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We study appointment scheduling problems in continuous time. A finite number of clients are scheduled
such that a function of the waiting time of clients, the idle time of the server, and the lateness of the sche-
dule is minimized. The optimal schedule is notoriously hard to derive within reasonable computation
times. Therefore, we develop the lag order approximation method, that sets the client’s optimal appoint-
ment time based on only a part of his predecessors. We show that a lag order of two, i.e., taking two pre-
decessors into account, results in nearly optimal schedules within reasonable computation times. We
illustrate our approximation method with an appointment scheduling problem in a CT-scan area.
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1. Introduction

In this paper we study appointment scheduling problems in
continuous time. In our setting, we refer to appointment schedul-
ing as the phenomenon in which a service provider is able to sche-
dule arriving clients with the help of an appointment schedule; that
is, a series of appointment times. The appointment time then offers
the client a point in time upon which he or she should actually
arrive to receive service.

It may be convenient to present this phenomenon as an
appointment scheduling problem in two stages: in the first stage
the provider schedules the appointments and in the second stage
the server executes the service. In practice, one can imagine that
the clients (or jobs) present themselves in random order at the first
stage, and request the service provider to schedule them for a ser-
vice. This paper discusses the decision making process of a service
provider, in the first stage, on how to choose the appointment
times of N clients that are to be scheduled to the server in the sec-
ond stage. We develop a new approximation method that is gen-
eric in terms of the client’s service-time distribution, numerically
tractable for large problem instances while offering good
performance.
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Applications of an appointment scheme to schedule clients can
be found in manufacturing (e.g., Wang, 1993), services (e.g.,
Kemper, Klaassen, & Mandjes, 2014), and health care (e.g., Cayirli
& Veral, 2003). The basic setting in our paper, as described in the
above, belongs to the so-called - static — class of appointment
scheduling approaches, in which a finite number of appointments
are scheduled prior to the beginning of the actual service, see
Cayirli and Veral (2003). The origin of such an approach dates back
to the work of Bailey (1952) and Welch and Bailey (1952), and gen-
erated substantial interest over the last decades.

Suppose in the first stage, the service provider is given N clients
with random service times that are to be scheduled on a certain
working day. Furthermore, suppose that the service-time distribu-
tion and clients’ loss function due to waiting time, as well as the
server’s loss function, in terms of idle time and possible lateness
after the final client (overtime), are known. The goal is then to min-
imize a convex combination of, possibly weighted, sum of the ser-
ver's idle time and lateness (overtime), and the client’s waiting
time. Exact calculations of the optimal appointment times is prob-
lematic when there are many clients, since it requires the evalua-
tion of high-dimensional integrals (Denton & Gupta, 2003).

Most of the contributions on appointment scheduling are based
on exponential service times, such as in Wang (1999), Kaandorp
and Koole (2007), Hassin and Mendel (2008) and Turkcan, Zeng,
Muthuraman, and Lawley (2011); or a phase-type distribution for
the service times, such as in Wang (1997), Vanden Bosch, Dietz,
and Simeoni (1999) and Kuiper, Kemper, and Mandjes (2014). Also,
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it is common to assume independent and identically distributed
random variables for the service times. It is reasonable to assume
that the service-time distribution of the clients are independent,
since clients call in at random for an appointment in the first stage.
However, in practice the service times often do not follow an expo-
nential distribution, let alone the service-time distributions of the
arriving clients are identical (although Wang (1999) allows for ser-
vice-time distributions with different service rates).

Simulation approaches are used to evaluate the performance of
heuristics; see, for example, Ho and Lau (1992), Robinson and Chen
(2003), and references mentioned in the overview of Giinal and
Pidd (2010). We note, however, that the evaluation of heuristics
with the help of simulation studies can be a time consuming effort
or is often limited to specific service settings, including service-
time distributions and cost ratios (Yang, Lau, & Quek, 1998). To
the best of our knowledge, the number of studies that use simula-
tion in order to trace an optimal schedule are modest, but for an
example see Zhu, Heng, and Teow (2012).

An alternative approach to deal with the high-dimensional opti-
mization problem is to impose restrictions, such as equally-spaced
interappointment times, see for example Hassin and Mendel
(2008). Note that, however, in case of nonidentical service-time
distribution it is argued that one should assign different interap-
pointment times to different clients (Wang, 1999).

We also mention the sequential approach of Kemper et al.
(2014), that enables the service provider to sequentially optimize
the client’s appointment time. The sequential approach clearly
reduces the dimensions of the optimization problem. It is shown
to be generic and flexible (i.e., nonidentical among clients) in terms
of service-time distributions and loss functions, and may include
real-life phenomena such as no-shows and walk-in clients. How-
ever, the computation gets involved for larger schedules in case
of service-time distributions other than the exponential.

One may deal with different service-time distributions, and
trace, in addition, an optimal sequence in case of a small schedule;
see Weiss (1990) and Wang (1999), or slightly larger schedules (up
to 16 clients) with a generalized lambda distribution, see Robinson
and Chen (2003). In practice, however, one often encounters larger
schemes, such as a car glass repair service or a dentist practice,
which schedule up to 30 appointments per day.

Given the importance and relevance of the problem, and the
fact that there is, to the best of our knowledge, no clean solution
available, we decided to explore an alternative approach. Our
approach is able to deal with general service-time distributions,
such as the lognormal (Klassen & Rohleder, 1996) or the Weibull
(Babes & Sarma, 1991) as often seen in practice, and larger sched-
ules. In our approach the optimal appointment times depend only
on a limited number of clients, that arrived previously to the cli-
ent’s appointment, leading to an optimization problem with
reduced dimensionality. For example, we optimize a client’s
appointment time by minimizing his expected waiting times, cor-
responding idle times, and lateness of the server, while taking
into account the effects of just two preceding clients. We refer
to this method as the lag order approximation method in which
the lag order refers to the number of predecessors taken into
account.

The organization of the paper is as follows. In Section 2 we
mathematically formulate the problem. The lag order approxi-
mation method is then presented in Section 3. The performance
of the lag order approximation method is evaluated in Section 4
by studying some numerical examples and a real-life example
from a radiology department. The results show that our method
needs significantly less computational effort, and is able to
derive appointment schedules that are close to optimal. Finally,
we conclude and discuss directions for further research in
Section 5.

2. Problem statement

Consider a service system at which N clients arrive at specified
moments in time, i.e., client n arrives at time t, with t, € R* for
n=1,...,N. Each client has a service-time requirement, which is
denoted by the random variable B, for client n. The service system
has a single server and if upon arrival client n finds the server idle,
he immediately starts his service. If the server is busy, then client n
awaits his turn until all clients that are scheduled before client n
have finished their service. We assume that both the clients and
the server are punctual, and we do not allow for no-shows and
walk-in clients. For studies that do include these phenomena,
although in a different setting, we refer to Kemper et al. (2014)
and references therein.

The vector (ty,...,ty) is called an appointment schedule for this
service system. For a given schedule, we denote by I, the time that
the server has been idle upon start of the service of client n. We
denote by W, the waiting time of client n. Note that, the sojourn
time S, of client n can then be defined by S, = W, + B,. In most set-
tings the planning horizon (that is, the time span, T, in which cli-
ents can be scheduled) is finite. However, it can happen that
after the planning horizon there are still clients that need to be
served. We therefore define the lateness L as the overtime that
the server has to make in order to finish all services. It is useful
to define the interappointment times by

Xp=tn1 —ta, n=1,...,N—1.

The idleness I, can then be written as

I, = max{x, 1 — S,.1,0}, n=2,... N. (1)

The waiting time W, is given by
Wy = max{S,_-1 —%,-1,0}, n=2,...,N. (2)

From (1) and (2) follow W, + I, = |Sp_1 — Xn_1| for n > 1. The late-
ness can be expressed as

L =max{ty + Sy — T, 0}. (3)

Clearly, it is reasonable to assume that t; = 0, so that both W; =0
and I = 0. If t; > 0 then W, = 0 as the first client still arrives on
an empty system, but I; > 0 because the service provider has to
wait t; amount of time. Moreover, it holds that W, I, =0,
n=1,...,N.

The objective of the appointment scheduling problem is to find
a schedule (ta, ..., ty), or equivalently (xq,...,xy_1), such that a loss
function LF, which depends on I,, W, and L, is minimized.
Throughout the paper, we assume that LF has the form

N
LF(x, .. X 1) = S [EF(Ia) + Eg(Wa)] + ER(L), (4)

n=2

with f(-), g(-), and h(-) nondecreasing continuous functions.

3. The lag order approximation method

In this section we reveal the lag order approximation method in
its general form. Basically, the optimal schedule is found through
the optimization of (4), that is

min LF(X;,...,Xy_1) (3)
- XN-1

The waiting time of client n is a random variable depending on
X1,...,X,_1, 1.e., all the predecessors of client n are incorporated,
W, = Wy(x1,...,x,_1). The main idea of the lag order approximation
method is to neglect part of the predecessors that influence the
waiting time (and idle time and lateness) of the loss function in
(4), and express the waiting time for each client n in terms of its
K predecessors, where K is the number of lags taken into the
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optimization. However, in the beginning there are, of course, less
than K predecessors included. Therefore we define k= min
{K,n — 1}, so that the computation of the n-th client’s waiting time

depends only on x,_y, ..., X, 1, resulting in W, = Wh(Xn iy, Xn_1)-
Similarly, we express the idle times and lateness as
In=I,(Xp_t,...,Xp-1) and L =L(X, y,...,X,_1). The optimization

with respect to this partial information in (4) is called the lag order
approximation method of order K, which in essence minimizes

N —~ ~
X)) = Y- [E () + Eg(Wo)| + ER(D).  (6)

min LF’((X]7 ..
X n=2

X1 e XN_1

Note that K =N —1 corresponds with the original optimization
problem of (4). The advantage of this approach is that by limiting
the dependence on predecessors we are able to use convolution for-
mulas to compute the W, and I,,, and the schedule’s lateness L.

3.1. Loss functions

In this subsection, we present two loss functions that are com-
monly used in the literature. The loss function includes the
expected waiting times, the expected idle times, and the expected
lateness with different weighing factors. Most literature use the
same weighing factors for the waiting times and the idleness, see
Fries and Marathe (1981) for a detailed discussion on how to
choose these factors. In this paper we adopt the same convention
but remark that our method does not require it.

One often chooses general polynomial function and sets
f(x) = ux*, g(x) = xx* and h(x) = px, where oy, o, f = 0, and
/> 0. However, setting o; = o and taking A = 1,2 gives us two
remarkable insights, which we will refer to as the absolute value
loss function and the quadratic loss function. Note that in these
cases the idle and waiting times are equally weighted.

Absolute value loss function. The absolute value loss function
LF can be obtained by taking f(x) = g(x) = ox and h(x) = fx, with
o, f € R". We know from Section 2 that the loss function reduces to

N-1
LF(X1,...,Xn-1) = &Y _E|Sy — Xq| + BEL.

n=1

This loss function penalizes deviations from the planning (either
caused by waiting or by idling) linearly. It has been used (with
B=0) by, eg, Wang (1997), Vanden Bosch et al. (1999),
Kaandorp and Koole (2007) and Kuiper et al. (2014).

Quadratic loss function. The quadratic loss function LF penal-
izes the deviation from the schedule quadratically instead of line-
arly. This can be achieved by taking.

f(x) = g(x) = ax® and h(x) = px2. Since W2 + 2 = (Sy_1 — Xn_1)*
for n > 1, the loss function reduces to

N-1

LF(X1,... Xn-1) = 00 E(Sp — Xp)” + BEL.

n=1

This loss function has been used (with = 0) by, e.g., Schild and
Fredman (1961) and Kemper et al. (2014).

3.2. Technical background of the lag order procedure

To compute the solution xq,...,xy_; through the lag order
approximation method of order K, which we will refer to as lag
order K throughout the rest of the paper, we use the following der-
ivations. In case of lag order O the sojourn time distribution for
each client is equal to his service time, i.e., S, = B,. Obviously,
the interdependence between interappointments is removed in
this way. This is different in the case of lag order I. Then the sojourn
time distribution are linked through the waiting time of the
previous client n > 1 (for n = 1 we use the lag order 0: S; = B;)

Sp =By + Wy ~By+ Wy(Xp 1) =By + max{B, 1 — %,.1,0}.  (7)

In lag order II the interdependence increases to the waiting times of
the two patients before client n > 2 (for n = 2 we use (7))

Sn =By + W, =B, + Wn(xn—27xn—l)
= B, + max{B,_1 + max{Bn_» — X;_2,0} — x,_1,0}. (8)

Since we have now deduced approximation of the client specific
sojourn times we can implement those in (1)-(3) to compute the
waiting and idle times, and the lateness respectively. The algo-
rithms to get to optimal lag order K solutions are written in MATLAB
R2012b. This program finds the optimal interarrival times that min-
imizes the lag order K approximation of either the linear loss func-
tion or the quadratic loss function, for any service-time distribution,
exploiting MATLAB R2012b’s built-in minimization routines.

We outline the algorithm for lag order II (the procedure can be
easily adapted to incorporate other lag orders). The program basi-
cally contains three stages.

1. The lag ordered loss functions are implemented in a for 1oop,
using the lag order 0 for the second client; lag order I for the
third client, c.f. (7); and the lag order II for the remaining cli-
ents, c.f. (8).

2. The sum of all losses is computed using MATLAB's adaptive
Simpson quadrature routines (tolerance is 10~°), over the differ-
ent lag ordered loss functions.

3. Finally, we jointly optimize the aggregate over N — 1 interap-
pointment times with tolerance level of 10 and a start vector
consisting of ones with dimension N — 1.

3.3. Technical background for generating LF values

In order to simulate the different distributions we apply a sim-
ilar approach. Instead of computing integrals we now use random
numbers in a Monte Carlo Simulation study. The procedure is as
follows: in a set of N x 10° random numbers of a particular distri-
bution one minimizes the loss function over the interappointments
X1,...Xn_1. We repeat this 100 times (so in total N x 10’ random
numbers are needed) to get a sample mean, LF, and a sample var-
iance, s%, of system’s losses. The Central Limit Theorem dictates
that with 95% confidence the average costs lie in the interval given
by LF + zg05 %, which then can be compared with the lag order
method.

In this paper we study the lag order approach for a broad range
of settings, that is, for various service-time distributions, and for
both linear and quadratic loss functions. In this section we explore
the approach for exponential service times. Then, in Section 4, we
study the lognormal and Weibull service-time distributions. For all
results generated in the various studies in this paper, the simula-
tion study concludes when the estimated values of the loss func-
tion exhibit a confidence interval of 1%. of the estimates.

3.4. Example with exponentially distributed service times

We illustrate the results of our lag order approximation method
for a system with N = 11 clients in Fig. 1. Here, we assume that the
service times of the clients are independent and exponentially dis-
tributed (i.i.d.) with parameter p, = 1 forn =1,...,N. The system
operates under the quadratic loss function, i.e., the quadratic LF
with o« =1 and B =0. Fig. 1 displays the optimal slot sizes per
arriving client for various lag orders. The figure supports the
conclusion that optimal scheduling according to lag order O
corresponds to setting each interappointment time equal to
the average service time, which is in essence a D/M/1 queue
with load 1.
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Fig. 1. Optimal slot sizes for the lag order approximation method with quadratic
loss. N = 11, i.i.d. exponential (u = 1) service times.

When the lag order increases the approach results in larger slot
sizes (or, interappointment times); for example, for the first slot
(the time between the first and second appointment) the slot size
increases from about 1.18 based on a lag order I to a slot size of
about 1.32 based on a lag order IV. Furthermore, for lower lag
orders, between I and III, the slot sizes alternate in the beginning
of the schedule and towards the end of the schedule. For higher
lag orders, from order IV and further, the slots in the middle of
the scheme are larger than the slots in the beginning and the end
of the schedule.

The full lag order corresponds to a lag order of N — 1, i.e,, all
information is taken into account in deciding upon the slot
sizes. The results of the full lag order correspond to the results
of Wang (1997), where we extended the algorithm to handle
quadratic loss functions. The results show that as the lag order
increases, the appointment schedule converges to the optimal
schedule. Fig. 1 also shows that the lag order is ‘optimistic’ in
its next planned appointment time due to negligence of the
waiting time, which is in favor of the service provider. As seen
in the figure, the slot sizes increase, then decrease, and then
increase and decrease again, hence exhibiting a non-unimodal
pattern. However, as the lag order increases, this effect dimin-
ishes. In fact, the optimal appointment schedule (the full lag
order) does not show this behavior, but instead follows a so-
called dome shape which is a well-known pattern in the litera-
ture on appointment scheduling, see, e.g., Kaandorp and Koole
(2007).

Table 1 summarizes the results of the lag order method in
practice by displaying the value of the loss function for the first
two lag orders including the full lag order obtained by extensive
simulation. We see that increasing the lag order reduces the

Table 1

expected total loss of the system, which approaches the loss in
the full lag order.

4. The lag order approximation method in practice

In this section we will apply the lag order approximation
method to a realistic appointment scheduling problems. In the
previous section, we were able to compute the optimal schedule
for exponentially distributed service times. However, empirical
evidence shows that this setting is too restrictive and unrealistic,
see, e.g., Cayirli and Veral (2003). Commonly seen service-time
distributions in realistic settings are the Weibull and the lognormal
distribution. We study these distributions in Section 4.1. Then, in
Section 4.2 we apply our approach to a real-life example of a
CT-scan in a hospital.

4.1. Practical service times

According to Cayirli and Veral (2003) service-time distributions
have a typical coefficient of variation ranging from 0.35 to 0.85.
Given this range, we illustrate our method by using the Weibull
and lognormal distribution with reasonable coefficients of varia-
tion: 0.35, 0.5, and 0.85.

In Tables 2 and 3 we show the results of the various lag orders
to this problem. The results are compared to an optimal schedule
derived through simulation only, as described in the background
paragraph of Section 3.

For each approach in our study the tables report the values of
the loss function, the difference between the LF values of the
approach and that of the simulated optimal value, and the com-
puter’s CPU time of each method, where for Example 4E3 means
4x10°.

From the tables we conclude that the application of the lag
order approximation method results in a small loss of quality of
the appointment schedule. In any case, linear or quadratic loss
and either for Weibull or lognormal service-time distribution, our
approach with lag order O generates schedules that are at least
about 63% from the optimal LF value, and hence the lag order O
is not useful in designing optimal appointment schedules which
is in line with the results from the example in previous section
(i.e., exponential service distribution). In case of a linear loss func-
tion (and either lognormal or Weibull service-time distribution), a
lag order I approximation generates schedules that are within 25%
from the optimal LF value, and that are more than 10, even 100
times in case of a quadratic loss function, faster to construct in
terms of (computation) time, c.f. Table 1.

Furthermore, from the tables we see that the lag order II gener-
ates schedules that are reasonably close to the optimal LF value
(around 2-7%). However, the computation time may not be suffi-
ciently smaller in the case of linear loss, while with quadratic
losses the lag order approximation method results in a reduction
of computation time: about 3 times faster when CV = 0.85, up to
about 20 times fast in case of CV = 0.35. We note that the code
used for the application of the lag order method is programmed
straightforwardly, see Section 3.

Optimization results of the lag order approximation method compared with simulation. N = 11, i.i.d. exponential (CV = 1) service times.

Method Linear loss Quadratic loss

Value LF A Opt Time (seconds) Value LF A Opt Time (seconds)
Lag order 0 22.220 111.1% 1.2E-1 47.627 160.1% 4.7E-2
Lag order | 12.720 20.8% 1.1E1 22918 25.2% 2.6E1
Lag order II 11.109 5.5% 3.9E2 19.476 6.4% 1.2E3
Simulation 10.526 - 5.0E2 18.311 - 5.9E3
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Table 2
Optimization results of the lag order approximation method compared with the optimal values generated by simulation. N = 11, i.i.d. Weibull service times.
Weibull Linear loss Quadratic loss
Method Value LF A Opt Time (seconds) Value LF A Opt Time (seconds)
CV=035
Lag order O 5.488 63.3% 9.3E-2 5.168 193.6% 3.1E-2
Lag order | 3.659 8.9% 1.2E1 2.167 23.1% 7.7
Lag order II 3.435 2.2% 6.4E2 1.855 5.4% 3.5E2
Simulation 3.360 - 5.1E2 1.760 - 7.7E3
CV=05
Lag order O 8.808 77.0% 1.1E-1 10.951 188.3% 3.1E-2
Lag order I 5.534 11.2% 9.3 4,689 23.4% 1.7E1
Lag order II 5.115 2.8% 4.5E2 4.008 5.5% 6.3E2
Simulation 4.977 - 5.0E2 3.799 - 7.7E3
CV=0.85
Lag order 0 18.172 104.8% 2.2E-1 33.746 169.4% 6.2E-2
Lag order I 10.489 18.2% 2.3E1 15.597 24.5% 4.4E1
Lag order II 9.268 4.5% 1.8E3 13.282 6.0% 3.3E3
Simulation 8.871 - 6.7E2 12.526 - 9.2E3
Table 3
Optimization results of the lag order approximation method compared with the optimal values generated by simulation. N = 11, i.i.d. lognormal service times.
Lognormal Linear loss Quadratic loss
Method Value LF A Opt Time (seconds) Value LF A Opt Time (seconds)
CV=035
Lag order O 6.537 84.3% 1.2E-1 5.519 173.6% 4.7E-2
Lag order | 4.054 14.3% 1.5E1 2.507 24.3% 1.2E1
Lag order II 3.682 3.8% 6.0E2 2.134 5.8% 4.6E2
Simulation 3.546 - 4.6E2 2.017 - 7.6E3
V=05
Lag order O 9.843 91.5% 1.2E-1 11.560 162.7% 3.1E-2
Lag order | 6.020 17.1% 1.1E1 5.503 25.0% 1.5E1
Lag order II 5379 4.7% 6.5E2 4.683 6.4% 3.7E2
Simulation 5.139 - 4.8E2 4.401 - 9.2E3
CV=0.85
Lag order 0 17.395 98.1% 1.1E-1 35.064 134.8% 4.7E-2
Lag order | 10.726 22.1% 2.0E1 18.750 25.6% 2.6E1
Lag order II 9.372 6.7% 6.7E2 16.037 7.4% 1.2E3
Simulation 8.783 - 5.9E2 14.932 - 7.8E3
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Fig. 2. Optimal slot sizes for the lag order approximation method and simulation. N = 11, i.i.d. Weibull distributed service times, with mean 1 and CV = 0.5.

In Figs. 2 and 3 we illustrate the schedules derived by methods does not depend on actual distribution nor loss
the lag order methods and the simulated optimal in both a function.
Weibull and lognormal setting with coefficient of variation In the following section we apply our approximation

equal to 0.5. We see that the typical shapes of the lag order approach to a realistic example, wherein the clients loss function
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Fig. 3. Optimal slot sizes for the lag order approximation method and simulation. N = 11, i.i.d. lognormal distributed service times, with mean 1 and CV = 0.5.

Table 4

The hospital’s current schedule and lag orders I and Il compared with simulation.
Quadratic weighted loss with lateness, N = 20, i.i.d. lognormal (CV =0.63) service
times.

Method Value LF A Opt Time (seconds)
Hospital’s schedule 2.000 20% -

Lag order I 1.940 17% 43

Lag order II 1.788 7.7% 2E2
Equidistant simulation 1.670 <1% 5E2
Simulation 1.660 - 12E3

is quadratic. The service-time distribution follows a Weibull
distribution.

4.2. Application to a CT-scan area

Let us consider a real-life scheduling problem in a CT-scan area,
with the following typical parameters: N = 20, T = 300 (min). As
loss function we choose the quadratic loss function with weights
o1 = 0.75, op = 0.25, and B = 1.5. Thus, we have

2073 5, 1 ,\ 6
i=1

We obtained service-time data from the Deventer Hospital
described in De Mast, Kemper, Does, Mandjes, and Van der Bijl
(2011). The best fit to this data results in a lognormal distribution
with scale parameter p=2.4 and location parameter ¢ = 0.58.
The coefficient of variation is 0.63.

In order to compare our method, we state several approxima-
tion approaches in Table 4. The table includes the hospital’s current
schedule and the (full lag order) simulated optimal schedule. For
each approach in our study the table reports the values of the loss
function, the difference between the LF values of the approach and
that of the simulated optimal value, and the computer’s CPU time
of the simulation study.

We observe that, given the loss function, the current schedule
differs about 20% compared to the simulated optimal value of the
LF, that is, the total loss of the system. Also, we see that the lag
order I and lag order II differ about 17% and 7.7% from the optimal
simulated outcome of the LF. The advantage of the lag order
method is that it significantly gains in computation time compared
to the simulated optimal value. Finally, we observe that an equidis-
tant approximation method gets close to the simulated optimal

results, but it takes our computer 2.5 times more CPU effort to
get to these results.

5. Conclusion

In this paper we study the problem of appointment scheduling
of N clients with a finite planning horizon. The clients are punctual
and can be considered as jobs having random service times. How-
ever, we do not allow for no-shows and walk-in clients. We
develop a lag order approximation method that minimizes a func-
tion of the waiting time of the clients, the idle time of the server,
and the lateness of the schedule. The approximation method with
a lag order I yields near-optimal schedules (about 20% from the
optimal loss value level) within sufficiently smaller computation
times. The lag order II approximation yields schedules that are
about 5% from the optimal LF value, and can be up to 20 times fas-
ter than simulations in case of a quadratic loss function and when
the CV (of the service-time distributions) is relatively small (i.e.,
CV =0.35).

There are a few interesting directions for further research. A
logical next step would be to extend the lag order approximation
method to allow for no-shows and walk-in clients. Including both
presents opportunities, since no-shows create gaps in the schedule
which in turn can be potentially filled by walk-ins. Managing both
at the same time is therefore a challenging endeavour.

We studied a group of identical CT-scan patients, but one could
also study a setting for which there are several patient groups, see
for example Creemers, Belén, and Lambrecht (2012).

Finally, note that there are many more factors that affect the
optimality of appointment schedules. We mention a few examples:
variability in the interappointment times, preferences of clients for
a particular time of day, skill level of the server. Many of these
issues cannot be dealt with in a straightforward manner and
require new models. From a more algorithmic perspective, it
would be interesting to investigate how the lag order approxima-
tion method can improve existing heuristics when combined.
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