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A Robust Estimator for Location
in Phase I Based on an EWMA Chart

INEZ M. ZWETSLOOT, MARIT SCHOONHOVEN, and RONALD J. M. M. DOES

University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands

In practice, a control chart for process monitoring (Phase II) is based on parameters estimated from data
collected on the process characteristic under study (Phase I). The Phase I data could contain unacceptable
data, which in turn could a↵ect the monitoring. In this study, we consider various estimation methods
that are potentially relevant within the parameter estimation process. The quality of the Phase I study is
evaluated in terms of the precision of the resulting estimates as well as the e↵ectiveness of the exploratory
data analysis, where ‘e↵ectiveness’ is measured by the proportion of observations that are correctly identified
as unacceptable. Moreover, we study the impact of the Phase I estimation method on the performance of
the EWMA control chart in Phase II.
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1. Introduction

CONTROL charts are designed to monitor a pro-
cess characteristic through time. The original

control chart was developed by Shewhart (1926,
1931). To increase the sensitivity of the Shew-
hart control chart, additional decision rules may
be appropriate (Western Electric Company (1956)).
The first memory-type control chart was introduced
by Page (1954) and is known as the cumulative
sum (CUSUM) control chart. Another commonly
used memory-type control chart is the exponentially
weighted moving average (EWMA) control chart de-
veloped by Roberts (1959). Both control charts are
able to detect small sustained changes in the process
mean.

Hunter (1986) provided a useful analysis of the
degree in which the Shewhart, CUSUM, and EWMA
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control charts use the history of the data to detect a
change in the process mean. He pointed out that the
Shewhart control chart only uses the current observa-
tion and therefore has no memory while, in contrast,
the CUSUM control chart uses all of the history, pay-
ing equal attention to all past observations and the
current observation. This is an oversimplification be-
cause, in fact, the CUSUM chart uses a decision rule
whereby some of the past observations can become ir-
relevant. The third control chart variant, the EWMA
control chart, gives less weight to data as they get
older. The weight given to the current observation
relative to earlier observations can be chosen by se-
lecting a smoothing parameter between 0 and 1: a
value of 1 means that all of the weight is assigned
to the current observation and no weight to previ-
ous observations, equivalent to the Shewhart control
chart, while a value of almost 0 results in a control
chart with a long memory. We shall use these specific
properties of the EWMA control chart in this paper.

It is generally accepted in the literature that a
control chart is implemented in two phases: Phase I,
to define the stable state of the process character-
istic and to estimate its distributional parameters;
and Phase II, to monitor the process (Vining (2009),
Chakraborti et al. (2009)). In a survey of Phase I
analysis, Jones-Farmer et al. (2014) review the ma-
jor issues and developments in Phase I analysis. One
of the issues is the possibility of unacceptable data
in Phase I, because these observations could have an
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impact on Phase II performance. The present article
studies several location estimation methods. We as-
sess their e↵ectiveness in Phase I and their impact
on Phase II EWMA control chart performance given
that Phase I could contain unacceptable data.

Let Yit, with i = 1, 2, . . . , n and t = 1, 2, . . . , de-
note the Phase II data, assumed to be independently
and identically N(µ,�2) distributed when the pro-
cess is on target. In Phase II, we wish to monitor the
mean of the process characteristic and detect changes
from its target as soon as possible. Throughout this
article, we assume that the target is equal to µ.

The EWMA control chart uses a weighted aver-
age of current and past observations as a monitoring
statistic. At sampling stage t, the EWMA statistic is
defined as

Zt = (1� �)Zt�1 + �Y t,

with Y t the mean of sample t, Z0 = µ̂ (where µ̂
denotes an estimate of µ), and the smoothing con-
stant � satisfying 0 < �  1. A smaller � implies a
heavier reliance on the past and therefore a quicker
detection of small, sustained shifts (cf. Lucas and
Saccucci (1990)). Under the assumption of indepen-
dently, identically, and normally distributed Yit, the
mean and standard deviation of Zt are equal to µ̂
and �̂Zt , the latter estimated by

�̂Zt =
�̂p
n

r
�

2� �
[1� (1� �)2t].

Then the upper control limit (UCL) and lower con-
trol limit (LCL) can be determined by

dUCLt = µ̂ + L�̂Zt and dLCLt = µ̂� L�̂Zt ,

where L is a positive coe�cient which, together with
�, determines the performance of the EWMA con-
trol chart when the process is stable. When Zt falls
above dUCLt or below dLCLt, the control chart signals
unstable performance.

Jones et al. (2001) studied the EWMA control
chart with estimated parameters and Saleh et al.
(2014) studied the Shewhart control chart with es-
timated parameters. Both showed that, in order to
have on average the performance of a control chart
with known parameters, many more samples are
needed than the 100 samples of size 5 recommended
for the Shewhart control chart (see Quesenberry
(1993)). For example, for EWMA control charts with
� = 0.5, 200 samples of size 5 are required. When
� = 0.1, 400 samples of size 5 are needed to achieve
a performance similar to that of a control chart with

known parameters. As argued by Jones (2002), these
sample sizes are often unavailable in practice. To take
account of the additional uncertainty, they develop
an alternative design procedure that provides cor-
rected values for L. Jones (2002) applied this new
method in an example, and uses k = 50 samples of
size n = 5 to estimate µ and �.

In our paper, we study the estimation of the dis-
tributional parameters when limited Phase I data
are available and these data may contain contami-
nations, which is often the case in practice. Jensen
et al. (2006) noted that “it seems appropriate to
use estimators that will be robust to outliers, step
changes, and other data anomalies in Phase I.” Nu-
merous robust parameter estimates have been dis-
cussed in the literature (see Rocke (1989), Tatum
(1997), among others). Another possibility is the use
of Phase I Shewhart charts (see Chakraborti et al.
(2009), Schoonhoven et al. (2011a)). Nazir et al.
(2013) studied robust point location estimators in
the context of Phase II monitoring with a CUSUM
control chart. These methods are generally very use-
ful where one occasional sample or observation is not
acceptable. However, some processes are subject to
sustained shifts. We therefore include a method par-
ticularly suited to detect sustained shifts, namely the
changepoint method (for an overview see Amiri and
Allahyari (2012)), and a new estimation method that
makes use of the EWMA chart in Phase I. The meth-
ods are evaluated in terms of their impact on Phase
II EWMA control chart performance, as well as in
terms of the e↵ectiveness of the Phase I study itself.
The Phase I study should be used as an exploratory
data analysis tool and it is therefore important that
unacceptable observations are identified.

The article is organized as follows. The estimation
methods outlined above are presented in Section 2.
Both the set-up and the findings of the Phase I study
are presented in Section 3. Section 4 describes the
results for the Phase II context and, in Section 5, we
summarize our conclusions and recommendations.

2. Phase I Estimation Methods

In this section, we describe various estimation
methods that can be used within Phase I, the ex-
ploratory data analysis stage. We consider point
estimators and—especially useful for the detection
of sustained shifts—a changepoint method. We also
present estimation methods used in classical statisti-
cal process control (SPC) in Phase I.

Let Xit, with i = 1, 2, . . . , n and t = 1, 2, . . . , k,
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represent the Phase I observations, and assume Xit

to be independently and identically N(µ,�2) dis-
tributed with mean µ and standard deviation � if
the process is stable. Throughout our study, we set
k = 50 and n = 5, 10.

2.1. Point Estimators

We consider two point estimators with di↵erent
characteristics: the grand sample average X, known
as the most e�cient estimator for the location un-
der uncontaminated normality, and the median of
the sample averages M(X), known for its robust-
ness against data anomalies (see Janacek and Meikle
(1997)). The grand sample average is defined by

X =
1
k

kX
t=1

Xt =
1
k

kX
t=1

 
1
n

nX
i=1

Xit

!
,

and the median of the sample averages by

M(X) = median(X1, . . . ,Xk).

2.2. Changepoint Methods

The changepoint method compares the log likeli-
hood of all observations, under the assumption that
all observations are in control, with the log likelihood
of the observations if a step change has occurred. Sul-
livan and Woodall (1996) proposed a changepoint
method for exploratory data analysis and showed
that this method outperforms the Shewhart chart in
detecting sustained shifts. We include their change-
point method in our analysis.

Consider the set S0 = (1, 2, . . . , k), which we can
split into sets S1 = (1, 2, . . . , ⌧) and S2 = (⌧ + 1, ⌧ +
2, . . . , k), with 1  ⌧  k�1. Denoting the number of
elements in set Sj by sj , we have s0 = k, s1 = ⌧ , and
s2 = k � ⌧ . The maximum-likelihood estimators of
the mean and variance of the observations in samples
t 2 Sj are given by

eµj =
1

n ⇤ sj

X
t2Sj

nX
i=1

Xit

and

e�2
j =

1
n ⇤ sj

X
t2Sj

nX
i=1

(Xit � eµj)2 for j = 0, 1, 2.

To test for the existence of a step change after sam-
ple ⌧ , we compute the likelihood-ratio statistic as
LRT(⌧) = nk ln[b�2

0 ]� n⌧ ln[b�2
1 ]� n(k� ⌧) ln[b�2

2 ] (see
Sullivan and Woodall (1996)).

Sullivan and Woodall (1996) constructed a chart
by plotting the LRT(⌧) statistic against ⌧ , with an

out-of-control signal occurring if a value exceeds the
UCL. However, if ⌧ is close to 1 or k � 1, the ex-
pected value of LRT(⌧) is larger than for an inter-
mediate ⌧ . We standardize LRT(⌧) by its expected
value E(LRT(⌧)). The standardized test statistic is
denoted by LRT0(⌧) and is compared with a con-
stant upper control limit UCLCP. The expected val-
ues E(LRT(⌧)) are determined through 100,000 sim-
ulations, as is also done in Sullivan and Woodall
(1996), and are presented in the appendix.

A sustained shift in the Phase I data set is de-
tected if LRT0(⌧) exceeds UCLCP. Every out-of-
control signal indicates a probable sustained shift
in the process. When multiple signals are given, we
set the estimated changepoint (⌧̂) equal to the ⌧
for which LRT0(⌧) is maximal. If there is no out-
of-control signal, we set ⌧̂ = k.

To determine UCLCP, we set the overall in-control
false alarm probability equal to 0.01. Using 100,000
simulations, we find that UCLCP = 5.75 for k = 50
and for both n = 5 and n = 10.

When the changepoint b⌧ is estimated, we can de-
termine which samples are out of control. In practice,
knowledge of the process would be used to determine
whether the data before or after the estimated b⌧ are
in control. In order to prevent the deletion of a large
proportion of clean observations from the Phase I
dataset (this problem could occur in our simulation
if there is a false alarm at the beginning of the Phase
I dataset), we use the following decision rule: ‘the
majority of the samples represent the in-control pro-
cess’. This implies that, if b⌧  k/2, we delete samples
1 up to b⌧ from Phase I. If b⌧ > k/2, we delete samplesb⌧+1 up to k from Phase I. The remaining samples are
used to compute the grand sample mean, yielding an
estimate of µ based on changepoint analysis, which
we denote by CP . We believe this is an appropriate
decision rule, as practitioners can investigate which
sequence before or after the shift is acceptable. More-
over, it ensures a more suitable comparison with the
other Phase I methods considered in our study. This
changepoint method is designed to detect a single
changepoint b⌧ and is at a disadvantage if multiple
step changes occur in Phase I. Alternative change-
point methods can be designed based on recursive
testing for step changes.

2.3. SPC-Based Estimation Methods

Shewhart control charts are known for their detec-
tion of scattered outliers but not for their e↵ective-
ness when Phase I contains sustained shifts. Other
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methods should then be selected, such as change-
point methods (see Sullivan and Woodall (1996)) and
EWMA charts (see Hunter (1986)). In this section,
we consider the use of the EWMA chart in Phase I.

The proposed Phase I EWMA screening estima-
tors consist of the following steps. First, initial esti-
mates of the location and standard deviation, bµI andb�I, are obtained. The choice of these estimators is
discussed below. Next, a Phase I EWMA chart is set
up with EWMA statistic Zt = (1 � �I)Zt�1 + �IXt

and control limits

dUCLt/dLCLt = bµI ± LI
b�Ip
n

r
�I

2� �I
[1� (1� �I)2t],

with Z0 = bµI. Note that the subscript ‘I’ denotes that
the parameter is associated with Phase I charting. If
Zt falls above dUCLt or below dLCLt, the correspond-
ing sample is identified as unacceptable and deleted
from Phase I. Then we can use an e�cient estimator
of µ, yielding an estimate that is e�cient as well as
robust to various patterns of outliers. The final loca-
tion estimate is given by the mean of the remaining
sample means,

Sbµ�I =
1
k⇤

kX
t=1

Xt ⇥ I(dLCLt < Zt < dUCLt).

Here, I(.) is the indicator function, k⇤ denotes the
number of remaining samples, and S indicates that
the estimator is based on Phase I charting.

The choice of bµI is an important one: an e�-
cient estimator could improve the performance of the
Phase I chart under stability but inflate the Phase
I control limits when disturbances are present. On
the other hand, a robust estimator could result in
nonoptimal performance under stability, but in ro-
bust Phase I control limits when disturbances are

present. Our study evaluates the impact of the most
e�cient estimator for the location, the grand sample
average (X), and a robust estimator based on the
median of the sample means (M(X)).

We use just one method to derive �̂I so that any
di↵erences in performance are due to di↵erences in
the estimation of µ. We use an estimator of � that is
known for its robustness, namely, a variant of the bi-
weight A estimator proposed by Tatum (1997). This
estimator weights residuals; residuals are computed
as the di↵erence between the observations and the
sample medians. Large residuals are given less weight
than smaller residuals, which ensures that outliers
have less impact on the estimate of �. The estimation
procedure is described by Tatum (1997) and is im-
plemented as set out in Schoonhoven et al. (2011b),
with normalizing constants 1.068 for n = 5 and 0.962
for n = 10.

As far as the choice of �I is concerned, we take
a range of values in order to study the impact of
this parameter. Small values for �I enable detection
of sustained shifts, while larger values of �I enable
detection of scattered outliers. To assess this trade-
o↵, we set �I equal to 0.2, 0.6, and 1. When �I = 1, we
obtain the Shewhart chart. To obtain values for LI,
we set the false-alarm rate at 1%, thereby following
Chakraborti et al. (2009).

Table 1 gives an overview of the Phase I estimators
considered and the corresponding values of LI (ob-
tained through 100,000 Monte Carlo simulations).

3. Phase I Study

In this section, we evaluate the e↵ectiveness of
Phase I studies that use the methods presented in
Table 1. One of the requirements of Phase I is to de-

TABLE 1. Phase I Location Estimators

LI

Estimator Description n = 5 n = 10

X The grand sample average n.a. n.a.
M(X) Median of the sample averages n.a. n.a.
CP Changepoint estimator n.a. n.a.
SX0.6 Phase I screening estimator with bµI = X and �I = 0.6 2.540 2.525
SM(X)0.2 Phase I screening estimator with bµI = M(X) and �I = 0.2 2.540 2.525
SM(X)0.6 Phase I screening estimator with bµI = M(X) and �I = 0.6 2.610 2.592
SM(X)1 Phase I screening estimator with bµI = M(X) and �I = 1 2.617 2.600
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liver accurate parameter estimates. We assess the es-
timation precision of the proposed methods in terms
of the mean squared error (MSE). In addition, the
Phase I analysis is used as a tool for exploratory
data analysis, allowing us to examine the data and
learn from out-of-control observations. Section 3.1
describes the data scenarios considered in Phase I,
and Sections 3.2 and 3.3 present the Phase I results
in terms of the MSE and the percentage of identified
out-of-control observations, respectively.

3.1. Data Scenarios

Recall that the stable, in-control, Phase I data
are assumed to be N(µ,�2) distributed. One of the
requirements of Phase I is to deliver an accurate
parameter estimate of µ, even if Phase I contains
contaminated observations. In our paper, we assume
that contaminated observations come from a shifted
normal distribution N(µ + �I�,�2), with �I a con-
stant. The Shewhart control chart is particularly use-
ful to detect single, relatively large disturbances in
the data or scattered special causes. These distur-
bances are transient in that they a↵ect single sam-
ples. But, in some situations, disturbances might be
sustained in that they last for at least a few con-
secutive samples beyond their first appearance. This
is where EWMA charts play a role. In the study, we
consider both scattered and sustained special causes.
The scenarios are described below, where we set the
parameters for the stable state at µ = 0 and � = 1,
without loss of generality.

1. A model for localized shifts in which all ob-
servations in a sample have a 90% probability
of being drawn from the N(0, 1) distribution
and a 10% probability of being drawn from the
N(�I, 1) distribution.

2. A model for di↵use shifts in which each obser-
vation, irrespective of the sample to which it
belongs, has a 90% probability of being drawn
from the N(0, 1) distribution and a 10% prob-
ability of being drawn from the N(�I, 1) distri-
bution.

3. A model for a single step shift in which the first
45 samples are drawn from the N(0, 1) distri-
bution and the last 5 samples are drawn from
the N(�I, 1) distribution.

4. A model for multiple step shifts in which, at
each time point, the sample has a probability
p of being the first of five consecutive samples
drawn from the N(�I, 1) distribution. After any
such step shift, each sample again has a proba-
bility p of being the start of another step shift.

Phase I consists of 50 samples. If sample 48
shifts, then only 3 samples (48, 49, and 50) are
drawn from the N(�I, 1) distribution, instead of
five. To maintain the 10% expected contamina-
tion rate of models 1–3, we set p = 0.023.

The performance of the proposed estimators is eval-
uated for scenarios where �I = 0, 0.2, 0.4, . . . , 2.

3.2. Estimation Accuracy

In order to determine the accuracy of the proposed
location estimators, we determine the MSE for each
estimation method under the scenarios proposed in
the previous subsection. The MSE is calculated as

MSE =
1
R

RX
r=1

✓
µ̂r � µ

�

◆2

=
1
R

RX
r=1

(bµr)2, (1)

where µ̂r is the value of an estimator in the rth sim-
ulation run and R is the total number of simula-
tions in the Monte Carlo study. We set R = 200, 000
with a relative simulation error—the standard error
of the estimated MSEs expressed as a percentage of
the MSE—which never exceeds 0.5%. The MSE re-
sults are presented in Figures 1 through 4.

The y-intercept shows the MSE of the estimation
methods when the data are stable (�I = 0). The es-
timator X shows the lowest MSE, as expected. The
other estimators show only slightly larger MSE lev-
els, except for M(X), which is less e�cient under
stability.

Next, we study the situation when contaminations
are present in Phase I (�I > 0). We see that the tra-
ditional point estimator X is most sensitive to all
data disturbances considered. The estimator M(X)
as well as the screening estimators are rather robust
in the scenarios where the mean of an entire sam-
ple has shifted, namely localized, single and multiple
step shifts (see Figures 1, 3, and 4), but not when dif-
fuse disturbances are present (see Figure 2). The rea-
son is that these estimators trim the sample means
rather than extreme observations within a sample.
The estimator CP has the lowest MSE when there
are single step shifts (Figure 3), but its performance
in other situations is far worse than that of the al-
ternative estimators.

As regards the choice of �I for the screening meth-
ods, we had expected that the Phase I Shewhart
chart, SM(X)1, would perform best for localized dis-
turbances as the Shewhart chart is well known for its
detection of single (extreme) disturbances. However,
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FIGURE 1. MSE of Location Estimators when Localized Shifts Are Present in Phase I for k = 50 Samples of Size n. (a)
n = 5; (b) n = 10.

from Figure 1, we can see that the Phase I Shew-
hart chart is only slightly superior to the Phase I
EWMA chart with �I = 0.6 (SM(X)0.6). Moreover,
SM(X)0.6 performs better when there are single or
multiple step shifts. Note that an EWMA chart with
a lower �I, for example SM(X)0.2, does not perform
as well for short and large sample disturbances: a
lower value of �I is more suitable for smaller sus-
tained shifts. Because the disturbances in applica-
tions can be scattered as well as sustained, we rec-
ommend in Phase I the use of an EWMA chart with

�I = 0.6 or a similar intermediate value, rather than
a Shewhart chart.

As for the choice of bµI, i.e., whether we use
SM(X)0.6 or SX0.6, it is worth noting that the
method based on the robust estimator M(X) for the
Phase I chart is as e�cient under stable data (�I = 0)
as the chart based on X. This becomes clear when
we realize that both charts use the e�cient estima-
tor X to determine the mean after screening. We
can conclude that it does not matter for e�ciency of

FIGURE 2. MSE of Location Estimators when Di↵use Shifts Are Present in Phase I for k = 50 Samples of Size n. (a) n
= 5; (b) n = 10.
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FIGURE 3. MSE of Location Estimators when a Single Step Shift Is Present in Phase I for k = 50 Samples of Size n. (a)
n = 5; (b) n = 10.

the final estimate whether a less e�cient estimator
is used to construct the Phase I chart. The use of
a robust estimator like M(X) for the Phase I chart
does pay o↵, however: when there are large multiple
step shifts (Figure 4 for �I > 0.8), we see that the
performance of the Phase I chart based on X is not
good. The higher the value of �I, the higher will be
the MSE. When a nonrobust estimator is used for the
Phase I chart, disturbances might a↵ect the Phase I
limits so that the wrong observations are filtered out
of the data. As the type of disturbance in Phase I

is not known in advance, we recommend the use of
a Phase I chart based on a robust estimator such as
SM(X)0.6 rather than a Phase I chart based on an
e�cient estimator such as SX0.6.

Finally, note that none of the proposed estima-
tion methods perform well when there are di↵use dis-
turbances, i.e., contaminated observations scattered
over the entire Phase I data set. Because the estima-
tors screen whole samples, they do not identify these
individual scattered outliers and therefore use all ob-

FIGURE 4. MSE of Location Estimators when Di↵use Shifts Are Present in Phase I for k = 50 Samples of Size n. (a)
n = 5; (b) n = 10.
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TABLE 2. Maximum Relative Mean-Squared Error (RMSE) and, in Bold, the Estimator with the Lowest Maximum RMSE

Phase I estimators for µ

Scenario n X M(X) CP SX0.6 SM(X)0.2 SM(X)0.6 SM(X)1

Localized 5 835.8 116.7 935.6 73.2 93.5 13.9 8.9
10 1908.5 141.3 2125.5 72.3 92.7 13.7 8.9

Di↵use 5 6.4 52.6 11.2 7.0 6.5 8.4 8.8
10 3.4 53.5 11.5 7.0 6.8 8.6 9.0

Single step 5 887.1 139.9 13.9 44.2 61.1 35.6 81.5
10 1787.7 139.7 15.3 69.7 60.5 36.1 79.3

Multiple step 5 1071.4 173.5 1247.0 136.6 58.6 8.4 50.9
10 2153.6 188.8 2458.4 289.8 59.8 8.7 49.9

All scenarios combined 2153.6 188.8 2458.4 289.8 93.5 36.1 81.5

servations to estimate the location. This means that
the estimators are based on a mixture of in-control
and out-of-control observations and will be approxi-
mately equal to 0.1�I, yielding a MSE level approxi-
mately equal to 0.1�2

I , as can be observed in Figure 2.
We think that the proposed estimators can be aug-
mented with a method that screens for individual
outliers and see this as an issue for future research.

To compare the performance of the proposed es-
timators across the various contamination schemes,
we compute the relative mean squared error (RMSE)
of the estimators. The RMSE of an estimator, for a
specific type of data contamination and severity �I, is
defined as the percentage increase in the MSE of the
estimator relative to the MSE of the estimator with
the lowest MSE. For each data scenario and each es-
timator, we obtain the RSME of the estimator for
all levels of �I. We present the maximum RSME over
�I for each estimator in Table 2. The table shows
that, in the presence of localized disturbances, the
estimator SM(X)1 has the lowest maximum RMSE
(i.e., has an MSE that overall is closest to the opti-
mal MSE for all shift sizes). When there is a single
step shift, the changepoint estimator has the lowest
RMSE: its MSE is at most 15.3% larger than the
optimal estimator for all �I. If we consider all dis-
turbance scenarios together (last row in Table 2), we
find that the estimator SM(X)0.6 is always within
36.1% of the optimal estimators’ MSE, irrespective
of the pattern of contaminations.

3.3. Phase I Detection Probability

In practice, the Phase I analysis is also used as
a tool for exploratory data analysis. One would like
to ‘learn from the data’. If such an analysis is to
be e↵ective, it must identify unacceptable observa-
tions without triggering false alarms for acceptable
observations. In this section, we measure the e↵ec-
tiveness of the Phase I study in terms of the true-
alarm percentage (TAP) and the false-alarm percent-
age (FAP). Related measures are presented by Fraker
et al. (2008), Chakraborti et al. (2009), and Frisén
(2009). The TAP and FAP are calculated as

TAP =
1
R

RX
r=1

(#correct signals)r

(#unacceptable observations)r
⇥100%

(2)and

FAP =
1
R

RX
r=1

(#false alarms)r

(#acceptable observations)r
⇥ 100%,

(3)where r denotes the rth simulation run.

Note that the analysis could only be carried out
for the proposed estimation methods that have a
screening procedure to identify unacceptable sam-
ples in Phase I. These are CP , S(X)0.6, SM(X)0.2,
SM(X)0.6, and SM(X)1. The results are presented
in Table 3.

Some interesting findings on the TAP and FAP
are the following:
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TABLE 3. True-Alarm Percentage (TAP) and False-Alarm Percentage (FAP)

TAP FAP

�I �I

Scenario n µ̂ 0.4 1 1.6 2 0 0.4 1 1.6 2

Localized 5 CP 1.4 4.1 11.2 17.0 1.1 1.3 2.6 6.7 11.1
SX0.6 3.3 23.0 61.1 82.2 1.0 1.1 1.5 2.3 3.2
SM(X)0.2 2.3 15.7 46.7 67.4 1.0 1.2 2.3 5.9 9.7
SM(X)0.6 3.4 26.2 71.1 90.9 1.0 1.1 1.3 1.8 2.4
SM(X)1 3.8 29.8 77.7 94.8 1.0 1.0 1.1 1.1 1.1

10 CP 1.8 9.0 21.3 26.9 1.1 1.5 4.9 13.1 18.4
SX0.6 6.5 49.6 91.2 98.6 1.0 1.2 2.0 4.0 6.1
SM(X)0.2 4.0 36.8 78.5 93.0 1.0 1.4 4.6 12.6 18.7
SM(X)0.6 6.7 58.3 97.0 99.9 1.0 1.1 1.6 3.1 4.7
SM(X)1 7.6 64.9 98.7 100.0 1.0 1.1 1.1 1.1 1.1

Di↵use 5 CP 1.1 1.2 1.4 1.9 1.1 1.1 1.2 1.4 1.9
SX0.6 1.1 1.4 2.2 2.9 1.0 1.0 1.0 1.0 1.0
SM(X)0.2 1.0 1.2 1.7 2.2 1.0 1.0 1.0 1.0 1.1
SM(X)0.6 1.1 1.4 2.2 3.1 1.0 1.0 1.0 1.0 1.0
SM(X)1 1.1 1.5 2.5 3.4 1.0 1.0 1.0 0.9 1.0

10 CP 1.1 1.2 1.5 1.9 1.1 1.1 1.2 1.5 1.9
SX0.6 1.1 1.3 1.7 2.2 1.0 1.0 1.0 1.1 1.2
SM(X)0.2 1.0 1.1 1.4 1.8 1.0 1.0 1.0 1.1 1.2
SM(X)0.6 1.0 1.3 1.7 2.3 1.0 1.0 1.0 1.1 1.2
SM(X)1 1.0 1.3 1.8 2.4 1.0 1.0 1.0 1.0 1.1

Single step 5 CP 15.1 90.7 99.3 99.8 1.0 1.7 1.3 0.2 0.1
SX0.6 6.9 53.7 89.4 96.1 1.0 1.1 1.5 2.2 3.0
SM(X)0.2 7.9 54.7 80.0 87.1 1.0 1.2 1.5 1.6 1.6
SM(X)0.6 6.8 55.6 91.9 97.8 1.0 1.1 1.2 1.2 1.2
SM(X)1 3.9 30.7 78.8 95.2 1.0 1.0 1.1 1.1 1.1

10 CP 36.1 98.7 99.9 100.0 1.0 2.1 0.3 0.0 0.0
SX0.6 15.5 83.5 98.3 99.8 1.0 1.2 2.0 3.7 5.5
SM(X)0.2 18.3 75.3 90.6 96.1 1.0 1.3 1.6 1.6 1.6
SM(X)0.6 15.5 86.2 99.3 100.0 1.0 1.1 1.2 1.2 1.2
SM(X)1 7.9 66.1 98.9 100.0 1.0 1.0 1.1 1.1 1.1

Multiple step 5 CP 4.1 28.6 48.3 53.1 1.2 1.9 7.0 13.9 16.2
SX0.6 5.6 43.9 81.9 91.4 1.0 1.1 1.8 3.3 5.0
SM(X)0.2 6.8 50.1 78.7 86.6 1.0 1.4 4.3 7.9 9.7
SM(X)0.6 5.6 47.9 88.7 96.5 1.0 1.1 1.4 1.8 2.1
SM(X)1 3.4 26.1 73.3 92.9 1.0 1.0 1.2 1.2 1.2

(continued on next page)
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TABLE 3. Continued

TAP FAP

�I �I

Scenario n µ̂ 0.4 1 1.6 2 0 0.4 1 1.6 2

10 CP 8.8 43.8 54.5 55.7 1.1 2.7 11.5 16.1 16.4
SX0.6 12.2 74.2 94.6 97.9 1.0 1.2 2.7 6.4 10.0
SM(X)0.2 15.6 73.1 90.1 95.3 1.0 1.9 7.0 10.6 12.3
SM(X)0.6 12.5 81.3 98.6 99.8 1.0 1.2 1.6 2.5 3.1
SM(X)1 6.6 59.8 97.8 99.8 1.0 1.1 1.2 1.2 1.2

• When there are localized disturbances, SM(X)1
shows the best performance because it has the
highest TAP and lowest FAP values. Note that
SM(X)0.6, which is based on a robust initial
estimator, detects more unacceptable observa-
tions than SX0.6. This is because the robust
Phase I chart limits are not biased by any con-
taminations.

• The proposed estimation methods detect very
few di↵use disturbances. This is not surprising
given that they lack an e↵ective way of iden-
tifying outliers within samples. The methods
should be augmented by an individuals chart
or similar procedure. This is an issue for future
research.

• When there is a single step shift, the CP
method performs best, followed by the Phase
I EWMA charts. The Shewhart chart performs
poorly in this situation, which is to be expected
as this chart is especially designed to detect in-
dividual, scattered disturbances.

• When there are multiple step shifts, the CP
method, which we use, runs into trouble as it is
designed to detect a single shift. A solution for
this could be the use of a CP method that re-
cursively identifies multiply changepoints. The
Phase I chart based on a nonrobust estima-
tor, SX0.6, deletes too many in-control obser-
vations. The EWMA chart with �I = 0.6 per-
forms best.

4. Phase II Performance

Phase I estimators are used to design Phase II
control charts. In this section, we evaluate EWMA
control charts in Phase II that are based on estimated
parameters when the Phase I data may or may not
be contaminated.

Recall that the Phase II observations, Yit with i =
1, 2, . . . , n and t = 1, 2, . . . , are independently and
identically N(µ,�2) distributed if the process is in
control. We model out-of-control Phase II data as
N(µ+�II�,�2), where �II is a constant and the index
‘II’ indicates Phase II data.

4.1. Design of the Phase II EWMA Control
Chart

The Phase II EWMA control chart consists of the
EWMA statistic

Zt = (1� �II)Zt�1 + �IIY t,

with Z0 = bµ, and control limits

dUCLt/dLCLt = bµ± LII
b�p
n

r
�II

2� �II
[1� (1� �II)2t],

where bµ and b� are the Phase I estimates of µ and �.
We consider seven EWMA Phase II control charts,
each based on one of the location estimators (bµ) pre-
sented in Section 2. For a fair comparison of the
proposed location estimation methods, the standard
deviation for each control chart is determined by a
robust estimator described in Tatum (1997) (see Sec-
tion 2.3).

Furthermore, �II is set equal to 0.13, which Crow-
der (1989) recommended as an optimal smoothing
constant to detect a shift size of �II = 1. Note that
�II di↵ers from the �I used in Phase I, as Phase I is
used for exploratory data-analysis purposes. We take
the values for LII from Jones (2002): LII = 2.89 for
n = 5 and LII = 2.92 for n = 10. These values are
determined such that the EWMA control chart has
an average run length of approximately 370 when the
process is in control.
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4.2. Performance Measures and Simulation
Procedure

The Phase II performance of a control chart can
be expressed in terms of the probability distribution
of the run length (RL), which is a stochastic variable
indicating the number of samples before Zt falls out-
side the control limits, i.e., a signal that the process
may be out of control. A common measure of con-
trol chart performance is the expected value of the
RL, i.e., the average run length (ARL). It is desir-
able to have a high ARL when the process is stable
and a low ARL when the process mean has shifted to
µ + �II� with �II 6= 0. Jones et al. (2001) gave a very
insightful account of the performance of the control
chart with estimated limits. In this case, a distinction
is made between the conditional and unconditional
run length distribution. The conditional distribution
is the distribution of RL given the Phase I parameter
estimates bµ and b�. In order to evaluate the overall
behavior of the EWMA control charts, we consider
the unconditional run length distribution, which av-
erages over the variability of the parameter estimatesbµ and b�.

In order to evaluate the e↵ect on the Phase II
EWMA control chart of contaminated Phase I data
and the estimation methods, we estimate the average
ARL of the unconditional run-length distribution by
means of simulation. In order to obtain these val-
ues, we use the following simulation procedure: first,
k = 50 samples of size n = 5, 10 are drawn from the
same Phase I disturbance scenarios used to assess the
MSE, with �I = 1. Then bµ and b� are calculated from
the data and the control limits are computed. Obser-
vations from N(�II, 1) are drawn until the associated
Zt falls outside the control limits. The correspond-
ing run length equals t. The calculations are made
for �II = 0, 0.1, 0.2, 0.3, 0.4. The entire procedure is
repeated for R = 200, 000 simulation runs. The ARL
is computed by averaging over all 200, 000 RLs and
the results are presented in Table 4.

4.3. Phase II Results

First, consider the situation where the Phase I
data are stable (first part of Table 4). We see that, for
acceptable data, Phase II control chart performance
is similar across all estimators (i.e., they have sim-
ilar in-control and out-of-control ARLs), except for
the control chart based on the robust point estima-
tor M(X), which falls short. This confirms that it is
unadvisable to use a robust point estimator: if there

are no special causes in Phase I, useful information
is lost, resulting in a less powerful control chart. It
is better to use a Phase I procedure that only trims
Phase I observations that are considered unaccept-
able. When no data anomalies are found, the number
of falsely deleted samples is limited.

When there are localized disturbances, the best
Phase II performance is achieved by the screen-
ing estimators (SX0.6, SM(X)0.2, SM(X)0.6, and
SM(X)1), and the control chart based on the robust
point estimator M(X). The EWMA control chart
based on X is less e↵ective as this traditional esti-
mator is influenced by outliers, which then also af-
fect the resulting Phase II limits. The EWMA control
chart based on CP does not work very well: this es-
timator deletes too many samples on the assumption
that the disturbances will endure. Unfortunately, for
n = 5, all EWMA control charts are ARL biased.
Furthermore, none of the Phase II control charts per-
forms well when there are di↵use disturbances be-
cause these charts are typically designed to detect
sample shifts instead of individual outliers.

In the presence of a single step shift, CP per-
forms best followed by the Phase I EWMA charts,
(SX0.6 ,SM(X)0.2, and SM(X)0.6). Note that the
Phase I Shewhart chart (SM(X)1) is outperformed
by the EWMA and CP methods because the Shew-
hart chart has no memory and does not make use of
the time sequence of the observations.

Finally, in the case of multiple step shifts, the CP
method does not work well at all: the resulting con-
trol chart has a relatively low ARL for the acceptable
situation and high ARL when the process is out of
control, which is not desirable. This is as expected
because the CP method is designed for single step
shifts. In the multiple step shift scenario, the Phase
I EWMA charts (SX0.6, SM(X)0.2, and SM(X)0.6)
perform best.

To summarize, the type of disturbance and es-
timation method used in Phase I strongly deter-
mine the performance of the Phase II EWMA con-
trol chart. We recommend the Shewhart chart in
Phase I for scattered observations, the changepoint
method whenever single step changes are likely, and
the EWMA chart with �I set at around 0.6 when
there are multiple step changes or when there is un-
certainty about the type, the length, or the magni-
tude of the disturbance.
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TABLE 4. Average ARL for the EWMA Control Chart in Phase II Based on Alternative Location Estimators
for k = 50 Samples of Size n = 5, 10

Average ARL of the unconditional run-length distribution

Phase I Out-of-control Phase II Data
In-control

Scenario n bµ �II = 0 �II = 0.1 �II = 0.2 �II = 0.3 �II = 0.4

In control 5 X 374 210 61 22 12
M(X) 333 214 73 25 12
CP 370 210 63 23 12
SX0.6 370 212 62 23 12
SM(X)0.2 369 210 62 23 12
SM(X)0.6 367 211 63 23 12
SM(X)1 365 212 63 23 12

10 X 371 129 26 11 6
M(X) 333 143 30 11 6
CP 367 132 27 11 6
SX0.6 367 131 27 11 6
SM(X)0.2 366 132 26 11 6
SM(X)0.6 362 132 26 11 6
SM(X)1 363 132 27 11 6

Localized 5 X 215 338 213 72 25
(�I = 1) M(X) 273 294 153 52 20

CP 217 325 207 75 27
SX0.6 260 319 169 55 21
SM(X)0.2 252 324 177 58 21
SM(X)0.6 271 311 158 51 19
SM(X)1 279 308 152 48 19

10 X 152 313 149 33 12
M(X) 270 244 66 17 8
CP 167 286 139 40 13
SX0.6 264 252 71 18 8
SM(X)0.2 251 263 76 19 8
SM(X)0.6 294 220 54 15 7
SM(X)1 308 211 49 14 7

Di↵use 5 X 287 517 296 82 26
(�I = 1) M(X) 297 458 296 97 30

CP 288 510 297 84 28
SX0.6 291 506 296 83 27
SM(X)0.2 289 509 295 83 27
SM(X)0.6 292 507 294 84 27
SM(X)1 293 505 294 82 27

(continued on next page)
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TABLE 4. Continued

Average ARL of the unconditional run-length distribution

Phase I Out-of-control Phase II Data
In-control

Scenario n bµ �II = 0 �II = 0.1 �II = 0.2 �II = 0.3 �II = 0.4

10 X 173 511 178 31 12
M(X) 198 454 196 37 12
CP 177 504 180 32 12
SX0.6 180 504 180 32 12
SM(X)0.2 177 502 181 32 12
SM(X)0.6 178 501 180 32 12
SM(X)1 180 501 180 32 12

Single step 5 X 210 371 210 61 22
(�I = 1) M(X) 278 302 148 48 18

CP 349 209 69 25 13
SX0.6 312 298 119 37 16
SM(X)0.2 306 302 125 39 16
SM(X)0.6 317 284 112 35 15
SM(X)1 282 321 145 44 18

10 X 130 370 130 26 11
M(X) 276 249 60 16 8
CP 361 132 26 11 6
SX0.6 326 200 39 13 7
SM(X)0.2 316 215 44 14 7
SM(X)0.6 338 175 35 12 7
SM(X)1 313 211 44 14 7

Multiple steps 5 X 220 266 193 97 39
(�I = 1) M(X) 257 264 156 67 28

CP 247 230 143 77 43
SX0.6 287 264 137 57 24
SM(X)0.2 295 262 129 52 22
SM(X)0.6 297 257 127 51 22
SM(X)1 268 269 154 66 27

10 X 180 222 145 62 21
M(X) 254 222 82 25 10
CP 242 159 80 48 32
SX0.6 299 197 60 21 9
SM(X)0.2 305 196 56 18 9
SM(X)0.6 324 175 44 15 7
SM(X)1 293 201 62 20 9

Journal of Quality Technology Vol. 46, No. 4, October 2014



mss # 1735.tex; art. # 02; 46(4)

A ROBUST ESTIMATOR FOR LOCATION IN PHASE I BASED ON AN EWMA CHART 315

5. Conclusion

We have considered several Phase I estimation
methods for situations where scattered as well as
sustained shifts might be present. We have studied
the e↵ectiveness of a Phase I exploratory data anal-
ysis stage in terms of the accuracy of the resulting
estimates and the proportion of successfully identi-
fied unacceptable samples. Moreover, we have inves-
tigated the impact of data contaminations and the
estimators used in Phase I on the performance of the
Phase II EWMA control chart.

Our study shows that data anomalies can have a
huge impact on the quality of the Phase I analysis as
well as on the power of the resulting Phase II EWMA
control chart. There is considerable di↵erence in the
performance of the Phase I estimation methods. We
have the following recommendations:

First, we recommend the use of a changepoint or
SPC-based method instead of a single point estima-
tor to arrive at a parameter estimate for the Phase
II limits. Such methods make it possible to perform
a Phase I data analysis and ‘learn from the data’ be-
fore any monitoring takes place. A learning stage will
improve the quality of the Phase II monitoring.

Second, we have seen that most methods work
well in one specific situation: when there might be
scattered contaminations, the Shewhart chart works
best but, when there are sustained shifts, the use of
an EWMA chart or changepoint method is more ap-

propriate. These methods take into account the time
sequence in the samples. When multiple step changes
are likely or the type of disturbance is unknown, we
recommend the Phase I EWMA chart. The smooth-
ing constant of the EWMA chart, �I, should ideally
be set at around 0.6. A low value overemphasizes
the detection of small shifts while a high value ap-
proaches the performance of the Phase I Shewhart
chart.

The methods based on EWMA charts not only
work well in the multiple step scenario but also in the
other contamination scenarios. These estimators pro-
vide near-best estimates of the location in the pres-
ence of any pattern of Phase I contaminations.

Finally, we recommend the use of a two-step pro-
cedure, namely a robust estimator to estimate the
location and construct the Phase I control chart, and
an e�cient estimator for post-screening estimation.
The use of a robust estimator for the Phase I chart
ensures that Phase I limits are not too sensitive to
any disturbances, limiting the incorrect deletion of
clean data, while the use of an e�cient estimator
subsequent to screening ensures that final estimates
are e�cient under stability as well.
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Appendix
TABLE 5. E(LRT(⌧ )), the Normalizing Constants for LRT

n n n n

⌧ 5 10 ⌧ 5 10 ⌧ 5 10 ⌧ 5 10

1 14 2.03 2.02 27 2.02 2.02 40 2.04 2.02
2 2.21 2.11 15 2.03 2.02 28 2.03 2.02 41 2.04 2.03
3 2.14 2.06 16 2.03 2.02 29 2.03 2.02 42 2.05 2.03
4 2.10 2.05 17 2.03 2.02 30 2.03 2.02 43 2.06 2.04
5 2.08 2.04 18 2.03 2.02 31 2.03 2.02 44 2.07 2.04
6 2.07 2.04 19 2.03 2.02 32 2.03 2.02 45 2.08 2.04
7 2.06 2.04 20 2.03 2.02 33 2.03 2.02 46 2.10 2.05
8 2.05 2.03 21 2.03 2.02 34 2.03 2.02 47 2.14 2.06
9 2.04 2.03 22 2.02 2.02 35 2.03 2.02 48 2.21 2.10

10 2.04 2.02 23 2.02 2.02 36 2.03 2.02 49
11 2.03 2.02 24 2.02 2.02 37 2.03 2.02 50
12 2.03 2.02 25 2.02 2.02 38 2.03 2.02
13 2.03 2.02 26 2.02 2.02 39 2.03 2.02
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