unconditional
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probability we integrate out the latent variable Xi

weighted by its probability density. For items in the
Tot-sample and His-sample, this is f0 = �. For items
in the Rej-sample, this is fdi , as in Equation (4).
This gives

P [Y1i1 = yai1, . . . , YAiKAi = yAiKAi ]

=
Z 1

�1
fdi(x)

AY
a=1

KaiY
k=1

qa(xi)1�yaik(1� qa(xi))yaikdx,

where di = 0 for items in the Tot- and His-samples
and Kai = 1 if i is in the His-sample. The re-
sulting log likelihood, with parameter vector ✓ =
{↵a, �a}a=1,...,A, is

L(✓ | y)

=
IX

i=1

log

"Z 1

�1
fdi(x)

AY
a=1

KaiY
k=1

qa(xi)1�yaik

⇥ (1� qa(xi))yaikdx

#
,

where y = {yaik}a=1,...,A; i=1,...,I; k=1,...,Kai repre-
sents the data. For concise representations of the
experimental outcomes Y and e�cient calculation
of the log likelihood, we determine an equivalent
expression in terms of response-pattern frequencies.
A response pattern Ri = (

PKai

k=1 Yaik,
PKai

k=1(1 �
Yaik))a=1,...,A is an A ⇥ 2 matrix, in which the el-
ements Ri[a, 1] are the number of times item i is
accepted by appraiser a and Ri[a, 2] is the number
of times it is rejected by appraiser a. As before, let
di = 0 if item i is in the Tot- or His-sample and
di 2 {1, . . . , A} be the appraiser who initially re-
jected the item if i is in the Rej-sample. The response-
pattern frequencies are e(r, d) = {#i | Ri = r,
di = d} with d 2 {0, . . . , A} and r an A ⇥ 2 matrix
with elements in N. By tabulating e(r, d), the data
can be displayed concisely, and the log likelihood can
be rewritten to contain fewer integrals,

L(✓ | y)

=
AX

d=0

X
r2NA⇥2

e(r, d)

⇥ log

"Z 1

�1
fd(x)

AY
a=1

qa(x)r[a,2]

⇥ (1� qa(x))r[a,1]dx

#
.

(5)

We maximize the log likelihood with the interior
point algorithm (Mehrotra (1992), as implemented

in the function “FindMaximum” in software package
Mathematica 8 (2010)), and we find starting values
using the Nelder-Mead algorithm (Nelder and Mead
(1965), as implemented in “NMaximize” in Mathe-
matica 8). The integrals are approximated numeri-
cally using adaptive quadrature (Rice (1975), as im-
plemented in “NIntegrate” in Mathematica 8). Once
the parameters ↵a and �a have been estimated, they
can be plugged into qa(x) in Equation (3) to obtain
the estimates for IAPa and IRPa.

Note that the convergence time rapidly increases
with the number of appraisers A. The increasing
number of parameters and exponentially increasing
number of response patterns in A leads to a large
number of integrals to evaluate. We find that, for
A > 1, the optimization may take a half hour and
even more for some choices of the functional form for
qa(x).

Standard errors of the maximum likelihood esti-
mators ✓̂ and of dIAPa and dIRPa can be obtained
by bootstrapping, but in view of the above, this be-
comes practically undoable if A > 1. We recommend
approximating the covariance matrix ⌃✓̂ of ✓̂ on the
basis of the observed Fisher information matrix,

⌃̂✓̂ =
✓
� @2

@✓2
L(✓ | y)

����
✓=✓̂

◆�1

. (6)

The covariance matrix of dIAPa and dIRPa is then
approximated by

⌃̂
( cIAPa, cIRPa)

=
✓

@2

@✓2
(IAPa, IRPa)

����
✓=✓̂

◆
⌃̂✓̂

⇥
✓

@2

@✓2
(IAPa, IRPa)

����
✓=✓̂

◆T

, (7)

which uses a linear approximation to the functions
IAPa(✓), IRPa(✓) defined in Equation(3).

2.3. Model Diagnostics

For assessment of the fit of the model, we can use
standard techniques from the latent-variable mod-
eling literature. We briefly mention them here and
demonstrate their use in the car-parts case described
in Section 4. For residual analysis, one may compare
the observed frequencies e(r, d) of the response pat-
terns to the frequencies ⌘(r, d) predicted by the fitted
model, either as raw di↵erences or as Freeman-Tukey
variance-stabilized residuals (Formann (2003)). To
test for lack of fit, one can apply a likelihood-ratio
test (which is known as the G-test when response
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pattern frequencies are concerned). This test is pre-
ferred over the Pearson �2 test when one or more of
the expected cell counts are below 5 (Kallenberg et
al. (1985)). The test statistic is based on the likeli-
hood ratio

G = 2
AX

d=0

X
r2NA⇥2

e(r, d) log
e(r, d)
⌘(r, d)

⇠ �2(df).

The number df of degrees of freedom of the chi-
square distribution is the di↵erence between the
number of parameters needed for a fully saturated
model and the number of parameters in the model
(2A for logistic curves). The calculation is straight-
forward but confusing to define for the general case;
we will instead demonstrate the calculation for the
case in Section 4. By simulation, we have evaluated
the test’s power in detecting one form of lack of fit
in particular, namely, that q is not symmetric about
�, but has di↵erent slopes to the left and right of �
(details are in the supplementary material at http://
www.asq.org/pub/jqt/). The test turns out to have
useful power for detecting departures from symme-
try. If asymmetry is detected, one could fit a loglo-
gistic function instead,

q(x) =
1

(1 + (↵(x� µ))�
1x�µ, (8)

where the indicator function 1x�µ indicates that the
curve is zero for x < µ. This family of curves is more
flexible and can adapt to varying degrees of asym-
metry. We demonstrate this in the case in Section
4.

3. Suitable Sample Sizes and
Robustness Against Model

Misspecification

We conducted a number of simulation studies to
assess the properties of the estimators proposed in
the previous section. The aims of these studies were
to establish guidelines for choosing sample sizes and
to assess the robustness of the estimators against
model misspecification. The studies are limited to
the case of a single appraiser (A = 1). Finite-sample
properties were established by Monte Carlo simula-
tion. In addition, we derived the asymptotic distri-
bution of the maximum-likelihood estimators, using
that, for I !1, ✓̂ ⇠ N(✓,⌃) with

⌃ =
✓
�Ey


@2

@✓2
L(✓ | y)

�◆�1

. (9)

For the interested reader, a detailed report of the

studies can be found in the supplementary material
at http://www.asq.org/pub/jqt/. Here, we briefly
summarize the results.

3.1. Optimal Proportions of Sample Sources

The total sample consists of I = ITot+IRej +IHis

items, with ITot, IRej , and IHis the sizes of the Tot,
Rej, and His samples. First, we investigated which
proportion of sample sources is optimal. As noted
before, a large historical dataset of rejections is typ-
ically available or can be obtained while collecting
the Rej sample. For this reason, we assumed a large
His-sample size of IHis = 100,000. To see how much
the His sample contributes, however, we also investi-
gated the case that IHis = 0.

The study demonstrated that the most precise es-
timates of IAP and IRP are obtained when the sam-
ple consists solely of a Rej sample (that is, ITot = 0)
supplemented with a large His sample. Further de-
tails of the study are as follows. We considered sam-
ple sizes ITot 2 {0, 10, . . . , 200} and IRej = 200 �
ITot. In both the data-generating process and the es-
timated model, a standard normal distribution was
used for X and a logistic curve with ↵ = 5, � = 2
for q. These choices imply true probabilities of IAP
= 0.2154 and IRP = 0.0125. Note that the IAP is
(much) larger than the IRP, which is typical when �
is in the far tail of the distribution of X. Conditional
on X > �, �(x) has the most probability mass close
to � (which corresponds to the range of hard-to-judge
items), while conditioning on X  �, most probabil-
ity mass is around 0 (with easy-to-judge items).

The precision of the estimators in each scenario
was determined from their asymptotic covariance
matrix (9) and also from Monte Carlo simulation
(2500 runs per scenario). Precision of the estimators
was quantified as the width of empirical 95% confi-
dence intervals for IAP and IRP (based on the 2.5
and 97.5 percentiles of the 2500 realizations of dIAP
and dIRP.

Figure 2 gives plots of the 95% confidence interval
width for IAP and IRP as a function of IRej with
and without a His sample. The lines in the figure
are based on asymptotic standard errors and the di-
amonds on Monte Carlo simulation. The conclusions
were corroborated for other values of ↵ and � (based
on a study with a more limited range of values for
ITot, IRej and IHis). Further details are in the sup-
plementary material.
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FIGURE 2. 95% Confidence Interval Widths for an Inspection System with ↵ = 5, � = 2, IAP = 0.2154, IRP = 0.0125
for Various I Rej, I His, (I Tot = 200 � I Rej). Lines: results obtained through the asymptotic distribution of the MLE (dashed:
I His = 0; solid: I His = 105). Diamonds: results obtained by simulation.

3.2. Precision as a Function of IRej and K

Following the recommendation above, the MSA
experiment should involve a sample of IRej items
from the stream of rejects, which are appraised K
times, and a historical rejection rate estimated from
IHis appraisals. To choose an appropriate sample size
IRej and number of repeated appraisals K, we deter-
mine their e↵ect on the precision of the estimators.

As before, we set IHis = 100,000. By Monte Carlo
simulation, we investigated 7⇥7 combinations in the
ranges IRej 2 {50, . . . , 200} and K 2 {3, . . . , 15}.
In addition, we derived asymptotic results for 16 ⇥
13 combinations in the same ranges. We obtained
results for all four combinations of ↵ = 5, 12 and
� = 2, 3, which we think represent typical binary
inspection systems in industry in terms of reliability
and rejection rate. Figure 3 gives level plots of the
empirical 95% confidence interval width as a function
of IRej and K for ↵ = 5 and � = 2. Level plots of the
precision for other (↵, �) combinations can be found
in the supplementary material.

The results obtained by simulation (dashed lines)
are close to the asymptotic results (solid lines). We
conclude that the asymptotic properties provide a
useful approximation to the finite-sample properties
of the estimators. This is an important result for the
calculation of standard errors for the estimators.

The marginal e↵ects of IRej and K are diminish-
ing. In particular, for these values of ↵, �, it seems
ine�cient to do more than K = 7 repeated ap-
praisals. The required sample size depends on the
desired precision, and plots such as in Figure 3 can
be used as a reference. In general, we recommend
IRej � 150 because, in the considered ranges, this

ensures a confidence-interval width of at most 50%
of the IRP or IAP (assuming K = 7), which seems
reasonable to us.

3.3. Robustness to Misspecification

Finally, we report on the estimation procedure’s
robustness against model misspecification. As men-
tioned before, the G-test is powerful in detecting
asymmetry in q(x), and Section 4 will demonstrate
how to handle such situations with log-logistic char-
acteristic curves. Therefore, we focus on misspec-
ification of the distribution of X here. We simu-
lated 20 scenarios where we drew realizations of X
(IRej = 200, IHis = 100,000) from skewed and lep-
tokurtic distributions instead of the normal (and ap-
plied a Bernoulli trial to simulate drawing from the
stream of rejects for the Rej realizations). For each
realization of X, we drew K = 9 realizations of Y
by applying a logistic characteristic curve (with pa-
rameters ↵, �). We fitted our model (with logistic
curve for q and a standard normal distribution for
X) to these data, and compared the estimated dIAP
and dIRP with the true values.

Each scenario in Table 1 is determined by a distri-
bution for X (standard normal, standard log normal,
�2(1), t(3), or t(7)) and values for ↵ and �. These
choices imply a corresponding IAP, IRP, and reject
probability p0 = P (Y = 0). We could not choose the
scenarios such that they have the same IAP, IRP, and
reject probability across distributions. Namely, given
a distribution, there are only two free parameters (↵
and �) and, in addition, some ratios of IAP and IRP
are not possible for some distributions. Instead, rows
in Table 1 were chosen to roughly represent the sit-
uations of poor and good measurement
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FIGURE 3. Level Plots of 95% Empirical Confidence Interval Widths for IAP and IRP Estimates for an Inspection System
with ↵ = 5, � = 2, IAP = 0.2154, IRP = 0.0125. Solid lines: results obtained through the asymptotic distribution of the
MLE. Dashed lines: results obtained by simulation.

reliability and medium and low reject rates. Poor
and good measurement reliability are defined here
in terms of the 99% part of the characteristic curve
(the ‘grey area’ where inspection results are uncer-
tain) compared with the 99% part of the distribution
of X,

q�1(0.995)� q�1(0.005)
F�1(0.995)� F�1(0.005)

= ⇢.

We took ⇢ = 0.30 for poor reliability and ⇢ = 0.15
for good reliability and p0 = 0.005 for a low reject
rate and p0 = 0.010 for a medium reject rate. Table
1 shows the ↵ and � values that give these results for
each of the five distributions given in the columns,
and also the implied IAP and IRP. We simulated
each scenario 1000 times. The table gives the abso-
lute deviation of the average dIAP and dIRP from their
true values, and an asterisk indicates that a bias is
significantly di↵erent from 0.0000 (based on a t-test).

We have also investigated robustness against mul-
tidimensional (multivariate normal and mixtures)
distributions by Monte Carlo simulation and robust-
ness against skew-normal and t-distributions based
on the asymptotic distribution of the covariance es-
timators. We refer to the supplementary material for
the details of these studies.

For all forms of misspecification that we investi-
gated, biases in the estimates remain below 0.0100

for IAP and 0.0007 for IRP (except for one case of
extreme negative skewness; in this case, the absolute
bias of dIAP is larger but, relative to the true IAP,
the bias is still modest because the true IAP is large
for such cases). In all cases considered, biases remain
small compared with the true IAP and IRP. In con-
clusion, the estimation procedure seems reasonably
robust to misspecification of the distribution of X.

4. MSA Study of Car-Parts
Manufacturing

4.1. Background of the MSA Study

We apply the proposed approach in an MSA ex-
periment conducted to evaluate an optical inspec-
tion system at a car-parts manufacturer. The parts
in question contain an integrated circuit, about 1 cm
in diameter, on which several electronic components
are connected and soldered. After assembly, the parts
are inspected for soldering errors. This check is per-
formed by a team of operators, but a visual inspec-
tion machine called Automated Optical Inspection
(AOI) has been purchased to replace the operators’
inspections in the future. Currently, the AOI is op-
erational, but the operators still perform the inspec-
tions. This situation will continue until the AOI is
deemed to function satisfactorily.

The AOI inspects a variety of properties of a sol-

Vol. 48, No. 1, January 2016 www.asq.org



mss # 1895.tex; art. # 00; 48(1)

62 TASHI P. ERDMANN ET AL.

TABLE 1. Bias (Absolute Value) of the Estimators of IAP and IRP
(Based on I Rej = 200; K = 9; I His = 100.000) in 20 Scenarios

X ⇠ N(0, 1) X ⇠ t(3) X ⇠ t(7) X ⇠ log N(0, 1) X ⇠ �2(1)

IAP IRP IAP IRP IAP IRP IAP IRP IAP IRP

⇢ = 0.15, ↵ = 13.7, ↵ = 6.04, ↵ = 10.1, ↵ = 5.40, ↵ = 8.96,
p0 = 0.005 � = 2.60 � = 5.87 � = 3.52 � = 13.2 � = 7.89
True value 0.1194 0.0009 0.0489 0.0003 0.0789 0.0005 0.0266 0.0002 0.0398 0.0002
Bias 0.0003 0.0000 0.0013⇤ 0.0000⇤ 0.0014⇤ 0.0000⇤ 0.0080⇤ 0.0001⇤ .0010⇤ 0.0000

⇢ = 0.15, ↵ = 13.7, ↵ = 6.04, ↵ = 10.1, ↵ = 5.40, ↵ = 8.96,
p0 = 0.010 � = 2.35 � = 5.48 � = 3.02 � = 10.3 � = 6.65
True value 0.1120 0.0016 0.0589 0.0008 0.0824 0.0012 0.0312 0.0004 0.0404 0.0005
Bias 0.0006 0.0000 0.0010⇤ 0.0001⇤ 0.0009⇤ 0.0001⇤ 0.0011⇤ 0.0000 0.0004 0.0000

⇢ = 0.30, ↵ = 6.85, ↵ = 3.02, ↵ = 5.04, ↵ = 2.70, ↵ = 4.48,
p0 = 0.005 � = 2.67 � = 5.96 � = 3.60 � = 13.2 � = 7.93
True value 0.2012 0.0019 0.0875 0.0007 0.1366 0.0012 0.0504 0.0003 0.0744 0.0005
Bias 0.0001 0.0000 0.0041⇤ 0.0001⇤ 0.0062⇤ 0.0001⇤ 0.0006⇤ 0.0000 0.0006⇤ 0.0000⇤

⇢ = 0.30, ↵ = 6.85, ↵ = 3.02, ↵ = 5.04, ↵ = 2.70, ↵ = 4.48,
p0 = 0.005 � = 2.67 � = 5.96 � = 3.60 � = 13.2 � = 7.93
True value 0.1912 0.0035 0.1030 0.0018 0.1422 0.0026 0.0583 0.0008 0.0753 0.0010
Bias 0.0001 0.0000 0.0070⇤ 0.0002⇤ 0.0065⇤ 0.0002⇤ 0.0007⇤ 0.0001 0.0014⇤ 0.0000⇤

⇤ Estimated bias significantly di↵erent from zero.

dered part and produces a binary decision in terms
of ‘accept’ or ‘reject’ and, in the latter case, a speci-
fication of one or more failure modes. Our evaluation
focused on the reliability of decisions about one fail-
ure mode in particular, namely, misalignment due
to soldering faults. Here, the measurand is the mis-
alignment X of a clip and the pad to which it is to
be fastened. Due to the very small scale and uneven
three-dimensional shape of the involved components,
misalignment is very hard to measure directly. In ad-
dition, there is considerable ambiguity as to its pre-
cise definition, and there is no clearly defined upper
specification limit (USL) that demarcates the accept-
able range. The AOI’s evaluation is based on a digital
photo of the part, which is then analyzed by a pro-
prietary algorithm.

The judgments by the team of operators were ac-
cepted by the company as the de facto standard
and are used to determine whether the AOI’s de-
cisions are correct. However, because we found that
there was occasional disagreement among the oper-
ators themselves, we could not treat them as a gold

standard. Rather than fitting a characteristic curve
for each operator individually, we treated the team
of operators as a single appraiser and appraisals by
individual team members as repetitions. Thus, the
study involved A = 2 appraisers, the AOI (a = 1)
and the team of operators (a = 2). The purpose of
the reliability study was to evaluate the following:

• Variability of the AOI’s decisions, represented
by IAPAOI and IRPAOI;

• Variability of the operators’ decisions, repre-
sented by IAPopr and IRPopr; and

• The systematic di↵erence, if any, between the
decisions of the AOI and the operators, repre-
sented by �AOI � �opr.

Due to a combination of changing objectives, ad-
vancing insight, practical limitations, and commu-
nication problems, the sample and dataset that we
obtained are not optimal, but they do allow a use-
ful analysis. Based on the results of the simulation
studies reported in the previous section, a sample of
IRej = 150 parts that had been rejected by the AOI
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TABLE 2. Point Estimates and Standard Errors Based on the Original Analysis (150-Logistic), Log-Logistic Curves
(150-loglgc), and After Removing One Anomalous Part (149-loglgc). Standard errors calculated by Equations (6) and (7)

Estimate Estimate Estimate
(150-logistic) s.e. (150-loglgc) s.e. (149-loglgc) s.e.

�AOI 2.5800 0.0098 2.5500 0.0102 2.5600 0.0102
IAPAOI 0.0673 0.0095 0.0728 0.0101 0.0695 0.0100
IRPAOI 0.0004 0.0001 0.0001 0.0000 0.0001 0.0000
�opr 3.3700 0.0845 3.2100 0.0617 3.2200 0.0628
IAPopr 0.2501 0.0254 0.0951 0.0379 0.0994 0.0386
IRPopr 0.0004 0.0001 0.0000 0.0000 0.0001 0.0000

(the ‘Rej-sample’) was collected. The parts in this
sample were inspected Ka=1 = 7 times by the AOI
and once by each of Ka=2 = 3 operators. The AOI
can measure multiple parts simultaneously in di↵er-
ent slots, and the parts were randomized over these
slots during repeated measurements. A historical re-
jection rate of 0.050% for the AOI was also available
(based on 1271 rejections out of IHis = 254,200 in-
spected parts). Moreover, ITot = 100 parts from the
total parts population (the ‘Tot sample’) were in-
cluded, which were measured seven times by the AOI
but not by the operators. The inclusion of these 100
parts cannot be motivated from the results reported
in the previous section. At the time when the MSA
experiment was designed, we believed this additional
subsample would provide a crude check whether the
AOI’s behavior and its rejection rate, in particular,
was in line with its normal performance (as reflected
in the historical reject rate). The assumption that
the inspections in the Tot, Rej, and His samples are
comparable is an important one. However, in hind-
sight, we do not believe that the results from these
100 parts add much value in the evaluation of the
AOI.

4.2. Statistical Analysis

The parameters (↵a, �a) for the AOI and the oper-
ators are estimated by maximizing the likelihood of
Equation (5) using the interior point algorithm. The
fitted parameters are ↵̂AOI = 26.69 and �̂AOI = 2.582
for the AOI and ↵̂opr = 5.741 and �̂opr = 3.369 for
the operators. Table 2 (leftmost columns) gives the
corresponding values of IAP, IRP, �, and their stan-
dard errors.

To test goodness of fit, we determine the number
df of degrees of freedom of the G-statistic. For the
Tot sample (evaluated seven times by the AOI), the

possible response patterns for a part are (0; 7), (1;
6), . . . , (7; 0), and a saturated model has 8 � 1 = 7
df. For the His sample, we have (0; 1) and (1; 0), so
1 df. For the Rej sample (seven repeats for the AOI,
three for the operators), we have 8⇥4�1 = 31 df. In
total, a saturated model has 39 df, while the fitted
model has 2A = 4 df. Thus, the G-statistic has 35
df.

The G-test rejects the fit (G = 127, df = 35,
p < 10�11). As often with real data, there are a
few issues, which are best explained by discussing
the results of the AOI first. Table 3 (columns headed
Observed) presents response-pattern frequencies. The
left column indicates how many of the 150 parts from
the Rej sample were rejected 0, 1, . . . , 7 times by the
AOI. The next column shows the same for the 100
parts from the Tot sample.

Although the results from the Tot sample fit quite
well, the fit is not that good for the Rej sample. In
particular, the model overestimates the number of
parts with a small number of rejections and underes-
timates the number of parts with six rejections. This
can be seen from the raw di↵erences between ob-
served and predicted frequencies, or better, by calcu-
lating the Freeman-Tukey variance-stabilized resid-
uals: �2.55, �2.62, �1.40, 0.97, 0.49, �0.32, 2.08,
�0.15 (for zero to seven rejects). Because the col-
lation of observed to predicted frequencies suggests
asymmetry in the characteristic curve, we fit log-
logistic curves instead (as in Equation (8)). The G-
test confirms that this model fits better (G = 42.4,
df = 33, p = 0.13). The estimated characteristics
are in the middle columns of Table 2 (labeled 150-
loglgc). The decision thresholds are obtained by solv-
ing q̂a(�̂a) = 0.5.

A second issue in the data is revealed by compar-
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TABLE 3. Observed Rejection Frequencies (AOI Only) and Rejection Frequencies Predicted
from a Fitted Logistic and Log-Logistic Curve

Observed Predicted (150-logistic) Predicted (150-loglgc)
Number of
rejections Rej-sample Tot-sample Rej-sample Tot-sample Rej-sample Tot-sample

0 0 99 2.90 99.40 0.12 99.45
1 0 0 3.03 0.08 0.33 0.00
2 1 0 3.39 0.04 0.72 0.01
3 6 0 4.01 0.03 1.54 0.01
4 6 0 5.05 0.03 3.53 0.02
5 6 0 7.08 0.03 9.53 0.04
6 21 0 12.70 0.05 31.8 0.12
7 110 1 112.00 0.38 102.00 0.36

ing the results for the AOI with those of the operators
(Table 4). One part (marked with an asterisk) was
rejected three (out of three) times by the operators
and only four (out of seven) times by the AOI. We
consistently find that the AOI’s decision threshold is
stricter than that of the operators (Table 2) and, con-
sequently, there is no realization for misalignment X
for which this is a plausible response pattern (given
the fitted model),

max
x

P✓̂AOI,✓̂opr

✓
Ri =

✓
3 4
0 3

◆ ����X = x

◆
⇡ 4.7⇥10�5.

We were unfortunately not in a position to inspect

the part in question and can only speculate that it
may have had an abnormality or flaw that led the
operators to reject it unanimously but that was, to
some extent, di↵erent from the usual misalignment
problems and, therefore, not convincingly picked up
by the AOI’s algorithms. For its being an anomaly
amid the results of the other 149 parts, we removed
the results for this part from the analysis and re-
estimated the model.

The resulting parameter values of the log-logistic
characteristic curves are ↵̂AOI = 60.2, �̂AOI = 1.26,
and µ̂AOI = 2.54 for the AOI and ↵̂opr = 7.32,

TABLE 4. Response Pattern Frequencies (Observed and Predicted from All Data and
After Removing the Results of One Part)

Observed Predicted (150-loglgc) Predicted (149-loglgc)

Rejections by Rejections by Rejections by
operators operators operators

Rejections
by AOI 0 1 2 3 Tot 0 1 2 3 Tot 0 1 2 3 Tot

0 0 0 0 0 99 0.12 0.00 0.00 0.00 99.5 0.19 0.00 0.00 0.00 99.5
1 0 0 0 0 0 0.33 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.01
2 1 0 0 0 0 0.72 0.00 0.00 0.00 0.01 0.91 0.00 0.00 0.00 0.01
3 6 0 0 0 0 1.54 0.00 0.00 0.00 0.01 1.74 0.00 0.00 0.00 0.01
4 5 0 0 1⇤ 0 3.52 0.00 0.00 0.00⇤ 0.02 3.58 0.00 0.00 0.00 0.02
5 5 1 0 0 0 9.47 0.01 0.01 0.03 0.04 8.68 0.00 0.00 0.01 0.04
6 18 0 1 2 0 30.2 0.27 0.34 1.05 0.12 27.0 0.19 0.22 0.60 0.10
7 93 2 3 12 1 81.6 2.59 3.56 14.6 0.36 85.0 2.84 3.65 14.0 0.37

Historical rejection rate (AOI): Predicted rejection rate (AOI): Predicted rejection rate (AOI):
1,271 out of IHis = 254,200 1,272 out of IHis = 254,200 1,271 out of IHis = 254,200
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FIGURE 4. Fitted Log-Logistic Characteristic Curves of
the AOI and Operators.

�̂opr = 3.75, and µ̂opr = 3.09 for the operators. The
fit has improved substantially, as is confirmed by the
G-test (G = 28.3, df = 33, p = 0.70). Figure 4 shows
the fitted characteristic curves of the AOI and the
operators.

Table 2 (rightmost columns, labeled 149-loglgc)
presents the final estimated characteristics of the in-
spections. The key results of the analysis are as fol-
lows:

1. The AOI’s repeatability can be characterized
as dIAPAOI = 0.0695 and dIRPAOI = 0.0001.

2. The reproducibility of the operators is dIAPopr =
0.0994 and dIRPopr = 0.0001.

3. The systematic di↵erence between the AOI and
the operators is fairly substantial: �̂AOI� �̂opr =
�0.66 (the AOI being stricter than the opera-
tors).

Further practical ramifications for the AOI are as
follows. We could interpret the company’s stance
that the operators are the de facto standard by set-
ting USL = �opr. This allows the calculation of the
AOI’s misclassification probabilities using Equation
(2): dFAPAOI = P̂ [Y = 1 | X > �opr] = 0.0064,
and dFRPAOI = P̂ [Y = 1 | X  �opr] = 0.0044.
The estimated fraction of nonconforming parts in
the stream of parts accepted by the AOI is P̂ [X >
�opr | Y = 1] = 3.79⇥ 10�6, and the estimated frac-
tion of conforming parts in the stream of rejects is
P̂ [X  �opr | Y = 0] = 0.8822 (these fractions are
45.9⇥10�6 and 0.0999 for the operators’ inspections).

4.3. Discussion and Appraisal of the Car-Parts
MSA Study

For the results reported above, we must make an
important reservation, that they only hold if the com-

plication that manifested itself in the one removed
part is under control. It is an unsatisfactory situation
that we cannot inspect the part in question. Instead,
we cannot do more than recommend keeping the AOI
under surveillance for a couple of weeks more. Any
part found during this period that is accepted by the
AOI, but rejected by the operators, should be closely
inspected, as this inspection result is singular and
indicative of a specific failure mode that the AOI’s
algorithms do not detect reliably. Also, those parts
in the MSA experiment for which the AOI’s seven
appraisals were not in agreement could be inspected
for clues to improve the AOI’s inspection algorithms.

Once this complication is judged under control, we
can conclude that the AOI has no worse reproducibil-
ity than the team of operators, but it turns out to act
on a stricter decision threshold. Following the com-
pany’s stance that the operators’ decisions constitute
the de facto standard, this implies that the decision
threshold of the AOI should be adjusted. This could
be accomplished by selecting from the Rej sample the
five parts that have been rejected one or two times
(out of three) by the operators and seven times by
the AOI. Using these parts as a training set, the AOI
should be adjusted until it rejects these parts about
half the time. After e↵ective adjustment, the AOI is
expected to perform as well as the operators.

Even though the combination of samples that we
obtained was not optimal, and despite the issues en-
countered during the analysis, we believe that the
analysis is reasonable. The standard errors in Table
2 reveal that the estimates are reasonably precise (ex-
cept for the estimated IAPopr, which we discuss be-
low). The results of various alternative analyses (150-
logistic, 150-loglgc, 149-loglgc) are very close (again
with the exception of IAPopr). The estimated IAPopr

should be taken with fairly large confidence margins
(s.e. = 0.0386, which is large in view of the estimated
value of dIAPopr = 0.0994). This standard error would
have been smaller if the Rej sample had been sam-
pled from the population of items rejected by the op-
erators instead of the AOI. This is because the AOI
turns out to be substantially more strict than the
operators (Figure 4) and, consequently, most of the
items rejected by the AOI have X-values close to
�AOI but to the left of �opr. This in turn implies that
there is limited information in the sample that we
obtained for fitting the middle and right part of qopr.
In hindsight, sampling 100 parts from the stream of
items rejected by the operators would have been bet-
ter than the 100 parts sampled from the total popu-
lation (the Tot sample).
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Besides the three analyses summarized in Table
2, we also fitted a model with a log-logistic (asym-
metric) curve for the AOI, and a logistic (symmet-
ric) curve for the operators. This alternative analysis
and our final fit (the 149-loglgc analysis) are equiva-
lent in terms of goodness of fit (G = 28.6 instead of
G = 28.3) and also the estimates are very close. The
largest di↵erence is for IAPopr, which is estimated as
0.0774 instead of 0.0994. Note that this di↵erence is
small compared with the standard error of this esti-
mate.

5. Discussion

In the recent academic literature, it is generally
assumed that the traditional notion of constant mis-
classification probabilities across items and situa-
tions is too simplistic for most applications (see the
references in the Introduction). Current literature ex-
plores various ways to accommodate this variability
in the statistical models underlying the evaluation
approaches. In our modeling, we have attributed the
variability of the misclassification probabilities to the
degree to which the condition is present that the in-
spections aim to detect. Thus, variability in the mis-
classification probabilities is linked by a character-
istic curve to the stochastic properties of a random
variable X, misalignment in the case study. This type
of modeling is explored further in De Mast et al.
(2014).

Two other approaches in the literature are closely
related. The traditional approach for MSA under ab-
sence of a gold standard is to fit a latent class model
(references given in the Introduction), which assumes
that the rejection probabilities are constant in the
subpopulations of good and defective items. How-
ever, this is now generally considered an implausible
assumption in almost every situation (e.g., De Mast
et al. (2011)).

Danila et al. (2012) propose an alternative ap-
proach based on a random-e↵ects model. That
model, like the model presented in this paper, also
allows nonconstant error rates. However, variability
in the error rates is not attributed to specific factors
by means of link functions, but instead, an item’s
misclassification probabilities are assumed to be re-
alizations of two beta distributions, one for good and
one for defective items. An advantage of that model
is that it allows the measurement outcomes to be af-
fected by more than one property of the items. How-
ever, it does not distinguish between variability in-
duced by properties of the items (the measurand)

and variability induced by properties of the inspec-
tion system (the characteristic curves). We think that
an advantage of the approach based on latent trait
models is that it gives more informative results and
can also be naturally extended to multiple appraisers
or multiple inspection systems. Note how the fitted
characteristic curves of the AOI and the operators
improve the understanding of the reliability of the
inspections and inspire ways to improve the AOI’s
performance. An objective of further research is to
produce more detailed recommendations where one
or the other approach is more promising.

A di�cult problem in designing MSA studies,
noted in the literature on the evaluation of industrial
tests and medical tests as well, is the problem that
the part of the characteristic curve q that is close to
or to the right of � is typically in the remote right tail
of the distribution � of X. As a consequence, simply
sampling from the total items population provides
an ine↵ective basis for estimating � and q simultane-
ously. We believe that our approach, which combines
samples from multiple sources, and takes the origin
of each sample into account in the estimation pro-
cedure, o↵ers an e↵ective solution to this problem,
as we have demonstrated for the specific case that
we have described. Simulations show that the esti-
mators dIAP and dIRP have the highest precision if
only rejected items are included in the MSA experi-
ment and the data are supplemented with a histori-
cal dataset. Furthermore, simulations show that this
procedure is robust to certain forms of misspecifica-
tion: even if the distribution of the measurand has
heavy tails or is asymmetric or if the measurand is
multidimensional, the estimators perform reasonably
well in terms of bias and precision.
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