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Abstract Appointment scheduling is prevalent in various healthcare settings. Gen-
erally, the objective is to determine a schedule (i.e., the sequence of epochs at which
the individual patients are asked to appear) that appropriately balances the interests
of the patients (low waiting times) and the medical staff (low idle times). In queueing
language, the planner is given the distributions of the service times of the individual
clients, and then it is his task to determine the arrival epochs of the clients. In this paper,
we demonstrate how to generate schedules that have certain optimality properties. As
a general principle, we express the performance of a schedule in terms of its associated
utility, which incorporates both waiting times and idle times. In a first class of sched-
ules (referred to as the simultaneous approach), the arrival epochs are chosen such
that the sum of the utilities of all clients as well as the service provider is minimized.
In a second class (sequential approach), the arrival epoch of the next client is sched-
uled, given the scheduled arrival epochs of all previous clients. For general service
times the numerical evaluation of the optimal schedules is often prohibitive; it essen-
tially requires knowledge of the waiting-time distribution in an appropriately chosen
D/G/1 queue. In this paper, we demonstrate that by using the phase-type counterparts
of the service-time distributions, it is feasible to efficiently determine an optimized
schedule, that is, we obtain accurate results with low computational effort. We do so
both for transient scenarios (in which the number of clients is relatively low, so that
the interarrival time is not uniform) and stationary scenarios (with many clients, and
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essentially constant interarrival times). Our approach is backed by several examples,
that give insight in the impact of the variability of the service times on the schedule;
it also shows the impact of the utility function selected.

Keywords Appointment scheduling · Healthcare · Utility functions · D/G/1 queue ·
Phase-type distribution

Mathematics Subject Classification 60K25 · 68M20 · 68Q87 · 90B36

1 Introduction

The problem of appointment scheduling is prevalent in various healthcare settings. The
objective is to (somehow) optimize the utilities of the agents involved, i.e., the provider
of the service (i.e., the medical staff) and the clients (i.e., the patients). It is clear that the
server and clients have opposite interests: the service provider’s interest is to minimize
the amount of server idleness, whereas clients seek to minimize their waiting times.
For example, clients arrive at the appointed arrival times at a dentist. Upon arrival, the
job (i.e., the client) may have to wait till the server (i.e., the dentist) finishes the work
on the previous clients. This situation is favorable for the dentist (no time wasted), but
not for the client (waiting time). On the other hand, sometimes the dentist finishes the
service for all previous clients, and stays idle till the appointed arrival time of the next
client. This is obviously favorable for the client, but less so for the dentist.

A way to balance the interests of the medical staff and the patients is to minimize the
“disutilities” experienced by both server and clients. More concretely, an optimized
schedule is such that the system’s risk (the expectation of a loss function that involves
both waiting times and idle times) is minimized, thus realizing an optimal trade off
between the agents’ interests; here “schedule” is understood as the vector of appointed
arrival times.

The main objective of this paper is to develop (computationally feasible) techniques
for generating optimal schedules. More precisely, in queueing-theoretic terms: the
planner is given the distributions of the service times of the individual clients, and then
it is his task to determine the corresponding optimal (that is, disutility-minimizing)
arrival epochs. A good schedule has the potential to have relatively low cost of service
(in terms of idle time), while maintaining a sufficiently high level of quality at the
same time (in terms of waiting time). In our work we limit ourselves to the situation
in which the order of the arrivals is fixed.

Above we mentioned the appointment scheduling problem at a dentist’s, but there
are many more healthcare-related examples. One could think of scheduling MRI and
CT patients; realize that MRI and CT scanners are expensive devices, so that it makes
sense to make sure that they are left unused relatively infrequently. Another typical
example is scheduling the usage of operating rooms in a hospital or clinic; bear in mind
that there are often just a small number of these rooms. In both examples, the patients’
waiting times should be taken into account as well: poor scheduling performance may
lead to patients choosing other hospitals.

A commonly studied version of the appointment scheduling problem is the follow-
ing. Assuming a quadratic loss function, finding the optimal schedule requires solving
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min
t1,...,tn

n∑

i=1

(
EI 2

i + EW 2
i

)
, (1)

with ti denoting the appointed arrival time of client i , with Ii the server’s idle time
prior to that arrival, and with Wi the waiting time of the i-th client. Importantly, the
random variables Ii and Wi are also affected by the arrival epochs t1, . . . , ti−1 of all
previous clients. As a consequence, solving the above optimization problem is typi-
cally hard: for general service times no manageable expressions are available for the
quantities involved, and, in addition, an n-dimensional optimization needs to be per-
formed. To mitigate these complications, we developed in [10] a sequential variant of
the above simultaneous optimization problem. The “sequential” variant determines the
i-th appointment time ti with all earlier arrival epochs being known, that is t1, . . . , ti−1.
Instead of optimizing over all ti simultaneously, the optimization problem reduces to
optimizing over a single ti (for given t1, . . . , ti−1)

min
ti

(
EI 2

i + EW 2
i

)
, i = 1, . . . , n. (2)

Since we have n clients to be scheduled, we have to perform n subsequent optimiza-
tions to determine all ti s. Besides a computational advantage, due to the fact that we
optimize over a single variable only, this approach has an explicit solution:

t1 := 0, and ti :=
i−1∑

j=1

ES j , i = 2, . . . , n,

with S j denoting client j’s sojourn time. Evidently, our model is a stylized description
of reality: patients arrive punctually, show up with certainty, and there is no additional
stream of urgent arrivals. Some of these features, however, can be included in the
analysis; see, for example, the discussion in [10].

Importantly, it is shown in [10] that this approach applies to not just quadratic loss,
but to the more general class of convex loss functions, and to arbitrary service time
distributions. In addition, it is neither required that clients’ service times stem from a
single distribution, nor that the clients have the same loss function.

A first general remark is that there are situations in which the simultaneous approach
is the more natural framework, while in other situations the simultaneous approach fits
better. In a situation in which all information about all patients is available a priori (i.e.,
a list of patients to be scheduled, including the distributions of their service times),
the logical procedure is to minimize a simultaneous objective function. There are
situations, however, where patients call the service provider to make an appointment
on the same day. In such cases, the schedule gradually fills and there a sequential
policy is natural.

The sequential approach has a substantial computational advantage over the simul-
taneous approach. The optimization is done on a patient-by-patient basis, while in the
simultaneous approach there is a single “social welfare” optimization (e.g., the optimal
schedule maximizes the aggregate utility of all actors involved, viz., all clients and the
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server). A crucial question here is how the choice of a specific optimization scheme
affects the utilities as perceived by the individual actors: does one of the approaches
lead to a schedule that is in favor of some patients but highly disadvantageous for
others? Later in the paper, we systematically assess this effect.

In the literature, a wide variety of objective functions have been proposed. We
do not advocate the use of a specific loss function; as mentioned earlier, one of the
attractive features of the techniques presented in this paper is that we allow for a
broad spectrum of possible choices (simultaneous vs. sequential approach, quadratic
vs. linear loss, weighing the individual terms the objective function is composed of
by specific coefficients). The choice for a particular loss function is very much case-
specific, even within the domain of healthcare. Any objective chosen (simultaneous
vs. sequential approach, quadratic vs. linear loss, weighing the individual terms the
objective function is composed of by specific coefficients) has its own repercussions
in terms of the (dis-)utility experienced by the individual actors of the model (the
patients and the server).

The main objective of this paper is to study the computational feasibility of the
scheduling algorithms described above. They require knowledge of first and second
moments of the idle times and waiting times, which are (for general service times) not
available. The main idea is to rely on a two-moment fit, advocated in, for example, [18],
in which the service time under consideration is replaced by a phase-type distribution
(of low dimension) with the same mean and variance. These phase-type distributions do
allow (semi-)explicit expressions for the utility functions, which can then be optimized
over the ti s. In the sequential case this is a single-dimensional optimization (which
has an explicit solution for quadratic and linear loss, as described above); in the
simultaneous case it is an n-dimensional optimization.

Consider the case that the service times are independent and identically distributed
(i.i.d.). In case the number of clients is relatively low, the interarrival times may sub-
stantially vary (realize that the first client finds the system empty with certainty). If,
on the contrary, there are many clients, the schedule will tend to steady state: the opti-
mal interarrival times will be essentially constant. By making a connection to appro-
priately chosen D/G/1 queues (with the service times phase-type), we demonstrate
how to determine the corresponding “stationary schedules,” both in the simultane-
ous and sequential approach. Methodologically, our work is related to, for example,
[7,8,13,21].

In [7] a generating function approach is relied on to facilitate quick and accurate
evaluation of (discrete-time) schedules. The main idea behind [13] is to approximate
the service-time distribution, using a fit of the first four moments, by a beta distribution
(which has four parameters); then an efficient technique is developed to numerically
evaluate the (linear) objective function. The idea of using phase-type distributions has
been advocated in [21].

In addition, we mention the related work by Weiss [22], who develops a surpris-
ingly accurate, yet easily implementable, heuristic to approximate the schedule that
minimizes a linear cost function (where it is noted that this heuristic can be seen as an
example of the sequential approach derived in [10]). Robinson and Chen [17] focus on
techniques that facilitate the estimation of the relative cost of the patient waiting time
given average queue length and occupation rate. Luo et al. [15] develop, for general
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cost functions, effective heuristics that also take into account the fact that patients may
cancel the appointment, or do not show up.

This paper is organized as follows. In Sect. 2 we mathematically introduce our
model, and define the risk functions considered. The approach followed is presented
in Sect. 3. Section 4 demonstrates our approach for transient schedules (situations
with relatively low numbers of clients, that is), while Sect. 5 considers the stationary
counterpart (many clients). In Sect. 6, we discuss the potential and limitations of our
approach; in particular, we show that the error due to the phase-type fit is small. Section
7 concludes and suggests ideas for future work.

Various graphs pictorially illustrate a number of interesting effects. We quantify the
following features: (i) the convergence of transient schedules (relatively low number of
clients) to their stationary counterparts; (ii) the impact of the choice of the risk function
on the schedule; (iii) the impact of the service times’ variability on the schedule.
Also the differences between the simultaneous and sequential approach are studied
in greater detail. Evidently, replacing a non-phase-type distribution by its phase-type
counterpart introduces an error; a simulation study shows that the impact of this error is
negligible.

2 Background and model

The mathematical treatment of the appointment scheduling problem with one server
dates back to at least the seminal works of [4] and [23]. Since then, a sizeable number
of papers has appeared in the operations research literature. As a general remark,
the results in these papers tend to be rather case-specific, in terms of the service-time
distribution under consideration as well as the loss function chosen. One often relies on
simulations to overcome the inherent computational complexities. Such an approach
has clear limitations: it evidently lacks general applicability, and, more importantly,
it does not provide us with any structural insights into the nature of the solution. Our
aim is, therefore, to develop an approach that works for general service times, general
loss functions, and that is numerically feasible.

A common way to reason about an appointment scheduling problem is to define
for each arrival i a so-called risk. This risk is then the expectation of a loss function
that consists of a part reflecting the idle time and a part reflecting the waiting time. A
natural choice is Eg(Ii ) + Eh(Wi ), where it makes sense to choose non-decreasing
loss functions g(·) and h(·) with g(0) = h(0) = 0. Observe that these risks clearly
depend on the arrival epochs ti and service times Bi ; more precisely, the risk associated
to the i-th client depends on the arrival epochs t1 up to ti and service times B1 up to
Bi−1. The optimal schedule corresponding to the simultaneous approach then follows
from solving the minimization problem over the arrival epochs solely

min
t1,...,tn

n∑

i=1

(Eg(Ii ) + Eh(Wi )) , (3)

whereas its sequential counterpart minimizes Eg(Ii ) + Eh(Wi ) over ti , with
t1, . . . , ti−1 given.
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In our paper, we focus on a quadratic and a linear loss function, but, importantly,
the setup carries over to any loss function in the class defined above. For a quadratic
loss the risk is defined by

R(q,α)
i (t1, . . . , ti ) := αEI 2

i + (1 − α)EW 2
i , i = 1, . . . , n and α ∈ (0, 1).

Due to the well-known Lindley recursion [14],

Ii = max{ti − ti−1 − Wi−1 − Bi−1, 0} (4)

and

Wi = max{Wi−1 + Bi−1 − ti + ti−1, 0}. (5)

Let Si := Wi + Bi denote the sojourn time of the i-th client, with distribution function
FSi (·). In addition, define by xi−1 := ti − ti−1 the time between the (i − 1)-st and i-th
arrival. Then, with (4) and (5) in mind, we may write the system’s risk (in relation to
the i-th client) as

R(q,α)
i (t1, . . . , ti−1, ti−1 + xi−1) : = αEI 2

i + (1 − α)EW 2
i

= αE (xi−1 − Si−1)
2 1xi−1>Si−1 (6)

+ (1 − α)E (Si−1 − xi−1)
2 1xi−1<Si−1 .

This is a nonnegative convex function of xi−1. In the sequel, we specialize to the case
of equal weights, that is, α = 1

2 . In that case, the risk related to the i-th client reduces
to 1

2 E (Si−1 − xi−1)
2 (where we can leave out the factor 1

2 for obvious reasons). For
α �= 1

2 there is no such a simplification of the expressions. The computation time
required to determine optimal schedules does not depend on the choice of α, though:
all cases can be evaluated in essentially the same amount of computation time. At the
end of Sect. 5.3, we assess the effect of the weights in steady state. This study is done
by computing the optimal interarrival times for various α s in (0, 1).

In the case of a linear loss function, the risk associated with the i-th client equals
the sum of the expected waiting time and the expected idle time. Again, due to (4) and
(5), we obtain, again with α ∈ (0, 1),

R(a,α)
i (t1, . . . , ti−1, ti−1 + xi−1) : = αEIi + (1 − α)EWi

= αE (xi−1 − Si−1)1xi−1>Si−1 (7)

+ (1 − α)E (Si−1 − xi−1)1xi−1<Si−1 ,

which is a nonnegative convex function of xi−1. Again, we consider in this paper
just the case of equal weights, so that the risk related to the i-th client reduces to
1
2 E|Si−1 − xi−1| (where again we can leave out the factor 1

2 ).
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3 The phase-type approach

As argued earlier in this paper, the main problem when generating schedules of a
realistic size concerns the fact that neither explicit expressions are available for the
expected idle times and waiting times (or the corresponding second moments), nor
for the distributions of the sojourn times—these are needed to be able to evaluate the
objective function (which then needs to be optimized, either sequentially or simulta-
neously). This section proposes an approach to circumvent this problem, by replacing
the service times by a phase-type counterpart (of relatively low dimension). For these
approximate service times, we can evaluate the first and second moments of the client’s
sojourn time and therefore, through (6) and (7), client i’s risk associated with Ii and
Wi , as it will turn out.

The approach we propose in this paper consists of three steps:

1. Based on the service-time’s mean and variance (or, equivalently, the mean and the
coefficient of variation), we fit a phase-type distribution.

2. With a recursive procedure we derive, for each client, the sojourn-time distribution
(for the fitted phase-type distribution).

3. The phase-type based sojourn-time distribution enables us to evaluate the objective
function. Relying on standard numerical packages, we can then solve the simulta-
neous optimization problem as stated in (3). In the sequential counterpart it suffices
to compute the expected value (in case of a quadratic loss) or median (in case of a
linear loss) of the sojourn times.

In this section, we provide further details on our approach; in Sects. 4 and 5, we
demonstrate the resulting procedure in transient (relatively few clients) and steady-
state (relatively many clients) settings.

3.1 Phase-type fit of service-time distribution

In the first step of our approach we use phase-type distributions to fit the service-time
distributions in the system under study. It is well-known from the literature that phase-
type distributions, that are mixtures and convolutions of exponential distributions
(such as mixtures of Erlang distributions, or hyperexponential distributions), are able
to approximate any positive distribution arbitrarily accurately, see, for example, [2]
and [18].

The reason to use phase-type distributions is twofold. In the first place, due the
enforced Markovianity, the resulting system often enables the computation of explicit
expressions for various queueing-related metrics, such as the waiting times distribution
(where “explicit” typically means in terms of eigenvalues/eigenvectors of an associated
eigensystem). In the second place, restricting ourselves to phase-type distribution of
a certain dimension, estimating this distribution from data can be done via a (semi-)
parametric density estimation procedure.

In our study, we use the idea presented in [18] to match the first and second moment
of the service-time distribution, or, equivalently, the mean and the squared coefficient
of variation (SCV); the SCV of the random variable X is defined as its variance divided
by the square of the mean. In line with [11], we choose to match a mixture of two
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Erlang distributions in case the actual service-time distribution has an SCV smaller
than 1, and a hyperexponential distribution in case of an SCV larger than (or equal
to) 1. More precisely:

– In case SCV < 1, we match the service-time distribution with a mixture of two
Erlang distributions with the same scale parameter, denoted as EK−1,K (μ; p). A
sample from this distribution is obtained by sampling from an Erlang distribution
with K phases and mean K/μ with probability p, and from an Erlang distribution
with K − 1 phases and mean (K − 1)/μ with probability 1 − p. Its n-th moment
is given by

E
[
En

K−1,K

] = p
(K + n − 2)!

(K − 2)!
1

μn
+ (1 − p)

(K + n − 1)!
(K − 1)!

1

μn
,

with p ∈ [0, 1]. The corresponding SCV equals

K − (1 − p)2

(K + p − 1)2 ,

which lies between 1/K and 1/(K − 1) for K ∈ {2, 3, . . .}. We can thus uniquely
identify an EK−1,K (μ; p) distribution matching the first two moments of the target
distribution, as long as SCV < 1.

– In case SCV ≥ 1, we match the service-time distribution with a specific type of
the hyperexponential distribution, viz., a mixture of two exponential distributions,
to be denoted by H2(μ; p), with μ = (μ1, μ2). Its n-th moment is given by

E
[
Hn

2

] = p
n!
μn

1
+ (1 − p)

n!
μn

2
.

We impose the additional condition of balanced means, see Eq. (A.16) in [18]; that
is, we require μ1 = 2pμ and μ2 = 2(1− p)μ for some μ > 0. The corresponding
SCV equals (2p(1 − p))−1, which is larger than (or equal to) 1. It can be verified
that

p = 1

2

(
1 ±

√
SCV − 1

SCV + 1

)
.

It is readily checked that for the special case SCV = 1, the fit results in an expo-
nential distribution (with p = 1

2 ).

3.2 Recursive procedure to derive sojourn time distribution

We now present a procedure to compute the sojourn-time distribution of any specific
client, in case the service times are of phase type. We specialize to mixtures of Erlangs
(i.e., EK−1,K (μ; p)) and hyperexponentials (i.e., H2(μ; p)), as these are the ones we
fitted our “actual” service-time distributions to. It is noted, though, that the procedure
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works for any phase-type distribution; see, for example, [21]. In the sequel, we assume
that the service times are i.i.d., but the procedure can be extended to independent,
non-identically distributed phase-type service times, at the expense of rather involved
notation.

A phase-type distribution is characterized by an m ∈ N, an m-dimensional vector α

with nonnegative entries adding up to 1, and S = (si j )
m
i, j=1 an (m × m)-dimensional

matrix such that sii < 0, si j ≥ 0 and
∑m

j=1 si j ≤ 0 for any i ∈ {1, . . . , m}.
• In case SCV < 1, we use an EK−1,K (μ; p) distribution (as explained in Sect. 3.1).

Then m = K , and the vector α such that α1 = 1 and αi = 0 for i = 2, . . . , K . In
addition sii = −μ for i = 1, . . . , K and si,i+1 = −sii = μ for i = 1, . . . , K − 2,
while sK−1,K = (1 − p)μ; all other entries are 0.

• In case SCV ≥ 1, we use a H2(μ; p) distribution (as explained in Sect. 3.1). Then
m = 2, and α1 = p = 1 − α2. Also, sii = −μi , for i = 1, 2, while the other two
entries of S equal 0.

For more background on phase-type distributions, see [1].
Next, we briefly describe the algorithm, presented in [21], that determines

the clients’ sojourn-time distributions. To this end, define the bivariate process
{Ni (t), Ki (t), t ≥ 0} for client i = 1, . . . , n. Here, Ni (t) is the number of clients
present in front of the i-th arriving clients, t time units after her arrival; obviously
Ni (t) ∈ {i, . . . , i − 1}. The second component, Ki (t) ∈ {1, . . . , m}, represents the
phase of the client in service t time units after the arrival of the i-th client, where
Ni (t) = 0 refers to the case that the last arriving client is in service. We also introduce
the probabilities, for t ≥ 0, i = 1, . . . , n, j = 0, . . . , i − 1, and k = 1, . . . , m,

p(i)
j,k(t) = P (Ni (t) = j, Ki (t) = k) .

In addition, the following vector (of dimension mi) plays a crucial role:

P i (t) :=
(

p(i)
i−1,1(t), . . . , p(i)

i−1,m(t), p(i)
i−2,1(t), . . . , p(i)

i−2,m(t),

. . . , p(i)
0,1(t), . . . , p(i)

0,m(t)
)

.

The sojourn-time distribution of the i-th client can be computed from P i (t) through
the identity, with emi an all-one vector of dimension mi ,

Fi (t) := P(Si ≤ x) = 1 −
i−1∑

j=0

m∑

k=1

p(i)
j,k(t) = 1 − P i (t)emi ,

Considering the first client, to arrive at t1 = 0, it is standard that P1(t) = α exp(St)
(which is an m-dimensional object). Concerning the second client, arriving x2 after
the first client, it can be argued that

P2(t) = (P1(x2),αF1(x2)) exp(S2t), t ≥ 0
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which is an object of dimension 2m; here, with s := −Sem and 0m,m an (m × m)

all-zero matrix,

S2 :=
(

S sα
0m,m S

)
.

The sojourn-time distributions of the other clients can be found recursively in a similar
manner. To this end, define the matrix Ti of dimension (i − 1)m × m through

Ti := (0m,m, 0m,m, . . . , 0m,m, sα)T ;

also

Si :=
(

Si−1 T i

0m,(i−1)m S

)
.

Then the vector P i (t) (dimension mi) can be found from P i−1(t) (dimension m(i−1))
by the recursion

P i (t) = (P i−1(xi−1),αFi−1(xi−1)) exp(Si t), t ≥ 0.

Realize that in our examples the matrix S is upper triangular (in the hyperexponential
case in fact even diagonal), and hence so are the matrices Si . As a consequence, the
eigenvalues can be read off from the diagonal. This property facilitates easy compu-
tation of the matrix exponent exp(Si t); in case of the EK−1,K (μ; p) all eigenvalues
are μ.

3.3 Optimal schedule for sequential and simultaneous approach

Above we explained how to approximate any distribution on [0,∞) by a phase-type
distribution of relatively low dimension (either a mixture of Erlang distributions or
a hyperexponential distribution, depending on the value of the SCV), and how to
compute the corresponding sojourn-time distributions. The next step is to use these
findings to determine optimal schedules, for the sequential and simultaneous opti-
mization approach, and for quadratic and the linear loss functions, as in [10].

3.3.1 The sequential optimization approach

In the sequential optimization approach, we optimize for each arriving client i the
corresponding risk. This means that we minimize the expected loss over ti , for given
values of t1(= 0), . . . , ti−1. In suggestive notation, we are faced with the optimization
program

min
ti

R(ti | ti−1, . . . , t1) = min
ti

(Eg(Ii ) + Eh(Wi )) .
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As we argued earlier, to solve this sequential optimization problem, we only need
to know the sojourn-time distribution of the previous arrival, Si−1, given given
t1, . . . , ti−1 [10]. We now show in greater detail how this works for the weighted-
linear and the weighted-quadratic loss function.

Weighted-linear loss function. Let the risk for each arrival be a weighted expected
linear loss over the idle time and waiting time, i.e.,

min
ti

R(a,α)(ti |ti−1, . . . , t1) = min
ti

αEIi + (1 − α)EWi , i = 1, . . . , n, α ∈ (0, 1).

Given (7) we may write for i = 2, . . . , n and again for α ∈ (0, 1)

min
xi−1

αE (xi−1 − Si−1) 1xi−1>Si−1 + (1 − α)E (Si−1 − xi−1) 1xi−1<Si−1,

where the interarrival time xi−1 equals ti − ti−1.
Then the optimal interarrival time x�

i−1 can be found by solving the first-order
equation

αFSi−1(x) − (1 − α)
(
1 − FSi−1(x)

) = FSi−1(x) − 1 + α = 0.

This leads to the optimal schedule

t�1 := 0 and t�i :=
i−1∑

j=1

F−1
S j

(1 − α) , i = 2, . . . , n.

For α = 1
2 , we obtain that client i is supposed to arrive after a time that equals the

sum of the medians of the sojourn times of all previous clients.
Weighted-quadratic loss function. Let the risk for each arrival be a weighted

expected quadratic loss over the idle time and waiting time

min
ti

R(q,α)(ti |ti−1, . . . , t1) = min
ti

αEI 2
i

+(1 − α)EW 2
i , i = 1, . . . , n, α ∈ (0, 1).

Given (6) we may write for i = 2, . . . , n and again for α ∈ (0, 1), with xi−1 = ti −ti−1,

min
xi−1

αE (xi−1 − Si−1)
2 1xi−1>Si−1 + (1 − α)E (Si−1 − xi−1)

2 1xi−1<Si−1 .

As above, the optimal interarrival time x�
i−1 follow from the first-order equation, which

now reads

α(x − ESi−1) − (1 − 2α)

∞∫

x

P(Si−1 > s)ds = 0.
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For α = 1
2 we obtain the optimal schedule

t�1 := 0 and t�i :=
i−1∑

j=1

ES j , i = 2, . . . , n.

This means that for α = 1
2 we obtain that client i is supposed to arrive after a time

that equals the sum of the means of the sojourn times of all previous clients.

3.3.2 The simultaneous optimization approach

In case of a simultaneous optimization approach we set the optimal schedule that
jointly minimizes

min
t1,...,tn

R(t1, . . . , tn) = min
t1,...,tn

n∑

i=1

(Eg(Ii ) + Eh(Wi )) .

It is known that this joint optimization has in general no tractable solution, as was the
case in the sequential approach; only in case of an exponential service-time distribution
and a linear loss function it has a tractable solution, see [21]. Therefore, we rely on
numerical analysis software to find the optimal schedule.

In the next sections, we present numerical examples that feature schedules generated
by our approach. Section 4 concentrates on the situation of a relatively low number
of clients, whereas Sect. 5 uses results for the steady-state of the D/G/1 queue (with
phase-type service times) to analyze the situation of a relatively high number of clients.
In Sect. 6, we discuss the potential and limitations of our approach; in particular, we
show that the error due to the phase-type fit is small.

4 Optimal scheduling in a transient environment

If the number of clients in the schedule, n, is relatively high, and their service times
are i.i.d., then one will obtain schedules with more or less constant interarrival times.
This section presents results for optimal schedules that relate to the opposite case, i.e.,
situations in which the number of clients is relatively low; particularly at the beginning
of the schedule (and in the simultaneous approach also at the end) it is expected that
the optimal interarrival times will substantially vary. Our experiments show that for
the loss functions and the range of SCVs that we consider, this “transient effect” has
significant impact up to, say, n = 25 clients.

Normalizing time such that the mean service time equals 1, we use four different
SCVs (viz., SCV ∈ {0.1225, 0.7186, 1.0000, 1.6036}); these can be considered typ-
ical values in services and healthcare, see [11]. The latter three values are also used
in [21] to compute optimal schedules for. We added SCV = 0.1225 = 0.352 to be
consistent with healthcare literature, where the typical range for CVs is from 0.35 up
to 0.85, as Cayirli and Veral identified in their extensive literature survey [5].
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Based on our approach, as proposed in Sect. 3, we first find the corresponding
phase-type service-time distribution, then we derive for each arrival the sojourn-time
distribution, and finally we compute the optimal schedule (for the sequential and
simultaneous approach, with linear and quadratic loss functions).

• We model an SCV = 0.1225 < 1 with an EK−1,K (μ; p) distribution with parame-
ters K = 9 (realize that SCV ∈ [ 1

9 , 1
8 ]), μ = 8.3958 and p = 0.6042.

• We model an SCV = 0.7186 < 1 with an EK−1,K (μ; p) distribution with parame-
ters K = 2, μ = 1.6003 and p = 0.3997. The resulting parameters are α = (1, 0)

and

S =
(−1.6003 0.9606

0 −1.6003

)
.

• We model an SCV = 1 with an exponential distribution with parameter μ = 1.
• We model an SCV = 1.6036 with a H2(μ; p) distribution under the condition of

balanced means and with parameters chosen by the matching method explained
above. The resulting parameters are α = (p, 1 − p) = (0.7407, 0.2593) and

S =
(−1.4815 0

0 −0.5185

)
.

Note that for all cases the mean service time is given by (em is the all-ones vector)

−αS−1em = 1,

as desired.
The sojourn-time distribution of each individual client is then found by perform-

ing the second step of our approach, as explained in Sect. 3. Next, based on these
sojourn-time distributions we compute the optimal interarrival times x�

i through both
the sequential approach and the simultaneous approach. Both approaches are studied
in case of an equally weighted linear loss function and an equally weighted quadratic
loss function. In our experiments for the simultaneous case, we study various schedule
sizes (n = 5, 10, . . . , 25 arrivals).

The results for the sequential approach are shown in Fig.1. From these figures we
observe that in case of a linear loss that in case SCV > 1 the interarrival times in
the beginning of the scheme (up to the 5-th arrival) are smaller than the interarrival
times for the cases SCV = 1 or SCV < 1. Later in the schedule (from arrival 10
onwards) the optimal interarrival times are rather similar in size (that is, the curves for
different SCVs are close together), but increasing in the value of the SCV. In case of a
quadratic loss, only the first and second interarrival time are close together, but from
arrival 3 onwards the interarrival times differ substantially; again they are increasing
in the SCV, as expected. Overall, for any SCV the quadratic loss yields larger optimal
interarrival times than the linear loss.

The five lines in Figs. 2, 3, 4, and 5 show the optimal schedules for n = 5, 10, . . . , 25
arrivals under simultaneous optimization. From these figures we observe two interest-
ing features. First, the simultaneous approach leads to schemes for which the optimal
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Fig. 1 The optimal schedule in x�
i s by sequential optimization for different SCVs
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Fig. 2 The optimal schedules in x�
i s by simultaneous optimization for SCV = 0.1225 < 1
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Fig. 3 The optimal schedules in x�
i s by simultaneous optimization for SCV = 0.7186 < 1

interarrival times increase in the beginning and decrease towards the end of the scheme.
The short interarrival times in the beginning of the schedule are essentially due to the
fact that there the risk of waiting is relatively low; the short interarrival times at the
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Fig. 4 The optimal schedules in x�
i s by simultaneous optimization for SCV = 1
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Fig. 5 The optimal schedules in x�
i s by simultaneous optimization for SCV = 1.6036 > 1

end can be explained from the fact that, despite a potentially substantial risk of high
waiting times, there are few patients suffering from this (e.g., the last patient having a
large service time does not affect the waiting time of any other patients). In the middle
part the interarrival times are nearly constant indicating that the system is not affected
by any start- or end-of-session effects. The steady-state solution, the top horizontal
line, is added in each case. For all SCVs the system seems to converge fast to the
steady state. This justifies considering the steady-state solution in which all transient
effects are neglected; see Sect. 5 for more results.

The pattern described above is the so-called dome shape, which is also found in
related literature. In [8,20], the expected waiting times and expected session-end time
are minimized, while [16,19] minimize the combination of expected waiting and idle
times. In [9] also expected overtime is added to the latter minimization problem; for
a more detailed discussion on the effect of overtime on the schedule, see Sect. 6.4.

It should be noted that in case of linear loss minimizing expected session-end time,
i.e., the “makespan,” is equivalent to minimizing the sum of all expected idle times.
Furthermore, optimal interarrival times computed by the recursive beta distribution
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approximation, as advocated in [13], show a dome shape pattern as well. In Sect. 6.3,
we further compare this method with the phase-type approach. In addition, in case of
a linear loss function the dome shape pattern is also found when minimizing expected
quadratic waiting and idle times, see [10].

Second, we observe that the interarrival times tend to increase in the value of the
SCV, and, again, for any of the SCVs the quadratic loss leads to larger interarrival
times than linear loss.

5 Optimal scheduling in steady-state environment

In the previous section, we showed that our approach enables us to derive optimal
interarrival times for different levels of SCV, for both the sequential and simultaneous
optimization, and for various risk functions and scheme sizes. Note that we chose the
equally weighted linear and quadratic loss (that is, α = 1

2 ), which we continue to
do in this section, apart from Sect. 5.3 in which also the effect of α on the optimal
schedule will be studied. The primary goal of this section is to analyze the case of a
large number of clients with i.i.d. service times. In this situation, the schedules will
have constant interarrival times, and we will show in detail how to determine these.

To study the steady-state interarrival times, given the value of the service-time
distribution’s SCV, we need to derive the steady-state sojourn-time distribution of the
corresponding D/G/1 queue, with the service times having either a mixture of Erlang or
hyperexponential distribution. We first show how we derive the steady-state sojourn-
time distribution for various SCVs; then we model the optimal interarrival time as a
function of the SCV for both sequential and simultaneous optimization using the loss
functions mentioned above.

We first point out that the optimality condition, that determines the optimal interar-
rival times x�, depends on the choice of the specific case (simultaneous vs. sequential,
linear vs. quadratic). This optimality condition is a relation that involves both the dis-
tribution of the steady-state sojourn time S and x�. To this end, we first observe that
(use the Lindley recursion, in conjunction with the fact that it cannot be that both Wi

and Ii are positive)

Eg(Ii ) + Eh(Wi ) = �(Si−1 − xi−1),

with �(·) defined through

�(x) := g(−x)1{x<0} + h(x)1{x≥0}.

In case of the sequential optimization approach, [10] proves the (conceivable) result
that for any convex loss function the optimal interarrival time solves

dE�(S − x)

dx
= 0;

in the transient case we have to take the sojourn-time distributions of the individual
clients, whereas in the steady-state case we have to take the stationary sojourn-time
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distribution. In special cases this representation leads to appealing relations: for equally
weighted loss functions we obtain for linear loss the median of the sojourn time, i.e.,
x� = F−1

S

( 1
2

)
, and for quadratic loss the mean of the sojourn time, i.e., x� = ES.

In case of the simultaneous optimization approach, we are to evaluate, for large n,

min
x1,...,xn

n∑

i=1

E�(Si (x) − xi ) ≈ n · min
x

E�(S(x) − x);

we write S(x) rather than just S to emphasize the fact that the sojourn times depend on
the interarrival time x . The optimal interarrival time then follows from the first-order
condition

d

dx
E�(S(x) − x) = 0.

For linear loss this yields the condition

d

dx
E|S(x) − x | = d

dx

⎛

⎝
∞∫

x

(t − x) fS(x)(t) dt +
x∫

0

(x − t) fS(x)(t)dt

⎞

⎠ = 0, (8)

whereas for quadratic loss we obtain

d

dx
E ((S(x) − x)2 = d

dx

(
ES(x)2 − 2xES(x) + x2

)
= 0. (9)

The above formula suggests that the linear case requires knowledge of the distribution
function of S(x), but, interestingly, just ES(x) is needed. This can be seen as follows.
Note that

n∑

i=1

(EIi + EWi ) =
n∑

i=1

((EIi + EBi ) + (EWi + EBi )) − 2
n∑

i=1

EBi .

Now realize that, in addition to Wi + Bi = Si , we also have that (recognize the
“makespan”)

n∑

i=1

(Ii + Bi ) = tn + Sn .

Realizing that the value of
∑n

i=1 EBi does not affect the optimization, we conclude
that minimizing the linear loss is equivalent to minimizing

∑n
i=1 ESi + tn + ESn .

Because tn ≈ (n − 1)x , we are to minimize ES(x) + x .
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5.1 Steady state results in case SCV = 1

We illustrate the steady-state results in case of SCV = 1 here, since it leads to nice
explicit results. Based on results of a G/M/1 queue [18], we have the following expres-
sion for the sojourn-time distribution in case SCV = 1:

P(S ≤ x) = 1 − e−μ(1−σx )x , x ≥ 0, (10)

where σx ∈ (0, 1) solves σx = e−(μ−μσx )x .

Results for a sequential approach. In case the loss function is assumed linear, we
solve x� = F−1

S (1/2). We find

x = F−1
S

(
1

2

)
= log 2

μ(1 − σx )
and FS(x) = 1

2
= 1 − σx ,

leading to an optimal schedule with interarrival times

x� = 2 log 2

μ
≈ 1.3862

μ
.

For the case of quadratic loss we solve

x = ES = 1

μ(1 − σx )
and log σx = −1,

and obtain

x� = e

μ(e − 1)
≈ 1.5820

μ
.

These limiting results are in line with those corresponding to the transient schemes in
Fig. 1a—for schedules of more than, say, 15 clients, the middle part of the schedule is
close to the steady-state schedule. We observe that in this sequential setup quadratic
loss leads to larger optimal interarrival times than linear loss.

Results for a simultaneous approach. To obtain the steady-state results in the simul-
taneous case and linear loss we solve the first order condition (8):

d
dx

(∫ ∞
x (t − x) fS(x)(t) dt + ∫ x

0 (x − t) fS(x)(t) dt
)

= d
dx

1−2e−μ(1−σx )x −μ(1−σx )x
μ(σx −1)

= −σ ′
x

1+σx (log σx −2)

μ(σx −1)2σx

= 1+(log σx −2)σx
μ(σx −1)(1−σx +σx log σx )

= 0,

where we used that

σ ′
x = μσx (σx − 1)

1 − μσx x
and x = log σx

μ(σx − 1)
.

123



Queueing Syst

This equation is solved for σx ≈ 0.32, and we obtain

x� ≈ 1.6803

μ
.

The case of quadratic loss can be dealt with analogously; now the first-order condition
(9) needs to be solved. We eventually obtain

x� ≈ 1.8466

μ
.

Again these limiting results align well with the results of large transient schemes, see
Fig. 1b. We observe that, as in the sequential approach, in the simultaneous approach
quadratic loss leads to larger optimal interarrival times than linear loss.

5.2 Steady-state results in case SCV �= 1

As pointed out in Sect. 3, in the first step of our approach we fit a phase-type distribution
(with the right mean and SCV) to our service-time distribution. The special case of
SCV = 1 (i.e., exponentially distributed service times) was dealt with in the previous
subsection; now we focus on the cases in which SCV �= 1.

5.2.1 Steady-state analysis for the D/EK−1,K /1 queue

As presented in Sect. 3.1, we use the EK−1,K (μ, p) distribution to approxi-
mate service-time distributions with an SCV between 1/K and 1/(K − 1), for
K ∈ {2, 3, . . .}. We analyze the resulting D/EK−1,K /1 queue through the sequence
(N0, N1, . . .) with N0 = 0 (the system starts empty), and Ni referring to the num-
ber of phases in the system just after the i-th arrival. These phases are exponentially
distributed with mean 1/μ.

First observe that (N0, N1, . . .) follows a (discrete-time) Markov chain. It is ele-
mentary to express the transition probabilities pm,n = P (Ni+1 = n | Ni = m) in terms
of the parameters K , p, μ, and the (constant) interarrival time x . The steady-state dis-
tribution of N now follows from, with the matrix P = (pm,n)∞m,n=0 denoting the
transition matrix,

a = a P; (11)

in addition the normalization constraint a0 + a1 + a2 + . . . = 1 needs to be imposed.
Based on the limiting probabilities a, we are in a position to derive the steady-state
sojourn time distribution and its moments, and hence we can deal with the various
first-order conditions of Sect. 5. In order to solve (11), we need to truncate the state
space to {0, . . . , M}; from the fact that the an decay roughly exponentially in n (with
a decay rate that can be evaluated explicitly), it is not hard to select an appropriate
value for M . Generally speaking, we saw in this SCV < 1 regime that the choice
M = 10 + K works well in nearly all situations.
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Now with the sojourn time distribution

P (S ≤ t) = P (W + B ≤ t) =
t∫

0

FW (t − u) fB(u) du (12)

and the vector a that solves (11), we may write

P (S ≤ t) = a0 FB(t) +
M∑

m=1

am

t∫

0

μ
(μ(t − u))m−1

(m − 1)! e−μ(t−u) fB(u) du,

ES = EW + EB =
M∑

m=0

am

(
p

m + K − 1

μ
+ (1 − p)

m + K

μ

)
,

ES2 = EW 2 + 2EW EB + EB2

=
M∑

m=1

am
m(m + 1)

μ2 + 2
N∑

m=1

am

(
p

m

μ

K − 1

μ
+ (1 − p)

m + 1

μ

K

μ

)

+
(

p
K (K − 1)

μ2 + (1 − p)
(K + 1)K

μ2

)
.

5.2.2 Steady-state results for the D/H2/1 queue

Mimicking the procedure described in Sect. 5.2.1, we now sketch a procedure to
generate the steady-state sojourn-time distribution of a D/H2/1 system, so as to
cover the case SCV > 1. To do so, we analyze the queue through the sequence
((N0, K0), (N1, K1), . . .) with (Ni , Ki ) = (m, k) meaning that the number of patients
in the system just after the i-th arrival is m, and the phase of the client in service is
k; if k = 1 the patient in service is served with rate μ1, and if k = 2 with rate μ2.
Evidently, (Ni , Ki ) ∈ {1, 2, . . .} × {1, 2}.

Again we truncate the state-space (in terms of the number of clients) to M , generate
the transition probability matrix P , and solve (11). Define am,k as the steady-state
probability of m clients in the system immediately after an arrival epoch, jointly
with the phase of the client in service being k. We then evaluate (12), which leads
to the following expressions. For the distribution function we obtain, with (Hj,2) j a
sequence of i.i.d. samples from a H2(μ; p) distribution, and B(k) having an exponential
distribution with mean 1/μk (k = 1, 2),

P(S ≤ t) = a0,0 FB(t) +
M∑

m=1

2∑

k=1

am,k

t∫

0

P

⎛

⎝
m−1∑

j=1

Hj,2 + B(k) < t − u

⎞

⎠ fB(u) du.

This expression can be evaluated further, realizing that, with D following a binomial
distribution with parameters m − 1 and p,
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m−1∑

j=1

Hj,2
d=

D∑

i=1

B(1)
i +

m−1−D∑

i=1

B(2)
i ,

where B(k)
i are i.i.d. copies of B(k). For the corresponding first and second moment

we obtain (with EH2 = p/μ1 + (1 − p)/μ2)

ES =
M∑

m=1

{
am,1

(
mEH2 + 1

μ1

)
+ am,2

(
mEH2 + 1

μ2

)}
+ EH2,

ES2 =
M∑

m=1

⎧
⎨

⎩am,1

m∑

j=0

(
m

j

) {
( j + 1)( j + 2)

μ2
1

+ 2
( j + 1)(m − j)

μ1μ2

+ (m − j)(m − j + 1)

μ2
2

}

+ am,2

m∑

j=0

(
m

j

) {
j ( j + 1)

μ2
1

+ 2
j (m − j + 1)

μ1μ2
+ (m − j + 1)(m − j + 2)

μ2
2

}}

+ 2
M∑

m=0

{
am,1

(
mEH2 + 1

μ1

)
+ am,2

(
mEH2 + 1

μ2

)}
EH2

+
(

2p1

μ2
1

+ 2p2

μ2
2

)
.

Evidently, by letting M grow large we get arbitrarily close to the true vector of sta-
tionary probabilities. We validated that the choice of M = 25 works well for the range
of SCV ∈ (0, 3) when α equals 1

2 . However, when α is closer to 1 the truncation level
M should be suitably increased.

5.3 Computational results in a steady-state environment

In this section, we studied the optimal interarrival time as a function of the service-
time distribution’s SCV ∈ (0, 3). We did this for the sequential and the simultaneous
optimization approach, in case of both an (equally weighted) linear loss function and
an (equally weighted) quadratic loss function. From these results, that are depicted in
Fig. 6, we conclude that the steady-state optimal interarrival time is increasing in the
SCV for any of the four scenarios considered, as expected. In line with earlier findings,
we observe that for each approach and for any SCV ∈ (0, 3) the quadratic loss function
yields larger optimal interarrival times than the linear loss function. Furthermore, for
any SCV ∈ (0, 3) the sequential approach yields smaller optimal interarrival times, for
both quadratic and linear loss. Loosely speaking, this says that the sequential approach
favors the service provider, since smaller interarrival times lead to smaller idle times.
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Fig. 6 An overview of the optimal steady-state interarrival times x� for four different optimization settings
as a function of the SCV, where we take M = 25

Given an arbitrary SCV, we now consider the effect of the weight parameter, α.
Since an increasing α results in more weight assigned to the practitioner’s time, the
interarrival times will decrease. Indeed, this is observed from in Fig. 7, where we
plotted the dependence of the steady-state solutions resulting from the various opti-
mization programs. We did these computations for SCV = 0.5625, that is, the coef-
ficient of variation (CV) equalling 0.75. This value is in the range of common CVs,
that is, CV ∈ (0.35, 0.85), as concluded by [5]. For other SCVs similar graphs can be
generated.

We observe that the solution curves of the simultaneous optimization and its
sequential counterpart have a similar shape. When α tends to 1, the occupation rate
approaches 1, so that we need to increase the truncation level M to reliably compute
the steady-state solution. For this reason, we set M to 50 when generating Fig. 7.

6 Discussion

In this section, we systematically study different aspects of the schedules we developed.
(i) In the first place we consider the robustness of our approach (both steady state
and transient), so as to assess the effect of replacing generally distributed nonnegative
service times by their phase-type counterparts. (ii) Secondly, we compare our approach
with the approach based on the characteristics of the beta distribution introduced by
Lau and Lau [13]. (iii) Furthermore, we briefly discuss the effect of overtime in two
transient settings. (iv) Also, we provide an account of the computational effort (in
terms of computation time) for the various approaches. (v) We conclude this section
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Fig. 7 An overview of the optimal steady-state interarrival times x� for four different optimization settings
as a function of α, where we take M = 50

with a comparison of the sequential and simultaneous optimization approach, in terms
of the disutilities perceived by the individual agents.

6.1 Robustness of phase-type approach in steady state

To study the robustness of our approach for the optimal steady-state interarrival times,
as presented in the previous section, we apply our approach to a D/G/1 setting in which
the service-time distribution is non-phase-type. We here concentrate on the Weibull
distribution and the log-normal distribution, as often seen in practice [3,12,19]. In our
study, we assume again that the SCV = 0.5625 (contained in the interval identified
by [5]).

Our study is set up as follows. We consider the following 2-parameter distributions:

• the Weibull distribution, with density

kxk−1

λk
e−( x

λ
)k

with parameters k ≈ 1.3476, and λ ≈ 1.0902, and
• the log-normal distribution, with density

1

x
√

2πσ 2
e− (ln x−μ)2

2σ2

with parameters μ = − 1
2 log 1.5625 and σ = √

log 1.5625,
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Table 1 The Monte Carlo optimal steady-state interarrival times and risk in case of log-normal service
times compared with our approach and with an approach based on exponential service times

Setting x̃ |x̃ − x�| |x̃ − xe| R̃ |R̃ − R�| |R̃ − Re|
Sim. & quad. 1.6661 0.0631 0.1804 1.2866 0.0190 0.1075

Sim. & lin. 1.5085 0.0033 0.1718 0.8680 0.0002 0.0464

Seq. & quad. 1.4398 0.0156 0.1422 1.6147 0.0646 0.2937

Seq. & lin. 1.2749 0.0326 0.1114 1.0826 0.0724 0.1726

Table 2 The Monte Carlo optimal steady-state interarrival times and risk in case of Weibull service times
compared with our approach and with an approach based on exponential service times

Setting x̃ |x̃ − x�| |x̃ − xe| R̃ |R̃ − R�| |R̃ − Re|
Sim. & quad. 1.5946 0.0084 0.2519 1.0307 0.0005 0.2099

Sim. & lin. 1.5058 0.0007 0.1745 0.8260 0.0001 0.0488

Seq. & quad. 1.4223 0.0019 0.1597 1.2395 0.0051 0.2078

Seq. & lin. 1.3138 0.0063 0.0725 0.9542 0.0114 0.0878

which both lead to SCV = 0.5625.
For all four scenarios (sequential or simultaneous approach, and quadratic or linear

loss) we determined the optimal interarrival times by simulation, as follows. For a
given steady-state interarrival time x , we simulate the queueing system using 100,000
patients (with a “warm-up” corresponding to 1,000 patients), to estimate the value of
the loss function for this specific x . In the loop around this routine, we identify the
x that minimizes the loss; this is done using MATLAB’s minimization routine. We
perform this optimization 100 times, and estimate the “real” optimal interarrival time
and risk, x̃ and R̃, by the average of the optimal interarrival times of the 100 individual
experiments.

We compare these results with the optimal interarrival times resulting form our
phase-type based technique with the SCV, i.e., 0.5625. In Table 1, we compare for
the log-normal service-time distribution both the optimal interarrival time and the risk
per client in steady state. The values resulting from the phase-type-based approach
are denoted by x� and R�. Finally, xe and Re refer to an approach where one assumes
exponential service times instead (with mean 1 and SCV = 1, that is). In a similar way,
in Table 2 we compare for the Weibull service-time distribution the optimal interarrival
time and the risk per client in steady state.

From Tables 1 and 2, we observe that the phase-type approximation has just a
modest impact on the accuracy of the the optimal interarrival time and risk. It also
shows that the naïve approach of assuming exponential distributed service times (thus
completely ignoring the effect of the SCV differing from 1) leads to large deviations
from the optimal scheme.

6.2 Robustness of phase-type approach in transient environment

To study the robustness of the phase-type approach in a transient environment, we
considered the same service-time distributions as used in Sect. 6.1, i.e., Weibull and
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Table 3 The Monte Carlo optimal times and risk in simultaneous optimization of linear risk in a transient
environment with log-normal or Weibull service times compared with our approach and with an approach
based on exponential service times

Setting Log-normal service times Weibullian service times

i x̃i |x̃i − x�
i | |x̃i − xe

i | x̃i |x̃i − x�
i | |x̃i − xe

i |

1 1.0101 0.0546 0.0031 1.0739 0.0093 0.0634

2 1.3546 0.0543 0.1625 1.4188 0.0100 0.0983

3 1.4282 0.0322 0.1789 1.4652 0.0062 0.1418

4 1.4551 0.0232 0.1796 1.4808 0.0049 0.1539

5 1.4702 0.0158 0.1767 1.4879 0.0041 0.1590

6 1.4762 0.0137 0.1775 1.4918 0.0041 0.1620

7 1.4773 0.0130 0.1766 1.4916 0.0046 0.1622

8 1.4748 0.0128 0.1751 1.4898 0.0045 0.1602

9 1.4666 0.0147 0.1751 1.4834 0.0049 0.1583

10 1.4530 0.0189 0.1740 1.4739 0.0042 0.1531

11 1.4312 0.0231 0.1694 1.4579 0.0047 0.1427

12 1.3911 0.0321 0.1606 1.4283 0.0059 0.1234

13 1.3066 0.0461 0.1364 1.3606 0.0080 0.0823

14 1.0884 0.0535 0.0379 1.1525 0.0106 0.0262

Total risk R̃ |R̃ − R�| |R̃ − Re| R̃ |R̃ − R�| |R̃ − Re|
5.6083 0.0093 0.2201 5.5264 0.0003 0.1637

log-normal. We took n = 15 patients to be scheduled resulting in 14 interarrival times
(the xi s). Again, we ran Monte Carlo simulation experiments to determine the optimal
interarrival times and associated total risk (defined as the aggregate of the risks of all
individual patients). In this case, however, the simulations were more involved than in
the steady-state counterpart. For a given schedule (x1, . . . , x14), we estimate the loss
(by using 100, 000 repetitions). Then we apply MATLAB’s optimization procedure
to identify the schedule that minimizes the loss. This optimization is performed 100
times; we estimate the “real” optimal interarrival times and total risk (x̃1, . . . , x̃14 and
R̃) by the average of the 100 individual schedules.

In Table 3, we compare the simulation results with the phase-type approach and
the assumption of exponential service times in case of optimization with a linear loss
function, while in Table 4 we do the same in case of optimization with a quadratic loss
function. Similar to Sect. 6.1, the values resulting from the phase-type-based approach
are denoted by x�

i and R�, whereas xe
i and Re refer to the optimal arrival times and

risk assuming exponential service times.
As in Sect. 6.1 we see that the phase-type approach results in a significant gain, in

terms of the total risk, compared to the results obtained when assuming exponential
service times. We did not include simulations related to the sequential optimization,
since these are only affected by a start-of-session effect resulting in rapid convergence
to steady state, as seen in Fig. 1. Therefore these simulations are redundant.
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Table 4 The Monte Carlo optimal times and risk in simultaneous optimization of quadratic risk in a
transient environment with log-normal or Weibull service times compared with our approach and with an
approach based on exponential service times

Setting Log-normal service times Weibullian service times

i x̃i |x̃i − x�
i | |x̃i − xe

i | x̃i |x̃i − x�
i | |x̃i − xe

i |

1 1.2672 0.0099 0.0897 1.2550 0.0044 0.1019

2 1.5221 0.0124 0.1753 1.5087 0.0041 0.1887

3 1.5955 0.0309 0.1878 1.5597 0.0056 0.2236

4 1.6244 0.0413 0.1895 1.5762 0.0073 0.2378

5 1.6388 0.0481 0.1878 1.5831 0.0078 0.2435

6 1.6442 0.0505 0.1875 1.5859 0.0078 0.2458

7 1.6461 0.0521 0.1865 1.5862 0.0082 0.2464

8 1.6452 0.0528 0.1851 1.5846 0.0078 0.2457

9 1.6397 0.0513 0.1847 1.5804 0.0082 0.2440

10 1.6281 0.0473 0.1850 1.5730 0.0080 0.2401

11 1.6084 0.0418 0.1834 1.5598 0.0069 0.2321

12 1.5711 0.0327 0.1788 1.5329 0.0057 0.2170

13 1.4937 0.0184 0.1636 1.4723 0.0036 0.1851

14 1.3033 0.0039 0.1047 1.2994 0.0020 0.1085

Total risk R̃ |R̃ − R�| |R̃ − Re| R̃ |R̃ − R�| |R̃ − Re|
8.1236 0.0364 0.5801 6.7542 0.0012 0.9764

6.3 Comparison with the approach by Lau and Lau

Instead of using phase-type distributions to compute optimal schedules, one can opt
for using a recursive method based on the beta distribution, see [13]. To use this
approach, four parameters are needed, which can be picked by matching the first four
moments of the patients’ service-time distributions. In Table 5 we compare for both
methods the optimized schedules in terms of arrival times, expected waiting times and
expected idle times per patient. The patients’ (n = 20) service times are i.i.d. with
mean 1, variance 0.25, skewness 1, and kurtosis 4; the risk per patient to be minimized
is R(a,10/11)

i , i.e., α = 10
11 . These settings are chosen such that they match the problem

considered by [13]. To compare the total risk found by [13], denoted by ECs , the risk
per patient Ri can be scaled arbitrarily, not affecting the optimal schedule, cf. Eq. (7),
(noting that R1 = 0)

20∑

i=2

R(a,10/11)
i = 10

11

(
20∑

i=2

EIi + 1

10

20∑

i=2

EWi

)
= 10

11
ECs .

We find that the phase-type fit approach based on the first two moments μ = 1,

SCV = 0.25 gives nearly identical results, in terms of the optimal schedule and the
corresponding waiting and idle times. Furthermore, in case of a linear loss function
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Table 5 The optimized schedules for the beta distribution approach and the phase-type fit approach

Method Beta distribution approach Phase-type approach

Patient (i) Arrival times EWi EIi Arrival times EWi EIi

2 0.542 0.477 0.022 0.535 0.489 0.024

5 3.395 0.792 0.068 3.424 0.780 0.069

10 8.603 0.969 0.072 8.635 0.951 0.077

15 13.785 1.146 0.070 13.815 1.127 0.065

20 18.467 1.698 0.017 18.514 1.644 0.021
∑

EWi or
∑

EIi 19.514 1.139 19.165 1.160

Total risk 2.810 2.798

The optimized schedules minimize the total risk
∑

R(a,10/11)
i as defined in Eq. (7)

the phase-type fit approach uses explicit expressions for the expected idle and waiting
times, so that it should perform at roughly the same speed as the method by Lau and
Lau.

The major strength of the phase-type approach is that it requires just the first two
moments of the service-time distribution, which tends to be sufficient to determine the
optimal schedule (see the discussion in [5][Sect. 2.5]). In addition, estimating higher
moments such as skewness and kurtosis is relatively hard, in the sense that a large
sample size is needed to obtain an estimate with low variance.

6.4 The effect of overtime on the schedule

In our optimization problem, we only considered the minimization of risk in terms of
waiting and idle time. This allowed us to study the difference between the sequential
and simultaneous approach, and for both cases how they are affected by the SCV.
Another performance measure in healthcare, which could be modeled easily, is the so
called overtime O . Overtime is defined as the actual session-end time set minus the
scheduled end time T , that is

O := max{set − T, 0} = max

{
n∑

i=1

(Ii + Bi ) − T, 0

}
.

To stress that O depends on the value of T , we have added a subscript, that is, we
write OT . To study the effect of overtime we extend the simultaneous optimization
approach with expected overtime. We focus on linear risk, in a schedule of n = 15
patients (cf. Eq. (7)), i.e., we consider

min
t1,...,tn

15∑

i=1

Ri + βEOT = min
t1,...,tn

15∑

i=1

(αEIi + (1 − α)EWi ) + βEOT .
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Fig. 8 The effect of overtime on the schedule with simultaneous optimization over linear and quadratic
loss, n = 15, with the corresponding steady-state solutions

Take α = 0.5 (equal weights) and β/α = 1.5, which models the situation in which
overtime is valued roughly 50 % higher than idle time [6]. In Fig. 8, we see the
influence of overtime on the schedule; here the service times are chosen by the phase-
type approach, so as to generate a distribution with mean 1 and SCV = 0.5625 as
in Sect. 6.1. We consider for both linear as quadratic loss four cases, where T ≥ 15
varies. (Special case is O15 so that in order to have no overtime all patients should be
served in their expected service time, that is, a queue with load 1.) Indeed, we see that
the schedule gets tighter when the scheduled session-end time decreases. Including
overtime has a similar effect as assigning a higher weights to the idle times in the risk
function, viz., result in tighter schedules. Remark that when T tends to infinity we are
in the case of our original models optimized in Sect. 4.

6.5 Computational effort of the various numerical approaches

We now give a brief account of the computational effort required to evaluate the
schedules, and further describe how our code has been set up. A general remark is that,
for obvious reasons, determining steady-state schedules is substantially less expensive
than determining transient schedules. In our numerical experiments, we generated
transient schedules of up to 25 clients. All programming was done in MATLAB,
benefiting from its built-in function for determining roots, its minimization routine,
and its numerical integration routine; as a result the code that had to be developed is
relatively “light weight.” The most complicated cases (25 clients, SCV > 1) took a
few minutes, but usually the computation time was considerably less.

The structure of the code is as follows. Here x is the steady state interarrival time,
whereas x = (x1, . . . , xn−1) is the transient schedule.

1. Determine the phase-type fit (hyperexponential or Erlang mixture) for given mean
and SCV.

2. The corresponding loss function is computed as follows.
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Fig. 9 The optimal idle times by sequential and simultaneous approach for the various SCVs, in case of a
linear loss

(i) Regarding the steady state, for a given x , the equilibrium probabilities are found
through the embedded Markov chain, choosing the truncation level suitably.
These probabilities yield the steady-state distribution of amount of work in
the system before the arrival of a patient, i.e., the waiting time, see Sect. 5.
Then one computes the steady-state sojourn time distribution by evaluating the
convolution of the waiting time and service time.

(ii) In the transient case one uses the recursive method outlined in Sect. 3 to evaluate
the sojourn-time distribution for given x.

We now evaluate the loss function of our choice (sequential or simultaneous
approach, and quadratic or linear loss).

3. Given the loss function, we perform the minimization (In the sequential approach
this is implemented by solving the first order condition).

Obviously, the computational effort can be substantially reduced by tailoring the
software more directly to our specific needs, e.g., by using 3rd generation programming
environments (such as C++). Also, a significant reduction of the computational effort
can be achieved by using optimal values of a previously calculated, “nearby” scenario
as starting values when determining a next schedule; this idea can be exploited for
instance when generating optimal schedules for a range of SCVs.

6.6 Comparison of sequential and simultaneous approaches

In this section, we study the expected waiting time and idle time associated with each
individual client, so as to compare the impact of the approach chosen (i.e., sequential
vs. simultaneous). In Figs. 9 and 10 we do so for linear loss, whereas Fig. 11a, b relates
to quadratic loss. The lines of the figures in this section are labeled as in Fig. 1; that
is, the crosses refer to an SCV = 1.6036, the blocks to an SCV = 1.0000, and the
rounds to an SCV = 0.7186. In all experiments, we focus on n = 15 clients and hence
14 interarrival times, but other values of n show very similar behavior.

Figure 9a, b shows the idle times for each arrival for the sequential (Fig. 9a) and
simultaneous (Fig. 9b) optimization approach, with linear loss. From these results we
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Fig. 10 The optimal waiting times by sequential and simultaneous approach for the various SCVs, in case
of a linear loss
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Fig. 11 The optimal waiting times by sequential and simultaneous approach for the various SCVs, in case
of a quadratic loss

observe that the mean idle times in the sequential approach are in general smaller than
those in the simultaneous approach. Furthermore, the patterns of the mean idle times
resonate the patterns of the optimal individual interarrival times—see Fig. 1a for the
sequential approach, and Figs. 2a, 3a, 4a, and 5a for the simultaneous approach.

Next, Fig. 10a, b show the mean waiting times for both approaches, with linear
loss. From these results we observe that the individual waiting times are larger in case
of the sequential approach. This means that, together with the results of the idle times,
we conclude that the sequential approach favors the server. Furthermore, we observe
that the individual waiting times are more variable for the simultaneous approach than
for the sequential approach; this salient feature illustrates the difference in ‘fairness’
between both schemes.

Finally, we discuss the mean idle and waiting times for quadratic loss, as shown in
Fig. 11a, b. From the sequential results of Fig. 11a, we observe that for each arrival
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the mean idle time equals the mean waiting time. This follows from the risk in (6), in
case α = 1

2 , and its corresponding first order condition. The optimal interarrival time
follows from E(Si−1 − xi−1) = 0 for clients i = 2, . . . , n, entailing that x� is chosen
so that EIi = EWi .

From the simultaneous results of Fig. 11b, we again conclude that the mean idle
times are larger than for the sequential approach; at the same time, the mean waiting
times are smaller. From this observation it is seen that also for quadratic loss the
sequential approach favors the server. Also, we see that the dome shape is reflected in
the pattern of the mean idles times; cf. Figs. 2b, 3b, 4b, and 5b; and the mean waiting
times of each individual arrival are more variable than for the sequential approach, in
line with what we observed for linear loss. The fact that the mean idle time equals the
mean waiting time for the final arrival essentially follows from the fact that the final
arrival is “sequentially” scheduled, since no subsequent client is to be scheduled.

7 Conclusions and directions for future work

This paper demonstrated how to optimally generate appointment schedules. In our
procedure, we replace general service-time distributions by their phase-type counter-
parts, and then (either sequentially or simultaneously) optimize a (dis-)utility function.
The procedures are backed by a series of numerical experiments, that also shed light
on the impact of the utility function and the service-times’ variability (expressed in
terms of the squared coefficient of variation, SCV) on the optimal interarrival times.

The numerics evidence the feasibility of the proposed procedure. At the same time
we empirically assessed its robustness; in particular it was shown that replacing non-
phase-type distributions (Weibull, log-normal) by phase-type distributions, based on
a two-moment fit, hardly affects the optimal schedule.

There are various directions for future research. (i) In the first place the setup can
be made more realistic, that is, more in line with specific conditions in healthcare
settings. For instance, ideally schedules should be flexible in terms of their capacity to
deal with urgent additional clients. This requires insight into the possibility to adapt the
schedule on the fly. (ii) In the second place one could think of situations with multiple
servers, in which it also needs to be determined to which server each client should
be assigned. In addition, it would be interesting to study settings in which clients
have to undergo multiple (rather than just one) services. (iii) In numerical examples,
we considered the situation of all clients having the same service-time distribution.
It is readily checked, though, that the modeling framework does not require such a
uniformity: all computations can be performed for heterogeneous service times as
well.

In those heterogeneous situations the ordering issue plays a role; intuitively one
would think that it makes sense to schedule clients with small variances first. It was
already proven that for the sequential approach and the service times stemming from
a single scale family (that is, Bi is distributed as σiU for nonnegative σi and U some
nonnegative random variable) the clients should be ordered in increasing order of
variance, see [10]; for other situations, however, no rigorous results have been found
so far.
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