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In service systems, in order to balance the server’s idle times and the customers’ waiting times, one may
fix the arrival times of the customers beforehand in an appointment schedule. We propose a procedure
for determining appointment schedules in such a D/G/1-type of system by sequentially minimizing the
per-customer expected loss. Our approach provides schedules for any convex loss function; for the
practically relevant cases of the quadratic and absolute value loss functions appealing closed-form results
are derived. Importantly, our approach does not impose any conditions on the service time distribution; it
is even allowed that the customers’ service times have different distributions.

A next question that we address concerns the order of the customers. We develop a criterion that yields
the optimal order in case the service time distributions belong to a scale family, such as the exponential
family. The customers should be scheduled then in non-decreasing order of their scale parameter.

While the optimal schedule can be computed numerically under quite general circumstances, in
steady-state it can be computed in closed form for exponentially distributed service times under the qua-
dratic and absolute value loss function. Our findings are illustrated by a number of numerical examples;
these also address how fast the transient schedule converges to the corresponding steady-state schedule.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In service systems the service provider would like to minimize
costs in terms of the server’s idle times, while the customers would
like to be served with minimal waiting times. To accommodate
these goals of the service provider and the customers, for example
in case of a dentist and his patients, one may fix the arrival times of
the customers beforehand in an appointment schedule.

In this paper we consider such appointment schedules aiming
at optimally balancing the idle times of the (single) server and
the waiting times of the customers. Indeed, if the system is fre-
quently idle, then it is not functioning in a cost-effective manner
for the service provider, whereas if it is virtually always busy, then
the customers’ waiting times may become substantial. The ‘classi-
cal’ objective is then to minimize the system’s risk (in terms of the
idle times of the service provider, as well as the waiting times of
the clients) by optimally choosing the clients’ arrival epochs. Com-
monly chosen objective functions are of the type, with c > 0,

min
t1 ;...;tn

Xn

i¼1

EIci þ EWc
i

� �
; ð1Þ

where c ¼ 1 corresponds to the case of linear loss and c ¼ 2 to qua-
dratic loss; here ti denotes the appointed arrival time of client i, with
Ii the preceding idle time of the server, and with Wi the associated
waiting time. (As t1 ¼ 0, the minimum can be taken over t2 up to tn;
as I1 ¼W1 ¼ 0, we can reduce the sum to the contributions related
to client i ¼ 2 up to n.) Now it is crucial to observe that the random
variables Ii and Wi are also affected by the arrival epochs
t1 ¼ 0; t2; . . . ; ti�1 of all previous clients. This explains why solving
the above optimization problem is hard: apart from numerical
approaches, to the best of our knowledge no manageable character-
ization for the optimal schedule is known. Ideally, one would like to
have a tractable solution for arbitrary loss functions (that is, not just
the quadratic one) and general service time distributions, to obtain
an approach that can be used across a broad range of application
areas, such as health care, manufacturing, and other service
systems. The general idea behind our paper is that we propose an
alternative to the above ‘classical’ optimization framework, in
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which this all is possible. The idea to work with loss functions that
include both idle time and waiting time has found widespread use
in the literature; see, among many other references, for example
Ho and Lau (1992), Kaandorp and Koole (2007), and Wang (1999).

There is a sizeable literature on appointment scheduling, but
the findings tend to be rather case-specific: often one particular
loss function is considered that is appropriate for the application
at hand, and in view of numerical tractability exponential or Erlang
service times are assumed (Fries & Marathe, 1981; Kaandorp &
Koole, 2007; Wang, 1999). Besides, many studies rely on simula-
tion to overcome the inherent computational complexity, and to
obtain support for specific heuristics, see for example Brahimi
and Worthington (1991), and Rohleder and Klassen (2000). These
approaches have clear limitations: it is not a priori clear whether
an approach that is designed for an application with its specific loss
function and service time distribution can be used in other applica-
tion domains as well. In addition, and more importantly, these
approaches do not give the theoretical insight into the nature of
optimal schedules.

As pointed out in Mondschein and Weintraub (2003), in order
to deal with the opposite interests of the server and the clients,
two complementary levels can be distinguished. In the first place,
one may facilitate the process environment with features so that
waiting time and idle time are either perceived or used differently;
note that this is essentially manipulating the ‘disutilities’ of the
server and customers. On another level, one defines a loss function,
that in some way encompasses the disutilities experienced by both
server and customers. Then a schedule needs to be determined that
minimizes the expected loss, that is, the risk, thus realizing an opti-
mal trade-off between the agents’ interests. Our work follows the
latter approach.

In this paper we propose a sequential optimization approach as
a useful and natural alternative to (1). By ‘sequential’ we refer to an
approach that determines the i-th appointment time ti with the
earlier arrival epochs t1; . . . ; ti�1 being known. For instance in the
case of a quadratic loss function, the sequential optimization
problem yielding ti (for given t1; . . . ; ti�1) is

min
ti

EI2
i þ EW2

i

� �
; i ¼ 1; . . . ; n: ð2Þ

The idea is that the ti are determined recursively. Remarkably, it
turns out that (2) allows an explicit solution: performing the optimi-
zation for i ¼ 1; . . . ;n we obtain for this quadratic loss function the
optimal schedule

t1 :¼ 0; and ti :¼
Xi�1

j¼1

ESj; i ¼ 2; . . . ; n;

with Sj denoting client j’s sojourn time, which is defined as the sum
of the associated waiting time and service time.

Importantly, the approach sketched above applies to the quite
general class of convex loss functions, and to arbitrary service time
distributions. It is neither required that clients’ service times stem
from a single distribution, nor that the clients have the same loss
function. Where we find for the quadratic loss function that the
optimal arrival epoch equals the sum of the means of the sojourn
times of the previous customers, for linear loss (that is, the risk
function of the i-th customer equalling EIi þ EWi) it is the sum of
the medians of the sojourn times. In practice one often relies on
the heuristic that the arrival epochs are chosen in accordance with
the sum of the expected service times of the previous customers,
rather than their sojourn times. In light of the above results, it is
concluded that this commonly used strategy is suboptimal, as it
does not take into account the expected waiting time.

In situations in which all information about all customers is
available a priori (i.e., a list of customers to be scheduled, including
the distributions of their service times), the logical procedure is to
minimize a simultaneous objective function. The applicability of
such an approach may severely suffer from the requirement that
all this information should be available before a planning can be
made: when calling the service provider to make an appointment,
customers typically want to hear immediately when they are
expected to arrive at the service facility, and they do not want to
wait to be assigned an appointment time until the planner has
gathered all information needed. In cases the planner does not a
priori have all information about all customers that are to be sched-
uled, one would rather use an approach in which the schedule
gradually fills, thus making a sequential policy the more natural
setup. For this reason, the sequential approach presented in this
paper is particularly useful in any situation in which customers
should be given an appointment time immediately, which is a very
common situation in e.g. various health care situations (a typical
example being the situation of a client contacting the dentist to
make an appointment).

The sequential appointment scheduling setup that we consider
in this paper, can be viewed as a two-stage procedure. Prior to the,
say, day that the actual service is performed, service requests
arrive. At this first stage, arrival epochs are assigned to these
requests (and potentially these epochs are also put in an optimal
order). Then there is a second stage, at which the server executes
the actual service.

As mentioned above, our paper succeeds in explicitly solving
the sequential optimization problem. Earlier papers predominantly
focused on approximations of the joint optimization problem,
assuming specific loss functions and service distributions, and
resorting to numerical techniques or simulation. We have followed
our sequential approach for various reasons. (i) An evidently and
very substantial advantage of the sequential approach is that it
allows explicit, closed form results, and that it, in addition, enables
a solution to the problem of finding the optimal order of the n jobs.
In relation to this, solving the sequential scheme is computation-
ally significantly less demanding than the simultaneous optimiza-
tion problem. (ii) In the second place, as argued earlier, our
approach naturally fits the situation in which customers sequen-
tially contact the provider to make an appointment (as opposed
to the situation in which a priori all information is available of all
customers to be scheduled). (iii) Some clients may be better off
under the sequential scheme, some under the joint scheme, but
there is no compelling reason why one of the schemes leads to
‘better’ schedules. It is realized, though, that the sequential scheme
allows full freedom in terms of the choice of the utility functions
related to the individual clients. As a consequence, if, for some rea-
son, it is felt that the risk associated to a specific customer is more
important, one can adapt her utility function to reflect this.

The main contribution of the paper is the sequential optimiza-
tion approach for appointment scheduling, as described above.
Apart from the nice features that we already mentioned (applicable
for a broad class of loss functions, general service time distribu-
tions), it is highly flexible, in that it allows the incorporation of var-
ious real-life phenomena such as urgent arrivals and ‘no-shows’. In
addition, we quantify the impact of customers arriving early or
late, that is, the impact of small random perturbations with respect
to the scheduled arrival epochs.

The above results concern the determination of the optimal
arrival epochs, for the situation that the order in which the custom-
ers are served has been given. A next question concerns the opti-
mal order; this is the second contribution of our work. We prove
the appealing result that if all service time distributions concerned
stem from a scale family with finite variances, clients should arrive
in non-decreasing order of their scale parameter. For instance in
the case that the service times obey exponential distributions with
mean values l�1

1 ;l�1
2 ; . . ., our ordering result implies that the order
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in which the customers should arrive is such that the lis decrease
(and hence the means, as well as the variances, increase). In this
sense, our result is in line with the commonly used heuristic to
keep the variability initially as low as possible, see e.g. Lehaney,
Clarke, and Paul (1999) and Wang (1999).

The structure of the paper is as follows. Section 2 presents
standard scheduling schemes and an overview of the relevant liter-
ature; it also further motivates the research reported on in this
paper. Section 3 introduces our sequential optimization approach;
it includes a proof of the ‘mean rule’ for quadratic loss and the
‘median rule’ for linear or absolute value loss. In Section 4 we
address the problem of identifying the optimal order of the clients.
Section 5 discusses a number of more practical considerations: it is
pointed out how to include additional issues such as urgent
arrivals and no-shows, it addresses the effect of small random
perturbations around the scheduled arrival epochs, and there is a
short account of computational issues. Then, in Section 6 we pres-
ent some numerical examples. Section 7 concludes.
2. Preliminaries: background and literature

As mentioned in the introduction, the server and customers
have opposite interests: the service provider wishes to minimize
the amount of server idleness and is therefore in favor of a ‘dense
schedule’, whereas customers are interested in minimizing waiting
times and hence prefer schedules in which the slots are relatively
long. In this section we provide more background on this tradeoff,
as well as a brief literature overview.
2.1. Background

Let us consider the following standard scheduling scheme,
which is, owing to its simplicity, frequently used in practice. Con-
sider a sequence of jobs, each of random duration, and assume the
job durations B1; . . . ;Bn to be mutually independent. Let job i be the
i-th job to be scheduled. Now we define the scheduling scheme S
by setting the arrival epoch of job i, denoted by ti, equal to the
sum of the expected durations of the previous jobs

t1 :¼ 0; and ti :¼
Xi�1

j¼1

EBj; i ¼ 2; . . . ;n: ð3Þ

Due to its simple structure, this standard scheduling scheme is
often seen in practice; cf. also Klassen and Rohleder (1996). It has
a serious drawback, though: the system becomes essentially a
queue with load 1, leading to potentially long waiting times. As a
result this scheme might be attractive for the server, but for the cus-
tomers it is not.

To support this claim, consider for the moment the situation
that the Bi are identically distributed as a random variable B, such
that strategy S can be viewed as a D/G/1 queue with load 1 starting
empty. The next result shows that EWn blows up as

ffiffiffi
n
p

; while this
result has appeared in various forms in the literature (cf. e.g. Whitt,
1972, Thm. 4.1), for the sake of completeness we include its proof
in Appendix A.

Proposition 2.1. In a D/G/1 queue with load 1 starting empty, with
the service times having finite variance r2, the mean waiting time of
the n-th customer obeys, as n!1,
EWnffiffiffi
n
p ! r

ffiffiffiffi
2
p

r
:

This result and its proof remain valid in the GI/G/1 setting, with
r2 :¼ Var AþVar B, where A is distributed as the interarrival time.
To remedy the undesirable effect that the mean waiting times
explode, one could introduce the ‘adapted scheme’ SD, for some
D P 0, with

t1 :¼ 0; and ti :¼ D �
Xi�1

j¼1

EBj; i ¼ 2; . . . ;n: ð4Þ

Observing that S1 ¼ S, the above result on EWn relates to the case
D ¼ 1. Obviously, the server’s idle time is reduced compared to S
when picking D 2 ½0;1Þ; in the extreme case of D ¼ 0, all customers
arrive at time 0, thus minimizing the expected idle time at the
expense of the clients’ waiting time. On the other hand, it is clear
that the mean waiting times in the adapted scheme SD are reduced
relative to S when picking D > 1 at the expense of the expected ser-
ver’s idle time; then the corresponding D/G/1 queue is stable in the
sense that it has a proper steady-state distribution.

These observations suggest that one should pick some D larger
than 1 in order to find a good compromise between the waiting
times of the clients and the idle time of the server, as was also rec-
ognized by Ho and Lau (1992) and references therein. It is evident,
though, that D does not uniquely predict the customer’s waiting
time: a given D can lead to a broad range of waiting time distribu-
tions, depending on the service time distribution. Indeed, for D > 1
deterministic service times lead to zero waiting times, while the
waiting times can be quite substantial if the service time distribu-
tion has heavy tails. Intuitively, one could anticipate them to
increase in the coefficient of variation of the service times. The
above reasoning tells us that the schedule should incorporate more
detail of the service time distributions than just their means.

To set up the schedule in a sounder way, one could use the con-
cept of ‘risk function’, which measures the aggregate disutility of
the server and client. More specifically, the risk associated with
the i-th arrival depends on the distribution of the waiting time
Wi of the i-th client, as well as the idle time Ii prior to the arrival
of this i-th client. It makes sense to choose non-decreasing loss
functions gð�Þ and hð�Þ with gð0Þ ¼ hð0Þ ¼ 0, and to define the risk
associated with the i-th arrival as

Rðg;hÞi ðt1; . . . ; tiÞ :¼ EgðIiÞ þ EhðWiÞ;

clearly, this i-th risk depends on arrival epochs t1 up to and includ-
ing ti. Note that gð�Þ and hð�Þ determine how much weight should be
given to the idle and waiting time respectively. In this framework,
the optimal schedule then follows from solving the minimization
problem

min
t1 ;...;tn

Xn

i¼1

EgðIiÞ þ EhðWiÞð Þ: ð5Þ

As argued in the introduction, this optimization problem is intrinsi-
cally complex, and therefore we propose in the next section to ana-
lyze its ‘sequential counterpart’. Before we do so, we first give a
brief literature overview.

2.2. Literature

The literature on appointment scheduling started with the sem-
inal works of Bailey and Welch, see e.g. Bailey (1952), Bailey
(1954), Welch (1964) and Welch and Bailey (1952). They proposed
a simple schedule that sets interarrival times equal to the average
service time, but starts with two arrivals scheduled at time 0. In
line with these works, most papers focus on applications of
appointment scheduling in healthcare, see Cayirli and Veral
(2003) for an extensive overview. We also mention Denton and
Gupta (2003), and Mondschein and Weintraub (2003), who discuss
a somewhat more general setting.
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The usual starting point of this optimization approach concerns
the choice of the specific risk. Besides waiting time and idle time,
this may include various other performance metrics; see Cayirli
and Veral (2003, Table 2) for an overview. It is emphasized that
the choice of the loss function and service time distribution is often
rather application-specific, and as a consequence of limited use for
practitioners in other application domains. This is a distinguishing
feature of our work: we allow any user-specific convex loss func-
tion, and any client-specific service time distribution. In particular,
in our setup the practitioner can pick her or his risk function and
apply our approach; evidently, it is beyond the scope of our work
to develop guidelines that help choosing a specific loss function
for a particular appointment scheduling problem.

Many studies rely on simulation to overcome the inherent ana-
lytical and computational complexity, and to obtain support for
specific heuristics, such as for example Brahimi and Worthington
(1991), and Rohleder and Klassen (2000); in addition we mention
Klassen and Rohleder (2004), and Patrick, Puterman, and
Queyranne (2008). In Robinson and Chen (2003) the focus is on
techniques that facilitate the estimation of the relative cost of
the patient waiting time given average queue length and occupa-
tion rate. The authors of Begen and Queyranne (2011) devise an
efficient scheme to set up schedules for the case that the random
service times have discrete support.

There are similarities between appointment scheduling, as dis-
cussed in the present paper, and (single) machine scheduling. The
main difference between these branches of research is that in
appointment scheduling the release dates (in machine scheduling
lingo) are to be determined, for a given sequence of jobs. In addi-
tion, objective functions used in the machine scheduling literature
tend to be quite different from the ones used in the appointment
scheduling literature (balancing idle times and waiting times).
We refer for an in-depth treatment to the book by Pinedo (2001).

3. Sequential optimization

In our sequential counterpart of (5), we minimize, for each i the
risk

Rðg;hÞi ðt1; . . . ; tiÞ ¼ EgðIiÞ þ EhðWiÞ

over ti, where it is essential that t1; . . . ; ti�1 are given; we do so in a
recursive manner for i ¼ 1; . . . ;n. A crucial observation is that Ii and
Wi cannot be both positive, and it is therefore natural to introduce
the loss function

‘ðxÞ ¼ gð�xÞ1½x<0� þ hðxÞ1½x>0�; x 2 R;

which is non-increasing on ð�1;0� and non-decreasing on ½0;1Þ
with ‘ð0Þ ¼ 0. In terms of this loss function we may write

Rðg;hÞi ðt1; . . . ; tiÞ ¼ EgðIiÞ þ EhðWiÞ ¼ E‘ðWi � IiÞ; i ¼ 1; . . . ;n;

and we define the risk at the i-th arrival with loss function ‘ð�Þ as

Rð‘Þi ðt1; . . . ; tiÞ ¼ E‘ðWi � IiÞ; i ¼ 1; . . . ;n: ð6Þ
3.1. Schedule for quadratic and linear risk functions

To ease the exposition, we first present our procedure to find
the optimal interarrival times for loss functions that are used most
frequently in the literature: the absolute value and quadratic loss
functions. Then Section 3.2 shows that this approach essentially
carries over to the class of convex loss functions.

Quadratic loss function. A simple (that is, non-weighted) qua-
dratic loss function is defined by

RðvÞi ðt1; . . . ; tiÞ :¼ EI2
i þ EW2

i ; i ¼ 1; . . . ;n:
Due to the well-known Lindley recursion Lindley (1952),

Ii ¼maxfti � ti�1 �Wi�1 � Bi�1;0g ð7Þ

and

Wi ¼maxfWi�1 þ Bi�1 � ti þ ti�1;0g: ð8Þ

Let Si :¼Wi þ Bi denote the sojourn time of the i-th customer, with
distribution function FSi

ð�Þ. In addition, define by xi�1 :¼ ti � ti�1 the
time between the ði� 1Þ-st and i-th arrival. Then, with (7) and (8) in
mind, we may write

W2
i þ I2

i ¼ Si�1 � xi�1ð Þ2 ð9Þ

and so the system’s risk (in relation to the i-th client) reads

RðvÞi ðt1; . . . ; ti�1; ti�1 þ xi�1Þ ¼ E Si�1 � xi�1ð Þ2: ð10Þ

The following result is an immediate consequence of the general
approach that will be presented in Section 3.2. We give two proofs:
the first one is elementary and insightful; the second one has the
flavor of the approach of Section 3.2.

Proposition 3.1. Let the job durations B1; . . . ;Bn be independent
nonnegative random variables with finite second moment. Define the
schedule V through
t1 :¼ 0; and ti :¼
Xi�1

j¼1

ESj; i ¼ 2; . . . ;n:

For the simple quadratic loss function, the schedule V sequentially
minimizes the risk (10).
Proof 1. In view of

Si ¼Wi þ Bi 6
Xi

j¼1

Bj; ð11Þ

the sojourn time Si has finite second moments. Observe that, with
W1 ¼ 0; I1 ¼ 0, (7) and (8) hold. This immediately implies that
the maxima in Eqs. (7) and (8) vanish in

I2
i þW2

i ¼ ðWi�1 þ Bi�1 � ti þ ti�1Þ2 ¼ ðSi�1 � ti þ ti�1Þ2:

Now note

EðSi�1 � ti þ ti�1Þ2 ¼ Var Si�1 þ ðESi�1 � ti þ ti�1Þ2:
Consequently, for given ti�1, the risk of customer i equals

min
ti

RðvÞi ðt1; . . . ; tiÞ ¼min
ti

EðSi�1 � ti þ ti�1Þ2 ¼ VarSi�1;

where the minimum is attained for ti ¼ ti�1 þ ESi�1. Hence the opti-
mal interarrival time xH

i�1 is ESi�1, in agreement with schedule V. h
Proof 2. Again, observe that W1 ¼ 0 and I1 ¼ 0, and

I2
i þW2

i ¼ ðSi�1 � ti þ ti�1Þ2:

Minimize, for given ti�1, the risk at the arrival of client i:

min
ti

RðvÞi ðt1; . . . ; tiÞ ¼min
ti

EðSi�1 � ti þ ti�1Þ2 ¼min
x

EðSi�1 � xÞ2:

Since we deal with a nonnegative convex loss function in x, the first
order condition (use ‘Leibniz’s rule’) yields the optimal interarrival
time for the ði� 1Þ-st client, and consequently also the optimal arri-
val time. We have to solve

d
dx

EðSi�1 � xÞ2 ¼ �2
Z 1

0
ðs� xÞdFSi�1

ðsÞ ¼ 0;

which gives us the optimal interarrival time for the ði� 1Þ-st client
xH

i�1 ¼ ESi�1. h
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Note that the latter proof is reminiscent of that featuring in the
well known newsvendor problem, see for instance Hopp and
Spearman (1995). Evidently, it can be used to other loss functions
as well. Next, we consider the case of the absolute value as loss
function.

Absolute value loss function. Consider the simple (that is, non-
weighted) linear loss function: the risk associated with the i-th
customer equals the sum of the expected waiting time and idle
time. Again, due to (7) and (8), we obtain

RðuÞi ðt1; . . . ; ti�1; ti�1 þ xi�1Þ :¼ EIi þ EWi ¼ E jSi�1 � xi�1j; ð12Þ

which is based on the absolute value, a nonnegative convex loss
function.

Proposition 3.2. Let the job durations B1; . . . ;Bn be independent
nonnegative random variables with finite first moments. Define the
schedule U through

t1 :¼ 0; and ti :¼
Xi�1

j¼1

F�1
Sj

1
2

� �
; i ¼ 2; . . . ;n;

For the simple linear loss function, the schedule U sequentially mini-
mizes the risk (12).
Proof. In view of (11), Si has finite first moment. By ‘Fubini’ we
have to minimize

E jSi�1 � xj ¼
Z x

0

Z x

s
dy dFSi�1

ðsÞ þ
Z 1

x

Z s

x
dy dFSi�1

ðsÞ

¼
Z x

0

Z y

0
dFSi�1

ðsÞ dyþ
Z 1

x

Z 1

y
dFSi�1

ðsÞ dy

¼
Z x

0
FSi�1
ðyÞdyþ

Z 1

x
1� FSi�1

ðyÞ
� �

dy:

Note that the derivative

d
dx

EjSi�1 � xj ¼ 2FSi�1
ðxÞ � 1;

exists for all x at which FSi�1
is continuous, and changes sign at

F�1
Si�1
ð12Þ. This implies that we should take the optimal interarrival

time xH for the ði� 1Þ-st customer equal to a median of Si�1, that
is, xH

i�1 ¼ F�1
Si�1
ð12Þ, as claimed. h

Interestingly, we conclude that the absolute value loss function
leads to interarrival times equaling a median of the sojourn times,
whereas a quadratic loss function leads to interarrival times equal-
ing the mean of the sojourn times. There is a connection with sta-
tistical estimation theory: there one obtains the (sample) median
when imposing the absolute value as loss function and the mean
absolute deviation as risk, whereas the (sample) mean is found
when imposing the square as loss function and the mean square
error as risk.

It is noted that the above approach, which is essentially based
on Leibniz’s rule, carries over to more general loss functions. We
present the resulting general approach in Section 3.2.

3.2. Schedule for convex loss functions

We now present our sequential optimization approach for con-
vex loss functions, which contains the cases dealt with in Sec-
tion 3.1. The approach borrows elements from statistical decision
theory; see e.g. Ferguson (1967) or Bickel and Doksum, 2001,
chap. 10.

As observed before, due to (7) and (8),

Wi � Ii ¼Wi�1 þ Bi�1 � ti þ ti�1 ¼ Si�1 � xi�1 2 R; ð13Þ
so that we can define the general risk (to be minimized over xi�1) by

Rð‘Þi ðt1; . . . ; tiÞ :¼ E‘ðSi�1 � xi�1Þ; xi�1 ¼ ti � ti�1: ð14Þ

If the loss function is convex, then xH

i�1 can be found by solving the
first order condition, as explained in Lemma B.1 in full detail. As for
the quadratic and linear case, we can set up a sequentially opti-
mized scheme, in which the arrival epochs can be determined
recursively. More precisely, our main result Theorem 3.3 states
how to generate the optimal schedule for any nonnegative convex
loss function ‘ð�Þ, and for any sojourn time distribution function
FSi
ð�Þ.

Theorem 3.3. Let ‘ð�Þ be a nonnegative convex loss function on R

with ‘ð0Þ ¼ 0. Let the job durations B1; . . . ;Bn be independent
nonnegative random variables such that

E‘
Xn�1

i¼1

Bi þ x

 !
<1 ð15Þ

holds for all positive x. Let

R‘i ðt1; . . . ; tiÞ ¼ E‘ðWi � IiÞ ¼ E‘ðSi�1 � xi�1Þ; xi�1 ¼ ti � ti�1; ð16Þ

be the risk associated with the i-th customer.
Define the schedule W through

t1 :¼ 0 and ti :¼
Xi�1

j¼1

xH

j ; i ¼ 2; . . . ;n;

where xH

j is a nonnegative value at which E‘0ðSj � xÞ changes sign or
vanishes; if such a value does not exist xH

j is set equal to 1. The
schedule W sequentially minimizes the risk (16).
Proof. In view of (11) and (15) we have

E‘ðSj � xÞ 6 E‘
Xn�1

i¼1

Bi � x

 !
<1; x < 0;

E‘ðSj � xÞ 6 E‘ðSjÞ þ ‘ð�xÞ 6 E‘
Xn�1

i¼1

Bi

 !
þ ‘ð�xÞ <1; x P 0:

Consequently, Lemma B.1 may be applied. Note that E‘0ðSj � xÞ is
nonincreasing in x and that it is nonnegative at x ¼ 0 in view of
Sj P 0 as stated. It follows that xH

j may be chosen to be
nonnegative. h

If the loss function ‘ð�Þ is not identically 0, but vanishes on the
negative half line, and Sj is not a bounded random variable, then
xH

j has to be chosen 1. At the other extreme, if the loss function
‘ð�Þ is not identically 0, but vanishes on the positive half line, xH

j

may be chosen equal to 0. These cases correspond to the situation
that idle times do not matter, and the situation that waiting times
are irrelevant, respectively. See also the next subsection.

To ease the exposition, we have so far assumed that the loss
functions are uniform in i, that is, equal for any customer. Inspec-
tion of the above theorem shows that this is by no means neces-
sary. The result straightforwardly extends to risk functions of the
type Rð‘Þi ðt1; . . . ; ti�1 þ xi�1Þ :¼ E‘iðSi�1 � xi�1Þ, that is, the function
‘ið�Þ is client-specific.

3.3. Weighted standard loss function

The loss functions of Section 3.1 can be generalized in the sense
that we could relax the equally weighing restriction. As argued in
e.g. Ho and Lau (1992), it is sometimes justified to weigh the ser-
ver’s idle time in a different manner than the client’s waiting time.
We here consider both a weighted linear and weighted quadratic
loss function.
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A weighted-linear loss function. Let the risk be a weighted sum of
the idle time and waiting time, bEIi þ cEWi for non-negative b; c.
Without loss of generality we may concentrate on risks of the form

Rðu;aÞi ðt1; . . . ; tiÞ :¼ aEIi þ ð1� aÞEWi; i ¼ 1; . . . ;n; a 2 ð0;1Þ:

Note that for a # 0 this risk minimizes only the client’s waiting time.
This results in a schedule that favors the clients by making the
interarrival times excessively long, thus generating substantial idle
times for the server. For a " 1 the risk minimizes the idle times of
the server, which is similar to setting D ¼ 0 in (4): all customers
are to arrive at time 0, resulting in long waiting times for the clients.

The optimal interarrival time xH

i�1 can be found by solving the
equation (cf. the proof of Proposition 3.2)

aFSi�1
ðxÞ � ð1� aÞ 1� FSi�1

ðxÞ
� �

¼ FSi�1
ðxÞ � 1þ a ¼ 0;

for i ¼ 2; . . . ;n. By Theorem 3.3 this leads to the optimal schedule

t1 :¼ 0 and ti :¼
Xi

j¼1

F�1
Si�1

1� að Þ; i ¼ 2; . . . ;n:

For a ¼ 1=2 it is easily seen that this schedule equals the optimal
scheme of Proposition 3.2, as desired. Note that a=ð1� aÞ may be
viewed as the ratio between the cost of idle time and the cost of
waiting time. Guidelines so as how to choose a are given by Fries
and Marathe (1981).

A weighted-quadratic loss function. Here we consider a loss func-
tion that is of the form

Rðv ;aÞi ðt1; . . . ; tiÞ :¼ aEI2
i þ ð1� aÞEW2

i ;

for i ¼ 1; . . . ;n and 0 6 a 6 1. Applying Theorem 3.3, we obtain that
the optimal interarrival time xi�1 solves

aðx� ESi�1Þ � ð1� 2aÞ
Z 1

x
PðSi�1 > sÞds ¼ 0; ð17Þ

which for a ¼ 1=2 reduces to the scheme of Proposition 3.1, as
desired. We present an example involving a weighted-quadratic
loss function in Section 6.

4. Optimal ordering

After having dealt with the optimal schedule for a given order of
the clients, the obvious next question is: how should the order of
arriving clients be chosen? This question will be addressed in this
section.

A commonly used heuristic is that the service times are put in
increasing order of variance. The underlying idea is that the vari-
ability (in terms of waiting times and idle times) in a D/G/1 system,
is exclusively caused by the variability of the service times. When
putting the clients with low variability (in their service times) early
in the schedule, the uncertainty for clients arriving later is reduced.
In this section we study the ordering issue, by deriving a result that
confirms the above heuristic. Related results were presented in
Wang (1999) for the case of exponentially distributed jobs.

Before going to the main result of this section, we present a sim-
ple covariance inequality due to Chebyshev, see Hardy, Littlewood,
and Pólya (1934, pp. 43–44) for an overview. Note that this result is
known as Chebyshev’s algebraic inequality, see Mitrinović and
Vasić (1974), and has been rediscovered several times later, see
Jogdeo (1977) and references therein.

Lemma 4.1. Let sð�Þ be a non-decreasing function and let X be a
random variable such that EX2 <1 and Es2ðXÞ <1 hold. Then
CovðsðXÞ;XÞP 0 holds. This inequality is strict, if sð�Þ is strictly
increasing and X is non-degenerate.
Proof. Note that ½sðXÞ � sðEXÞ�½X � EX�P 0 holds a.s. and that we
have CovðsðXÞ;XÞ ¼ E ½sðXÞ � sðEXÞ�½X � EX�ð Þ. h

The main contribution of this section is the following. Consider
n customers with independent service times B1; . . . ;Bn, and let Bi be
distributed as riB for i ¼ 1; . . . ;n, where we assume
r1 6 r2 6 . . . 6 rn. Let p be a permutation of f1; . . . ;ng. The corre-
sponding permutation ðBpð1Þ; . . . ;BpðnÞÞ of the service times
ðB1; . . . ;BnÞ that sequentially minimizes the risks, is the identical
permutation pðiÞ ¼ i; i ¼ 1; . . . ;n. More precisely, we have the fol-
lowing result; see Appendix C for a proof.

Theorem 4.2. Let Rð‘Þi ðt1; . . . ; tiÞ :¼ E‘ðWi � IiÞ be the risk corre-
sponding to a non-negative convex loss function ‘ð�Þ with ‘ð0Þ ¼ 0,
and let r1 6 r2 6 . . . 6 rn be positive numbers. In addition, let for all
i, all r > 0, and all x 2 R the expectations E‘ðWi þ rB� xÞ;
Ej‘0ðWi þ rB� xÞj2, and EB2 be finite. Furthermore, for any permu-
tation p, let Rð‘Þi ðpÞ be the risk from (14) sequentially minimized by the
scheduleW from Theorem 3.3 for i ¼ 1; . . . ; n, when the service times
Bi are distributed as rpðiÞB; i ¼ 1; . . . ;n.

If ‘0ð�Þ is continuous or if the random service time B has a density
with respect to Lebesgue measure, then the identical permutation
pðiÞ ¼ i sequentially minimizes the risk Rð‘Þi ðpÞ at the i-th arrival,
i ¼ 1; . . . ;n.

Since the ri are scale parameters, this theorem confirms the
intuitive idea that the clients should be put in increasing order of
variance. For the special case of the Bi having exponential distribu-
tions with parameters k1; . . . ; kn, it implies that the order should be
such that the ki decrease with i; that is, the one with lowest vari-
ance (and mean) should be served first. In Wang (1999) partial
proofs were given for a related result for the special case of expo-
nential service times.

5. Extensions, robustness, computational issues

In this section we focus on a number of issues that directly
relate to implementing our approach in a practical setting. The first
subsection covers a number of practically relevant extensions.
Then, in Section 5.2 we argue that our scheme has desirable
robustness properties with respect to small deviations from the
scheduled arrival epochs. This section concludes with a brief
account of computational issues.

Before being able to set up a schedule, the service provider has
to decide on which objective function he or she wants to use. It is
not the objective of this paper to advise service providers on the
specific loss function that should be chosen: this is a strongly situ-
ation-dependent issue, and reflects the specific policy the service
provider has in terms of the grade of service that should be offered
to customers. Our methodology is particularly useful when assess-
ing the effect of choosing specific types of loss functions, e.g. linear
or quadratic; see for instance Fig. 3 in Section 6, in which this effect
has been visualized. In addition, the same figure shows how it
facilitates the assessment of the schedule’s sensitivity as a function
of the weight a.

5.1. Additional issues: urgent arrivals, no-shows, and multiple servers

In this section we present a number of extensions of the sched-
uling scheme developed in the previous sections. We focus on two
specific complications, cf. Cayirli and Veral (2003): an additional
stream of customers that has to be handled with priority, and
the impact of no-shows. Although we discuss the two complica-
tions for the case of quadratic loss functions only, the results can
be generalized to any convex loss function, in the spirit of Lemma
B.1 and Theorem 3.3.
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Urgent arrivals. A common approach is to model urgent arrivals
by adding a random process, see for example Rising, Baron, and
Averill (1973), and Swisher, Jacobsen, Jun, and Balci (2001).
Consider the model presented in Section 3, but let there be an
additional Poisson stream of customers that has to be handled with
priority – if the server is busy upon arrival of such an ‘urgent
customer’, the job in service is finished before the server starts
serving the urgent customer(s). Let urgent customers arrive
according to a Poisson process of rate k, and let their service
requirements J1; J2; . . . be i.i.d. random variables distributed as a
generic random variable J.

Under these additional urgent arrivals and quadratic loss func-
tions, the scheduling scheme V could be adapted to

ti ¼ ti�1 þ EWi�1 þ EBi�1 þ kðti � ti�1Þ � EJ;

leading to

t1 :¼ 0; and ti :¼ 1
1� kEJ

Xi�1

j¼1

EWj þ EBj
� �

; i ¼ 2; . . . ;n:

Note that we should necessarily have k EJ < 1, as otherwise the sec-
ond ‘regular’ job would never be scheduled.

No-shows. As argued in, e.g., Hassin and Mendel (2008) and
Kaandorp and Koole (2007), the impact of no-shows may be sub-
stantial. To analyze this effect, let di be the indicator that customer
i actually shows up, independently of the job sizes and other cus-
tomers showing up or not, where di equals 1 with probability pi

and 0 else. This means that the service time Bi is replaced by Bidi.
It is readily checked that in this model we would obtain the sche-
dule (under quadratic loss functions)

t1 :¼ 0; and ti :¼
Xi�1

j¼1

EWj þ pj EBj
� �

; i ¼ 2; . . . ; n:

Other loss functions can be dealt with similarly. Note that Wi and
hence EWi are influenced by no-shows.

Multiple server setting. Our approach can be extended to the case
of multiple servers (say s). In this setting the service provider
sequentially decides to schedule the next appointment to the ser-
ver that contributes the least expected loss to the system. This can
be implemented by the following iterative procedure. Suppose the
i-th customer enters, and the previous i� 1 have been assigned an
arrival time, and a specific server by whom they will be served. For
customer i it is then computed what his optimal arrival time would
be, for each of the s possible servers. Then customer i is assigned to
the queue with the lowest risk contribution of this customer.

Note that, due to our generic sequential approach, the servers
need not be identical, since the approach can deal with distinct
service time distributions (which could depend on both client
and server). Also remark that in the procedure sketched above it
has not been taken into account that each server, in case it idles
earlier than expected, could potentially serve customers that are
waiting at other queues. In principle, however, the procedure can
be adapted to that setting, too, by using a D/G/s-type of queue,
which is computationally more involved.

Objective function. It is evident that the objective function
should include features that involve both the clients’ interests
and the server’s interests, and a natural choice is to build the objec-
tive function around waiting times and idle times, as we do in this
paper. The incorporation of other metrics on top of these is not
always possible. Consider for instance the makespan (or session
end time), equalling

Xn

i¼1

ðIi þ BiÞ ¼ tn þ Sn:

This can be incorporated in the simultaneous approach with linear
objective function, but this cannot be done in the simultaneous
approach with other objective functions, and not in the sequential
approach either. A similar remark applies to the facility overtime.
This metric, considered in e.g. Kaandorp and Koole (2007), is
defined as the positive part of the difference between the session
end time and some scheduled end time T:

max
Xn

i¼1

ðIi þ BiÞ � T;0

( )
:

5.2. Impact of small perturbations

In practice the clients’ arrival epochs will slightly deviate from
the scheduled epochs. In this subsection we assess the impact of
these perturbations, showing how to adapt the schemes identified
in Section 3.1. Further results on ‘almost deterministic arrival pro-
cesses’ are given in e.g. Araman and Glynn (2012), while there is a
strong relation to the analysis of the effect of jitter in communica-
tion networks as well Roberts et al. (1996, chap. 3).

The setup considered in this subsection, is that a particular
client, say the i-th, arrives not necessarily on time. We first study
how this affects his optimal arrival epoch, and then we comment
on the impact on customers arriving later, that is, customers
iþ 1; iþ 2; . . .. We consider the situation that the perturbation
around the scheduled arrival time is substantially smaller than
the typical job durations. This is realistic in practice; think of a den-
tist whose check-ups last for instance 15 up to 20 minutes, while
clients may be one or two minutes early or late. The consequence
is that customer iþ 1 does not take over customer i.

In the sequel we let NðeÞi be the perturbation around the arrival
of the i-th customer. NðeÞi could have for instance a Normal distribu-
tion with mean 0 and variance e2, or an alternative distribution on
f�e; eg (each with probability 1

2).
It is not hard to check that in the case of quadratic loss the

optimal interarrival time xH

i�1 now minimizes

E Si�1 � xi�1 � NðeÞi

� �2
;

whereas in the case of absolute value loss it minimizes

E Si�1 � xi�1 � NðeÞi

			 			:
We now analyze both cases separately. For ease we leave out the
index, as this is constant throughout the analysis. We let xHðeÞ be
the optimal interarrival time in the e-perturbed situation;
xH � xHð0Þ is therefore the solution we have identified in
Section 3.1.

Quadratic loss function. It is trivial to observe that
xHðeÞ ¼ ES� ENðeÞ, which reduces to xHðeÞ ¼ ES due to ENðeÞ ¼ 0.
We conclude that we obtain the same solution as in the non-
perturbed case.

Linear loss function. In self-evident notation, we have that

xHðeÞ ¼ F�1
S�NðeÞ

1
2

� �
;

so that we need to solve

1
2
¼
Z xHðeÞ

�1
FSðxHðeÞ � yÞfNðeÞ ð�yÞdy;

here and in the sequel fXð�Þ denotes the density (assumed to exist) of
the random variable X. Now expand, under the obvious regularity
properties,

FSðxHðeÞ � yÞ � FSðxHÞ þ fSðxHÞðxHðeÞ � xH � yÞ

þ f 0SðxHÞ
2
ðxHðeÞ � xH � yÞ2:
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Putting xHðeÞ ¼ xH þ j1eþ j2e2 þ Oðe3Þ and using that FSðxHÞ ¼ 1
2,

routine calculations yield the equation (neglecting terms of the
order e3 and higher)

fSðxHÞ
Z 1

�1
ðj1eþ j2e2 � yÞfNðeÞ ð�yÞdyþ f 0SðxHÞ

2

�
Z 1

�1
ðj1eþ j2e2 � yÞ2fNðeÞ ð�yÞdy

¼ 0;

which reduces to

fSðxHÞðj1eþ j2e2Þ þ f 0SðxHÞ
2
ðj2

1 þ 1Þe2 ¼ 0

(where we used that the first moment of NðeÞ is 0 and the second
moment e2). As this holds for any e small, we find that j1 ¼ 0 and
j2 ¼ �f 0SðxHÞ=ð2f SðxHÞÞ. We conclude that a stochastic perturbation
of the interarrival times of the order e, leads to just a change in
the optimal schedule in the order of e2.

The consequence of the above is that, regarding the optimal
arrival time for the i-th customer, the scheme we identified is
robust with respect to perturbations in the arrival process. We
now briefly consider the impact on the customers arriving after
customer i; for ease we focus on the case of quadratic loss. To this
end, observe that the departure time of the i-th customer only
changes (with respect to the non-perturbed situation) if she is late
and the queue is empty when she arrives. As a consequence, the
optimal arrival epoch of customer iþ 1 in the perturbed case
should equal the arrival epoch in the non-perturbed case increased
by a small positive quantity; this quantity is the product of the
queue being empty upon the arrival of the i-th customer, multi-
plied byZ 1

0
yfNðeÞ ðyÞdy;

which is essentially linear in e (for small e). In the same way, the
optimal arrival epoch of customer iþ 2; iþ 3; . . . can be determined,
but the formulas do not offer any additional insight. In the situation
described above, in which the departure of the i-th customer is
delayed, the perturbed system matches again with the non-per-
turbed system as soon as the perturbed system idles.

5.3. Computational aspects

Our sequential approach requires the availability of a computa-
tional procedure to evaluate the customers’ sojourn-time distribu-
tions. While such a computation is feasible e.g. for the case of (not
necessarily identical) exponentially distributed service times, no
explicit results are available for general service time distributions.
To overcome this problem, a widely used approach is to approxi-
mate the service times by their phase-type counterparts, a class
of distributions that allow fairly explicit computational proce-
dures; see e.g. Asmussen (2003). More specifically, following an
idea presented in e.g. Tijms (1986), we could replace each cus-
tomer’s service time distribution by a phase-type distribution with
the same mean and variance; for the situation that this distribution
corresponds to a coefficient of variation (defined as the ratio of the
standard deviation and the mean) smaller than one, a mixture of
Erlang distributions can be used, whereas if the coefficient of var-
iation is larger than one, we fit a hyperexponential distribution. For
the queue with (not necessarily evenly spaced) deterministic arriv-
als and such phase-type service times, algorithms can be devised to
evaluate the sojourn-time distributions of the individual custom-
ers. These algorithms are of a recursive nature: the sojourn-time
distribution of the i-th customer can be computed from that of
the ði� 1Þ-st customer. We refer to e.g. Kuiper, Kemper, and
Mandjes (2014) for a systematic validation of this procedure, as
well as related computational features.

In practical situations, additional requirements will be imposed
on the schedule: lunch breaks should be included, all slots should
be a multiple of D (for instance, 5) minutes, etc. Regarding the lat-
ter issue, a pragmatic option would be to round off all the tis to a
multiple of the granularity D. Another option would be to optimize
the sequential objective function

E‘ðSi�1 � ti þ ti�1Þ;

over ti 2 DN (for known ti�1 2 DN).

6. Examples and numerical experiments

Above we presented a method to determine the optimal inter-
arrival time given the sojourn time distribution of the previous
jobs, for any given convex loss function. To illustrate this method,
we discuss a set of examples. Although the method works for all
service time distributions, we consider the exponential case for
its attractive computational properties; extensions to phase-type
service time distributions are feasible, as discussed in Section 5.3.

We first consider ‘steady-state schedules’: if all jobs stem from
the same distribution, then the schedules prescribe that the cus-
tomers should arrive equidistantly in time. We denote the risk
per customer in the steady-state for loss function ‘ð�Þ at interarrival
time x by Rð‘ÞðxÞ. We present closed-form optimal interarrival times
for the various loss functions introduced above. Then we verify the
legitimacy of the use of steady-state results, which is particularly
relevant in case the number of jobs is relatively low. In the third
example, we compare our sequential approach with the simulta-
neous optimization program (1). Finally, we study the impact of
the weight a.

Example 6.1. In this example we consider the effect of scheduling
policies U and V by considering the situation of i.i.d. service times,
and the number of jobs n being large. Our goal is to compute the
limiting interarrival time for both scheduling policies.

We assume that the service times are exponential with mean
1=l, so that the queue under consideration is an D/M/1. Let x be the
interarrival time between two subsequent jobs; it is evident (cf.
Proposition 2.1) that we should have x larger than the average
service requirement 1=l. Then the distribution of the steady-state
waiting time W is given through Asmussen (2003) and Tijms
(1986).

PðW > yÞ ¼ rxe�lð1�rxÞy; y > 0;

where r � rx is the unique solution in ð0;1Þ of e�lð1�rÞx ¼ r. By
straightforward calculus, with B exponentially distributed with
mean 1=l, we obtain

GðyÞ :¼ PðW þ B 6 yÞ ¼ 1� e�lð1�rxÞy; y > 0:

(i) First consider the absolute value loss function and strategy
U . It follows directly that
G�1 1
2

� �
¼ log 2

lð1� rxÞ
:

We find for the optimal interarrival time xH ¼ G�1ð1=2Þ
rxH ¼ 1
2

and xH ¼ 2 log 2
l

:

Note that in case of a weighted-linear loss function the optimal x
solves
G�1ð1� aÞ ¼ � log a
lð1� rxÞ

;
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yielding
rxH ¼ a; xH ¼ 1
l
� � log a

1� a
; and Rðu;aÞðxHÞ ¼ �a log a

lð1� aÞ :
For a " 1, the optimal xH converges to 1=l. This results in a stable
queue with large waiting times for the clients, due to the heavy
weight imposed on idle times in the risk.

(ii) Let us now focus on the quadratic loss function and policy V.
It is easily verified that
EW þ EB ¼ rx

lð1� rxÞ
þ 1

l ¼
1

lð1� rxÞ
:

Fig. 1. Speed of convergence for the linear and quadratic schemes. The figure shows
the scheduled interarrival times as a function of the customer number, as well as
their limiting value; l ¼ 1.
Straightforward calculations now reveal that, with xH being the
optimal interarrival time,
Table 1

rxH ¼ 1

e
; and xH ¼ 1

l
� e
e� 1

:

The optimal interarrival times for the different job numbers in schemes U and
V;l ¼ 1.

Scheme DfxH

1 � xH

i g (%)

U xH

5 1.3245 4.10

xH

10 1.3673 1.37
As e=ðe� 1Þ � 1:5820 and 2 log 2 � 1:3863, we conclude from the
above that under the quadratic loss function the scheduling is
somewhat more conservative than under the linear loss function.
Finally, we consider the weighted-quadratic loss function. The use
of (17) and the constraint on rx yield the equation
xH

20 1.3814 0.36

xH

1 1.3863 0.00

V H 1.5438 2.41
aðx�ESÞþð1�2aÞ �e�lð1�rxÞx

lð1�rxÞ

� �
¼�að1þ logrxÞ�ð1�2aÞrx

lð1�rxÞ
¼0;
x5

xH

10 1.5749 0.45
which is equivalent to wðrxÞ ¼ 0 with

xH

20 1.5813 0.05

xH 1.5820 0.00
wðrÞ ¼ að1þ logrÞ þ ð1� 2aÞr; 0 < r � 1; ð18Þ

1

strictly increasing, limr#0wðrÞ ¼ �1, and wð1Þ ¼ 1� a P 0. It
follows that (18) has a unique solution rxH 2 ð0;1�, and we get
xH ¼ � logrxH

lð1� rxH Þ and Rðv;aÞðxHÞ ¼ 1
a

aþ ð1� 2aÞrxH

lð1� rxH Þ

� �2

:

The optimal interarrival times xH for the various optimization
schemes exhibit different sensitivities with respect to the weight
a, as will be considered in detail in Example 6.4. }
Example 6.2. In this example we analyze the speed of conver-
gence of the various scheduling schemes by considering the situa-
tion of i.i.d. service times exponentially distributed with mean 1,
and the number of jobs n being relatively small. For each scheme
we analyze the speed of convergence; that is, we investigate the
difference between the sequentially optimized interarrival time
and the asymptotic regime as studied above.

The schemes U and V analyzed in this example are based on the
ordinary (i.e., a ¼ 1=2) linear and quadratic loss functions. The
optimal interarrival times xH

1 ; x
H

2 ; . . . are numerically determined,
by first evaluating the distributions of the sojourn times Si. This is
facilitated by an algorithm proposed by Pegden and Rosenshine
(1990) to find the distribution of the number of customers NðtiÞ in
the system, just prior to the time of the i-th arrival; obviously,
NðtiÞ 2 f0; . . . ; i� 1g and i 2 f1; . . . ;ng. It requires an elementary
verification to observe that

PðNðtiÞ ¼ ‘ jNðti�1Þ ¼ kÞ ¼
e�xi

xkþ1�‘
i

ðkþ1�‘Þ! ; if‘ 2 f1; . . . ; kþ 1g;X1
‘0¼kþ1

e�xi
x‘0

i
‘0! ; if‘ ¼ 0:

8>><
>>:

Evidently, the sojourn time of the i-th customer is the convolution
of NðtiÞ þ 1 exponential random variables, each of which has mean
1.

Based on our findings in the previous example, we expect the
quadratic scheme V to be slightly more defensive for a ¼ 1=2. As
can be seen in Fig. 1 the optimal values for xH are increasing in the
job number; that is, the first jobs are scheduled ‘tighter’ than the
jobs later on in the schedule (which is due to the fact that the first
customers are facing less uncertainty).

From Table 1 we conclude that the transient scheme converges
rather fast to the stationary scheme. In our example, the relative
difference between the optimal interarrival of a job and the steady-
state interarrival, which we denote here by DfxH

1 � xH

i g, is smaller
than 5% for jobs scheduled after the 4-th arrival. Therefore, the use
of the steady-state optimal interarrival times xH

1 for all jobs
reduces the expected waiting time for the jobs early in the
schedule (but at the expense of increasing the server’s idle time).
The example indicates that simple heuristics, in the spirit of
‘‘schedule the first five jobs at 95% of the steady-state interarrival
time and the rest of the jobs at steady-state interarrival time’’, are
close to the optimum and easily applicable for practitioners. }
Example 6.3. We now compare the output of our sequential
approach with that of the simultaneous program (1). In the latter
approach one obtains the clients’ optimal arrival times through
the simultaneous optimization

min
t1 ;...;tn

Xn

i¼1

EðWi � IiÞ2: ð19Þ

As mentioned in the introduction, this simultaneous approach is
numerically typically harder than our sequential counterpart, the
most substantial advantage of the latter scheme being that only
single-dimensional optimizations need to be performed. For the
special case of exponential service times, the objective function in
(19) can be evaluated once we have a procedure to compute the
number of customers present at t1 up to tn (due to the memoryless
property), and this can be done by an algorithm developed in Wang
(1999). Below we compare the simultaneous and sequential
scheme, in terms of both their steady-state and transient properties.

Steady-state. Informally, in case of a quadratic loss function and
for large n, to compute the steady-state interarrival time for the
simultaneous approach, we are to evaluate



Fig. 3. The stationary optimal interarrival times for the simultaneous (left) and
sequential approach (right) for linear (thin lines) and quadratic (thick lines) loss
functions, as a function of a; l ¼ 1.
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min
x1 ;...;xn�1

Xn

i¼1

EðWi � IiÞ2 � n �min
x

EðSðxÞ � xÞ2;

where the random variable SðxÞ corresponds to a steady-state
sojourn time in a D/G/1 queue with interarrival time x. It is seen
that the optimal steady-state interarrival time, say xH

sim, follows
from the first order condition

d
dx

ES2ðxÞ � 2xESðxÞ þ x2
� �

¼ d
dx

ES2ðxÞ � 2ESðxÞ � 2x
d

dx
ESðxÞ þ 2x

¼ 0:

Given that ESðxÞ ¼ 1=ðlð1� rxÞÞ;ES2ðxÞ ¼ 2=ðlð1� rxÞÞ2, and that
rx is the unique solution in ð0;1Þ of e�lð1�rxÞx ¼ rx, the first order
condition yields the equation

2
lð1� rxÞ

2rx þ rx logrx

rx � 1� rx logrx
� logrx � 1


 �
¼ 0;

or rx þ ð1þ log rxÞð1þ rx logrxÞ ¼ 0:

In case l ¼ 1 we numerically find xH

sim ¼ 1:847. For the sequential
approach we found that the steady-state optimal interarrival time
equals xH

seq ¼ 1:582. Consequently, the simultaneous approach
yields longer optimal interarrival times (hence in the clients’ favor,
and disadvantageous to the server).

Transient. In case the number of jobs n is relatively small, we are
able to numerically analyze the optimal transient interarrival
times relying on Wang’s algorithm Wang (1999). Wang’s algorithm
enables us to find the distribution of the number of customers in
the system at the arrival times t1 up to tn, and therefore to evaluate
the objective function for a given t1; . . . ; tn. Then a numerical
minimization procedure is used to determine the optimal transient
interarrival times.

Our findings are depicted in Fig. 2, together with the steady-
state result as well as the results of the sequential approach from
the previous example. We observe that all jobs, except for the last
one, are scheduled less tight with the simultaneous approach than
with the sequential approach. Furthermore, for the sequential
approach the optimal interarrival times are increasing and con-
verge towards the steady-state optimal interarrival time xH

seq,
whereas for the simultaneous approach the optimal interarrival
times are increasing in the first arrivals and decreasing in the last
arrivals, being close to xH

sim in the middle part. }
Example 6.4. In the last experiment we study the impact of the
weight parameter a in the weighted loss function aEIci þ ð1� aÞ
EWc

i , where c ¼ 1 corresponds to the linear case, and c ¼ 2 to the
quadratic case. The weight parameter a 2 ð0;1Þ is a tuning param-
eter when balancing the interests of the service provider: for a
close to 0, waiting times should be prevented, leading to relatively
high values of xH, while for a close to 1 the schedule is such that
idle times are prevented from happening, leading to relatively
low values of xH.
Fig. 2. The optimal interarrival times for the sequential and simultaneous approach
in case of a quadratic loss function; l ¼ 1.
Fig. 3 numerically assesses how a affects the schedule, for the
situation of identically distributed exponential service times.
Restricting ourselves to just the steady-state schedule, we compute
the optimal interarrival times xH for both linear and quadratic loss,
and for both the sequential and the simultaneous objective
function. }.
7. Conclusion and outlook

In appointment scheduling, rules are needed that assure a good
trade-off between quality (in terms of the customer’s waiting time)
and cost (in terms of the server’s idle time). In this paper we pre-
sented a technique to generate such rules.

More specifically, these rules are based on an approach that
sequentially minimizes risks and which can be used to determine
a schedule, for any convex loss function and service time distribu-
tion. In this framework, one should schedule jobs in the order of
increasing variances, for convex loss functions with scale families
of service time distributions. Also, the scheduling rules presented
here can be extended to cover real-life phenomena such as no-
shows, urgent arrivals, and the effect of small perturbations of
the arrival epochs.

We demonstrated the approach by four representative exam-
ples. In the first we considered a system with a large number of
customers, so that the system can be effectively replaced by its
steady-state version. In case of exponential service times there
are closed-form expressions for the steady-state schedule, whereas
the transient schedule can be determined relatively easily relying
on basic standard mathematical software; we do so for (possibly
weighted) linear and quadratic loss functions. The numerical out-
put illustrates the impact of the choice of the loss function on
the interarrival times. In the second example we show how fast
the transient schedule converges to the steady-state schedule.
Numerical experiments indicate that simple heuristics perform
well. In the third example we compare our approach with the joint
approach that was described in the introduction. The last example
numerically assess the impact of the weight parameter a.

The methodology presented in this paper can be used across a
broad range of application areas, such as health care, manufactur-
ing, and other service systems, in situations that primarily focus on
setting up an appointment schedule. In addition, it may shed light
on provisioning issues (that is, decide how many jobs can be sched-
uled per server per working day, or, similarly, how many servers
should be allocated on a working day to process the scheduled
appointments). It is clear that our approach can be used to check
whether it is realistic to schedule a given number of n appoint-
ments on a working day (based on knowledge of the service time
distribution of each job), and in this way it can be used to support
provisioning and staffing decisions.
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A next step in this branch of research would be a study in more
detail of both the sequential and the simultaneous approach for a
D/G/1 system and various loss functions. These issues, as well as
the extension to more complex queueing networks, such as tan-
dem or parallel queues, are topics for future research.
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Appendix A. Waiting time

A.1. Proof of Proposition 2.1

Let Aj be the j-th customer’s random interarrival time. Our anal-
ysis relies on the Spitzer–Baxter identities Asmussen (2003, pp.
229–232), see also Feller (1971, chap. 7 and chap. 18). In view of
Asmussen (2003, Prop. 4.5), we have to study, with
xþ :¼maxfx; 0g,

EWnffiffiffi
n
p ¼ 1ffiffiffi

n
p
Xn

k¼1

1
k

E
Xk

j¼1

ðBj � AjÞ
 !þ !

¼ 1ffiffiffi
n
p
Xn

k¼1

1
k

Z 1

0
P

Xk

j¼1

ðBj � AjÞ
 !þ

> y

 !
dy

¼ 1ffiffiffi
n
p
Xn

k¼1

1
k

Z 1

0
P
Xk

j¼1

ðBj � AjÞ > y
ffiffiffi
k
p

r
 !

dy

 !
r
ffiffiffi
k
p

¼ rffiffiffi
n
p
Xn�1

k¼1

1ffiffiffi
k
p I k;

where

I k :¼
Z 1

0
P

1ffiffiffi
k
p
Xk

j¼1

Bj � Aj

r
> y

 !
dy:

By Chebyshev’s inequality the integrand is bounded, as follows:

P
1ffiffiffi
k
p
Xk

j¼1

Bj � Aj

r
> y

 !
6 min 1;

1
y2 Var

1ffiffiffi
k
p
Xk

j¼1

Bj � Aj

r

 !( )
:

Therefore, we have

I k 6

Z 1

0
ð1 ^ 1

y2Þdy ¼
Z 1

0
dyþ

Z 1

1

1
y2 dy ¼ 2:

By dominated convergence and the central limit theorem, this
yields

I k !
k!1

Z 1

0
1�UðyÞð Þdy ¼ 1ffiffiffiffiffiffiffi

2p
p :

Subsequently, note

1ffiffiffi
n
p

Xn�1

k¼1

1ffiffiffi
k
p I k ¼

Z 1

0

Idnxeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dnxe=n

p 1 x61�n�1½ �dx:

The integrand is bounded by 2x�1=2 with
R 1

0 2x�1=2dx ¼ 4. Conse-
quently, dominated convergence yields

1ffiffiffi
n
p

Xn�1

k¼1

1ffiffiffi
k
p I k !

n!1

Z 1

0

1ffiffiffiffiffiffiffi
2p
p 1ffiffiffi

x
p dx ¼

ffiffiffiffi
2
p

r
:

It thus follows that the claim of Proposition 2.1 holds. �

Appendix B. Convex loss functions

Lemma B.1. Let ‘ð�Þ be a nonnegative convex function on R with
‘ð0Þ ¼ 0. Then ‘ð�Þ is a loss function, i.e., it is nonincreasing on ð�1; 0�
and nondecreasing on ½0;1Þ with ‘ð0Þ ¼ 0. Furthermore, it is
absolutely continuous with nondecreasing derivative ‘0ð�Þ. Let S be a
random variable and let E‘ðS� xÞ be finite for all x 2 R. Then
Ej‘0ðS� xÞj is finite for all x 2 R, and E‘ðS� xÞ is a convex function
of x, for which

inf
x2R

E‘ðS� xÞ ¼ lim
x!�1

E‘ðS� xÞ

holds, or

inf
x2R

E‘ðS� xÞ ¼ lim
x!1

E‘ðS� xÞ

holds, or for which the infimum is attained at a value xH at which
E‘0ðS� �Þ changes sign or equals 0.
B.1. Proof of Lemma B.1

The monotonicity of ‘0ð�Þ and the nonnegativity of ‘ð�Þ imply for
all a 6 bZ b

a
j‘0ðyÞjdy 6 ‘ðbÞ þ ‘ðaÞ:

Consequently, by ‘Fubini’,Z b

a
Ej‘0ðS� xÞjdx ¼ E

Z b

a
j‘0ðS� xÞjdx 6 E‘ðS� bÞ þ E‘ðS� aÞ <1

and henceZ b

a
�E‘0ðS� xÞð Þdx ¼ E‘ðS� bÞ � E‘ðS� aÞ

holds. Hence, E‘ðS� xÞ is absolutely continuous with derivative
�E‘0ðS� xÞ and therefore convex. The lemma follows. h

Appendix C. Sequential ordering

C.1. Proof of Theorem 4.2

In view of (6)–(14) we have

Rð‘Þi ðt1; . . . ; tiÞ ¼ E‘ðWi � IiÞ ¼ E‘ðWi�1 þ ri�1B1 � ti þ ti�1Þ:

Consequently, it suffices to show that for the waiting time Wi and
the service time random variable B1

wðrÞ :¼ inf
x2R

E‘ðWi þ rB1 � xÞ ð20Þ

is nondecreasing in r > 0. We may write

d
dr

E‘ðWi þ rB1 � xÞ ¼ lim
�!0

1
�

E ‘ðWi þ ðrþ �ÞB1 � xÞð

�‘ðWi þ rB1 � xÞÞ ¼ E ‘0ðWi þ rB1 � xÞB1ð Þ

þlim
�!0

1
�

E

Z �

0
‘0ðWi þ ðrþ gÞB1 � xÞ½

�
�‘0ðWi þ rB1 � xÞ�dgB1Þ ð21Þ

and we may note that the integrand at the right hand side is
bounded in absolute value by j‘0ðWi þ ðrþ �ÞB1 � xÞ
�‘0ðWi þ rB1 � xÞj, since ‘0ð�Þ is nondecreasing. It follows that the
square of the expression after the limit sign at the right hand side
of (21) is bounded (by virtue of ‘Cauchy–Schwarz’) by
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Ej‘0ðWi þ ðrþ �ÞB1 � xÞ � ‘0ðWi þ rB1 � xÞj2 EB2
1:

If ‘0ð�Þ is continuous, we may conclude by dominated convergence
that the limit at the right hand side of (21) vanishes, and hence that

d
dr

E‘ðWi þ rB1 � xÞ ¼ E ‘0ðWi þ rB1 � xÞB1ð Þ ð22Þ

holds. Since ‘0ð�Þ has at most countably many discontinuities, we
may conclude (22) also if ‘0ð�Þ is not continuous, but B1 has a density
with respect to Lebesgue measure.

Fix r0, and choose xH

0 according to Lemma B.1 such that it
satisfies

wðr0Þ ¼ E‘ðWi þ r0B1 � xH

0 Þ; E‘0ðWi þ r0B1 � xH

0 Þ ¼ 0: ð23Þ

First we will consider the case that ‘ð�Þ is strictly convex. Then (22),
(23), and Chebyshev’s strict inequality from Lemma 4.1 yield

d
dr

E‘ðWiþrB1� xH

0 Þ
		
r¼r0
¼ E ‘0ðWiþr0B1� xH

0 ÞB1
� �

¼ E ‘0ðWiþr0B1� xH

0 Þ½B1�EB1�
� �

¼ E E ‘0ðWiþr0B1� xH

0 Þ½B1�EB1�
		Wi

� �� �
¼ E Cov ‘0ðWiþr0B1� xH

0 Þ; B1

		Wi
� �� �

> 0;

ð24Þ

since ‘0ð�Þ is strictly increasing and B1 is non-degenerate. It follows
that there exists a r1 < r0 such that for all r 2 ½r1;r0Þ the strict
inequality

E‘ðWi þ rB1 � xH

0 Þ < E‘ðWi þ r0B1 � xH

0 Þ

holds, which implies

wðrÞ < wðr0Þ; r1 6 r < r0: ð25Þ

Furthermore, for all r1 > 0 and r2 > 0 there exist xH

1 and xH

2 by
Lemma B.1, such that by the convexity of ‘ð�Þ

1
2
½wðr1Þ þ wðr2Þ� ¼

1
2
½E‘ðWi þ r1B1 � xH

1 Þ þ E‘ðWi þ r2B1 � xH

2 Þ�

P E‘ Wi þ
1
2
ðr1 þ r2ÞB1 �

1
2
ðxH

1 þ xH

2 Þ
� �

P w
1
2
ðr1 þ r2Þ

� �
ð26Þ

holds, which means that wð�Þ is convex. Consequently, wð�Þ is contin-
uous, which together with (25) proves that wð�Þ is non-decreasing,
as may be seen as follows.

Assume wð�Þ would not be non-decreasing. Then there would
exist r3 and r4; r3 < r4, with wðr3Þ > wðr4Þ. Since wð�Þ is continu-
ous the infimum of it on ½r3;r4� is attained at r0, say. Note r3 < r0

and wðr3Þ > wðr0Þ. According to (25) there exists a r1 < r0 with
wðrÞ < wðr0Þ for r1 _ r3 6 r < r0, which is in contradiction with

inf
r36r6r4

wðrÞ ¼ wðr0Þ:

Having proved the monotonicity of wð�Þ for strictly convex loss func-
tions, we now consider the case of a general convex loss function
‘ð�Þ that satisfies the conditions of the theorem. For � > 0 we define
‘�ðxÞ ¼ ‘ðxÞ þ �x2; x 2 R. Since Wi is bounded by B1 þ � � � þ Bi�1 and
EB2

1 is finite, the conditions of the theorem are fulfilled for this
strictly convex loss function ‘�ð�Þ as well. Consequently the corre-
sponding function w�ð�Þ is non-decreasing. Choose r5 < r6. The def-
inition of w�ð�Þ and its monotonicity yield

wðr5Þ 6 w�ðr5Þ 6 w�ðr6Þ: ð27Þ

Let xH

6 satisfy wðr6Þ ¼ E‘ðWi þ r6B1 � xH

6 Þ, and note

lim sup
�#0

w�ðr6Þ 6 lim sup
�#0

E‘�ðWi þ r6B1 � xH

6 Þ

¼ E‘ðWi þ r6B1 � xH

6 Þ ¼ wðr6Þ: ð28Þ
Together, (27) and (28) prove that wð�Þ is non-decreasing.
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