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Treacherous Complexity Underneath’’
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ABSTRACT The statistical evaluation of measurements on categorical scales

is hampered by hiatuses in insight and conceptualization. Categorical scales

have a simple mathematical structure. The underlying empirical reality,

however, that they aim to reflect usually has a very complex structure. This

complexity induces intricate challenges for the statistical evaluation of the

performance of categorical measurement systems. Most current techniques

deal ineffectively with these challenges, relying on simplistic conditional

independence assumptions and careless sampling strategies. Moreover, they

typically evaluate measurement systems in terms of concepts not clearly

related to a notion of measurement error. This article proposes an approach

for modeling the behavior of categorical measurements based on character-

istic curves. The approach is intended to facilitate the development of more

effective techniques. It is applied in a case study that illustrates what the

authors believe is a realistic degree of complexity.

KEYWORDS binary measurement, categorical data, gauge capability, latent

variable modeling, pass=fail inspection, repeatability, reproducibility

INTRODUCTION

The importance of the validity of measurements is generally

acknowledged, and techniques for assessing the error of measurement

systems are therefore an important subject of research in statistics. The

evaluation of measurement systems that produce results on numerical scales

is, we believe, a reasonably mature science (see, e.g., Automotive Industry

Action Group [AIAG] 2003; Hunter 1980; International Organization for

Standardization 1995). This does not mean that all problems have been

solved. However, the evaluation of categorical measurements struggles

with much more fundamental hiatuses in understanding and modeling,

to the extent that we have only a slight hesitancy in claiming that a

substantial part of such evaluations are misguided.1 This article will focus
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on the statistical evaluation of measurements on cat-

egorical scales, with special emphasis on binary

measurement.

As we see it, overly simplistic modeling has been a

substantial impediment to the development of effec-

tive and reliable techniques for the evaluation of cat-

egorical measurement systems. The purpose of this

exposition is to show how the models underlying

currently recommended techniques fail to capture

the complexity of structures underlying categorical

measurements, and we wish to put forward an alter-

native approach for statistical modeling and associa-

ted principles. In line with the philosophy of the Stu

Hunter Research Conference, where this article was

presented, the article focuses less on novel technical

contributions but instead aims to explore where the

field is now and make the case for a certain direction

that, in the view of the authors, is a fruitful way to

make progress.

To ensure that the reader has an idea what a

statistical evaluation of a measurement system may

comprise, and to set the stage for the discussion, we

briefly describe a so-called gauge repeatability and

reproducibility (GR&R) study (Montgomery and

Runger 1993; Vardeman and Van Valkenburg 1999).

The function of such an experiment is to estimate

the standard deviation of random measurement error

and two of its components: repeatability and repro-

ducibility. In a typical setup, 10 items are measured

twice by three appraisers. Assuming that the items’

properties do not change during the experiment

and are not affected by it, the variation across the

six measurement results for a single item can be inter-

preted as random measurement error. The results are

analyzed as realizations of a two-way random effects

analysis of variance model. The residual error in this

analysis is interpreted as repeatability, the variance

of random measurement errors when items are

measured under identical conditions and by a single

appraiser. The variance components associated

with the appraiser factor and the Appraiser� Item

interaction effect are interpreted as reproducibility,

the additional measurement variation induced by

the variability of conditions and differences among

appraisers. The sum of the repeatability and repro-

ducibility components is the total measurement

variance r2
R&R. Precision is sometimes defined as the

�krR&R margins, where typically k¼ 2.575 (99%

margin) or k¼ 3.000.

WHAT WENT WRONG: THE KAPPA
STATISTIC

Perhaps the most popular concept for the

evaluation of categorical measurements is that of

agreement and the associated j (kappa) statistic.

The statistic originated in psychometrics and medi-

cine, and seminal papers include Cohen (1960),

Fleiss (1971), Conger (1980), and Kraemer et al.

(2002), but the literature on the subject is extensive.

The approach is generally used in engineering as

well (De Mast and Van Wieringen 2007) and offered

in Six Sigma courses as attribute GR&R. The statistic

is included in Minitab and recommended in the

AIAG’s (2003) Measurement System Analysis: Refer-

ence Manual. Given the continuing popularity of

agreement studies for the evaluation of categorical

measurements, we cannot ignore this line of think-

ing, and it actually makes a good opening section,

because it allows us to illustrate much of what in

our view has gone wrong in this endeavor.

If appraisals are on a scale consisting of unordered

categories, we speak of nominal measurement, and

examples include the determination of failure modes

of rejected products in quality control in industry or

the diagnosis of patients by a radiologist on the basis

of an X-ray image into a set of disorder types. We will

consider an example in a call center of a bank, where

calls are categorized by agents on a five-point scale.

The aim of the categorizations is that management

wishes to know for what reasons (and especially in

what proportions) callers contact the company. Thus,

the empirical property of the calls that the categoriza-

tions are meant to reflect (the measurand) is the

intent of a caller. Five types of intent are discerned:

1. Service request: customer instructs bank to

perform a banking service.

2. Inquiry: customer requests information.

3. Error: customer reports a mistake.

4. Error and complaint: customer reports a mistake

and expresses dissatisfaction.

5. Complaint: customer expresses dissatisfaction.

Instructions for the call center agents are not much

more elaborate than these five definitions. In

particular, there are no operational guidelines that

tell agents how to discern, say, a service request from

an inquiry.

Statistical Evaluation of Measurements 17
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To evaluate the reliability of the categorizations

made by the call center agents, one could set up

an experiment that resembles the design of a GR&R

study. Real evaluations would involve substantial

numbers of calls and appraisers, but for simplicity

let us assume an experiment in which two agents

categorize the same 15 calls (recorded or transcri-

bed) once. The raw results and a cross-tabulation

are shown in Figure 1. The first two calls are rated

the same category by both appraisers, and this is

called agreement. For the third call, the appraisers

are in disagreement. The traditional analysis is based

on a cross-tabulation, in which the observed fre-

quencies are compared to the frequencies expected

when appraisers rate calls with the same marginal

distribution as observed but totally independent

from each other (chance ratings). The observed pro-

portion of agreement is bPPA¼ 1
15

P5
k¼1 Nkk¼ 11

15¼ 0:733

(where Nkk is the number of calls rated k by both

agents), and the expected agreement of chance rat-

ings is bPPAjchance¼ 1
152

P5
k¼1 Nk�N�k¼ 3:93

15 ¼0:262, where

Nk� and N�k are the row and column marginals. The

ĵj statistic is bPPA normalized such that ĵj¼1 for perfect

agreement and ĵj¼0 for chance ratings:

ĵj ¼
bPPA � P̂PAjchance

1 � P̂PAjchance
¼ 0:639:

Alternative definitions have been proposed for the

case of more than two appraisers and different situa-

tions (e.g., Conger 1980; Fleiss 1971; and many

others). Despite the simplicity of the statistic itself,

the extensiveness of the literature on the subject ref-

lects that its behavior is actually poorly understood,

and its interpretation is controversial. For example,

in the left data set in Figure 2, there is disagreement

in one out of 15 cases, whereas in the right data set

there is disagreement in 4 out of 15 cases. The reader

may be surprised that ĵj¼0:643 for both data sets

and may wonder what information this number con-

veys. The traditional interpretation of the statistic is

as a proportion of agreement corrected for agree-

ment by chance, but on closer inspection (Erdmann

et al. in press), chance and its tie to the marginal dis-

tribution turns out to be a problematic concept. The

behavior of ĵj in some cases is described in the litera-

ture as paradoxical (e.g., Feinstein and Cicchetti

1990).

It is characteristic that j is defined as a sample stat-

istic only. This makes it difficult to assess its merits as

an estimator for a population parameter, and this

practice obscures model assumptions. In the rare

expositions where j is presented on the basis of a

population model (Kraemer et al. 2002), the model-

ing is tied to the concepts of classification and

cross-tabulation (where the diagonal cell counts Nkk

estimate the agreement probabilities P(Y1¼Y2¼ k),

and the marginal counts Nk� estimate the marginal

distribution P(Y¼ k)).

In a number of papers, we have taken a different

approach in interpreting the kappa statistic (De Mast

2007; Erdmann et al. in press). We refrained from

taking the cross-tabulation analogy as a point of

departure, because this conceptualization sees app-

raisals as classification, rather than as measurement.

FIGURE 1 Fictitious data set in raw and cross-tabulation for-

mat. (Color figure available online.)

FIGURE 2 Two fictitious data sets. In both cases, ĵj¼0:643.
(Color figure available online.)
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The crucial difference between classification and

measurement is that measurement is a special form

of classification, aimed to reflect an empirical pro-

perty (the measurand) of the items being measured.

Including this measurand in the modeling allows one

to separate assumptions about the measurand

(which is a characteristic of the population of calls)

from the behavior of measurement errors (a charac-

teristic of the classification procedure). This gives

the following model.

We assume an unordered scale f0, 1, . . . , a�1g
with a categories and denote items (calls, in the

example) by the subscripts i¼ 1, 2, . . . , n and apprai-

sers (or repeated appraisals) by j¼ 1, 2, . . .m. The

true state of an item (the intention of a call) is Xi2
f0, 1,. . ., a�1g, with probability distribution p(k)¼
P(Xi¼ k) (accounting for variability of the measur-

and). The appraisal result of item i by appraiser j is

denoted Yij and conditional on the item’s true state

fXi¼ kg, the Yi1,. . . , Yim are assumed independent

and identically distributed (i.i.d.) with q(ljk)¼P(Yij¼
ljXi¼ k) (accounting for measurement variability).

The unconditional distribution is q lð Þ¼P Yij¼ l
� �

¼P
p kð Þ qðljkÞ (marginal distribution). The probability

of agreement is defined as

PA ¼ P Yi1 ¼ Yi2ð Þ ¼
Xa�1

k¼0

Xa�1

l¼0
p kð Þq2ðljkÞ:

De Mast and Van Wieringen (2007) showed that the

traditional sample statistic bPPA is an unbiased esti-

mator of this probability. Trying to find a probability

PAjchance that mirrors the traditional definition in sam-

ple statistics, we propose PAjchance¼P(Zi1¼Zi2),

with Zij the chance ratings done by an uninformative

classification procedure. The traditional definition of

j amounts to the assumption that the distribution of

chance ratings equals the marginal distribution of the

classification procedure under study when applied to

the items population under study; that is, P Zij ¼ l
� �

¼
q lð Þ ¼

P
p kð ÞqðljkÞ, and this givesPAjchance ¼

P
q2 lð Þ

and

j ¼
PA � PAjchance
1 � PAjchance

½1�

Personally, we are not satisfied with this definition of

a parameter for evaluating the validity of categorical

measurements and, in particular, we find the concept

of chance ratings too ambiguous to provide a

well-defined zero point for the probability of

agreement. In addition, we do not see why chance

ratings would happen to have the same probability

distribution as the marginal distribution of the classi-

fication procedure under study. But whatever one’s

view on this matter, our analysis reveals a number

of strong ramifications of the traditional definitions

that are underappreciated in the literature, and

that make the interpretation of agreement studies

precarious.

First, our analysis (De Mast 2007) allows a

more effective interpretation of j, which explains

many of the paradoxes. Rewriting the terms in [1]

we have

j ¼ 1 � 1 �
P

pðlÞ
P

q2 kjlð Þð Þ
1 �

P
q2 kð Þ ¼ 1 �

DG
Y jX

DG
Y

; ½2�

where DG
X ¼ 1 �

P
p2 kð Þ is the Gini dispersion of a

discrete variable X. The form on the right in Eq. [2],

with D a measure of dispersion, is the generic form

of measures of (predictive) association, and thus

we have shown that j can be interpreted as a mea-

sure of association between repeated ratings of

an item. Replacing the Gini dispersion in [2] with

DE
X ¼ �

P
p kð Þ log p kð Þ (the entropy), we find Theil’s

uncertainty coefficient, which is thus a direct cousin

of j. And with DV
X ¼ r2

X (the variance of a continuous

variable X), the right-hand side of Eq. [2] reduces to

the intraclass correlation coefficient. Interpreting j as

a measure of intraclass association, much of its para-

doxical behavior makes sense (Erdmann et al. in

press).

Second, the normalization based on PAjchance ¼P
q2 lð Þ depends on the population of items

(because the q(l) depend on the p(k)) and, conse-

quently, a classification procedure’s j is meaningless

in other item populations than the one from which

the items in the study were randomly sampled. Like-

wise, the normalization is based on the marginal dis-

tribution of the rating procedure under study and

therefore j cannot be used to compare two different

rating procedures. Namely, the chance correction for

one rating procedure is different from the correction

for the other and, therefore, the resulting j values are

on scales with different zero points. A review of

actual agreement studies in top medical journals

reveals that these two pitfalls are not generally recog-

nized (Erdmann et al. in press).

Statistical Evaluation of Measurements 19
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Further, the j statistic is sometimes used in

industry to evaluate pass–fail inspections. In such

cases, the true state of items is X¼ 0 (defective) or

X¼ 1 (good), and the inspection result is Y¼ 0 (fail)

or Y¼ 1 (pass). Because the defect rate p(0) is

typically extremely small, we have

PA¼pð0Þ q2ð0j0Þþq2ð1j0Þ
� �

þpð1Þ q2ð0j1Þþq2ð1j1Þ
� �

�p 1ð Þ q2 0j1ð Þþ 1�qð0j1Þð Þ2
� �

;

where q(0j1) is the probability of a false rejection.

Consequently, PA and j evaluate pass–fail inspec-

tions almost exclusively in terms of the producer’s

risk (the probability of a false rejection) but ignore

the consumer’s risk (the probability of a false

acceptance).

Finally, the lack of a population model in most

expositions obscures an assumption that is crucial

for the sample ĵj to be a meaningful estimator.

Namely, conditional on the calls’ true states Xi, the

Yij are assumed independent, an assumption that

amounts to the claim that besides X2f0, 1, . . . ,

a�1g there are no other properties of the calls and

environment that induce dependencies among the

ratings Y. Implicitly or explicitly, most expositions

make this assumption, but in many cases, such as

the one at hand here, it is implausible. For example,

In addition to the intent of a caller, the wording that

he or she chose and the intonation will affect the

probability distribution of Y. The ramifications of

such violations of conditional independence ass-

umptions have been studied thoroughly for two-

point scales in De Mast et al. (2011), the main con-

clusion being that the bias in estimated parameters

may be substantial if the sample of items is not

representative.

Agreement studies and j statistics have even more

serious flaws when used to evaluate measurements

on ordinal scales, such as judging the quality of

soldered joints on a four-point scale fA(reject),

B(critical), C(acceptable), D(excellent)g. In addition

to other problems from which the j statistic suffers,

this practice has the problem that it ignores the order

information in such ratings and treats an ordinal scale

as a nominal scale. Suppose two appraisers judge the

same five items as A, C, A, C, B and B, D, B, D, C,

respectively. An agreement study would find zero

agreement and conclude that the appraisers are even

less consistent than chance (ĵj ¼ �0:19). An

evaluation that incorporates order into the analysis,

to the contrary, would find that the appraisers are

in fact very consistent in ordering items relative to

each other.

A popular method to improve agreement studies

for ordinal ratings is the use of a weighted j statis-

tic. Instead of the proportion of agreement bPPA ¼
1
n

Pa�1
k¼0 Nk;k, we have the degree of disagreement

bDD ¼ 1

n

Xa�1

k1¼0

Xa�1

k2¼0
Nk1;k2wk1;k2;

with weights wk1, k2 quantifying the severity of a dis-

agreement between classes k1 and k2. For wkk¼ 0

and wk1,k2 ¼ 1(k1 6¼ k2), we have D̂D ¼ 1 � bPPA.

Weighted kappa is defined with similar modifications

for the degree of disagreement expected for chance

appraisals. The usual weighting scheme is quadratic:

wk1, k2¼ (k1�k2)2. The scheme is motivated as fol-

lows (Fleiss and Cohen 1973): provided that the

classes of the ordinal scale are in fact equidistant

points on an interval scale, the weighted kappa

based on quadratic weights approximates the intra-

class correlation coefficient Cor (Yi1, Yi2), which is a

commonly used parameter for expressing the agree-

ment of numerical measurements. Thus, the ordinal

scale fA, B, C, Dg is treated as an interval scale f1,

2, 3, 4g. But this makes one wonder: if the scale is

in fact an interval scale, it should be called an interval

scale (instead of ordinal), and the measurement pro-

cedure should be evaluated in terms of metrics suited

for that type of scale. If the ordinal classes cannot be

interpreted as equidistant points on an interval scale,

then the chosen weights are arbitrary and make the

analysis hard to interpret.

Note how the space needed to explain the j stat-

istic is substantially less than the space needed to

explain at least some of its behavior and discuss at

least some aspects of its interpretation. The dis-

cussion may give an impression of the extent to

which this field struggles with misguided statistical

modeling and conceptualizations of measurement.

In particular,

. The statistical modeling is ineffective. The lack in

most expositions of a population model obscures

crucial model assumptions. The conceptualiza-

tion is that of classification, rather than that of

20 J. de Mast, T. Akkerhuis, and T. Erdmann
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measurement. And the model is not based on the

independent drivers of the stochastic behavior,

namely, p(k) (the variability of the true state X in

the population of items) and q(ljk) (the variability

of the random measurement error).

. The statistic in terms of which the measurement

system is evaluated is not based on a notion of

measurement error. Further, the statistics that are

used for the evaluation are sometimes not appro-

priate for the type of scale and the structures that

it can represent, especially for ordinal measure-

ments, which are either treated as nominal or as

numerical.

. For measurement on a categorical scale, the

empirical properties that the categorizations intend

to reflect usually have a much more complex struc-

ture than the scale’s limited number of classes can

capture, and this fact makes simplistic assump-

tions, such as the ubiquitous assumption about

conditional independence, suspect.

We conclude that we statisticians need to develop a

more fundamental understanding of measurement

and the important concept of measurement error.

This is the topic of the next section.

A CONCEPTUAL MODEL OF
MEASUREMENT AND

MEASUREMENT ERROR

Measurement is the assignment of symbols to

items (or phenomena or substances or . . . ) in such

a way that mathematical relations among the sym-

bols represent empirical relations among the items

with respect to a property (the ‘measurand’) under

study.

This definition comes from a branch of mathemat-

ics and philosophy of science called measurement

theory (Hand 1996; Wallsten 1988), and similar defi-

nitions are generally accepted in psychometrics

(Allen and Yen 1979; Lord and Novick 1968). We

briefly discuss the theory on which it is based,

because it helps us to understand in what way categ-

orical appraisals can be seen as measurements, and it

helps us to develop a useful notion of measurement

error for categorical measurements.

Measurement is a mapping from a set of items to a

measurement scale. The latter is a set of numbers or

symbols, such as Rþ, f0, 1g, or fA, B, C, Dg,
equipped with algebraic structures and operators

such as �(order) and þ(addition). Measurement

constitutes a homomorphic (that is, structure preser-

ving) map. Let us say we are interested in a set of

items I and one of their properties, namely, their

mass. This empirical property induces various rela-

tional structures among the items, such as order.

One can, for instance, compare two items A and

B2I directly using a balance (i.e., without measur-

ing them) and establish that one of them (say, B) is

heavier (AvB). Even richer structures are created if

we allow operations applied to the items. For

example, let us denote by A �B the operation of

grouping two items together on one side of the bal-

ance, and A�BvC denotes the empirical fact that a

balance with A and B on one side and C on the other

tips down on the latter side. Thus, we have an

empirical system I ;v; �½ �, consisting of a set of items

and structures induced by empirical relations and

operations.

By measuring the mass of the items, using a spring

scale, for example, we map these empirical relations

to a set of numbers equipped with mathematical

structures. The measurement assigns to each mea-

sured item A2I a value M(A)2Rþ and, thus, mea-

suring is a map M: I!Rþ (or another scale). The

set of numbers Rþ is equipped with mathematical

relations, such as the order relation �, and the idea

of measurement is that the mathematical order

between measured mass values mirrors the empirical

order given by the comparison of items using a bal-

ance (that is, if AvB then M(A)�M(B)). Moreover,

Rþ is equipped with algebraic operators such as

þ(addition), and the idea of measurement is that

they have empirical counterparts such as the group-

ing of items together on one side of the balance

(A �B) and that relations carry over (M(A �B)¼
M(A)þM(B)). Measurement, in short, takes empiri-

cal relations among items and operations applied

to them and maps the resulting structure onto a set

of numbers equipped with algebraic structures, thus

establishing a homomorphism between I ;v; �½ � and

[Rþ, �, þ]. This homomorphism ensures that math-

ematical statements such as M(A)þM(B)�M(C)

have empirical meaning.

Some measurement systems preserve more

structure than others. An influential typology of

measurement as to how much structure it preserves

Statistical Evaluation of Measurements 21
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is Stevens’ (1946) discerning nominal measurement

(preserves equivalence relations (¼ ) only), ordinal

measurement (preserves order relations (�)), inter-

val measurement (preserves, in addition, distances

between items and thus allows addition and subtrac-

tion), and ratio measurement (preserves, in addition,

an empirical zero point and thus allows multipli-

cation and division). Note that the popular distinc-

tion between continuous and discrete is useful

for random variables but not for measurement data,

because these are always discrete.

Rþ is equipped with order (�), a norm or distance

metric (e.g., 3 and 1 are twice as far apart as 2 and 1),

and a zero point. When measuring mass in kilograms

or pounds, each of these has an empirical counter-

part (for example, M(A)¼ 0 corresponds to the total

absence of mass). But when one measures tempera-

ture in degrees Celsius or Fahrenheit, one uses the

same numerals in Rþ, but some mathematical rela-

tions and algebraic operators stop having empirical

counterparts. In particular, the zero point of neither

of these temperature scale has empirical meaning

in the sense that it corresponds to the total absence

of an empirical quantity. As a consequence, a state-

ment such as: ‘‘30�C is two times 15�C’’ is true about

the numbers themselves, but it is difficult to see what

empirical meaning such statement has. Note that the

Kelvin scale does have a zero point that corresponds

to the total absence of the empirical quantity in

question and, consequently, ‘‘30K is twice as warm

as 15K’’ does have empirical meaning.

On an ordinal scale such as fA, B, C, Dg, only the

� and ¼ relations have empirical meaning, but there

is no distance metric, and operators such as addition

and subtraction do not in general have empirical

meaning. Recoding the scale using numerals (that

is, 1¼A, 2¼B, 3¼C, 4¼D), one can apply math-

ematical operators to these numerals, but a statement

such as: ‘‘the difference between C and A is twice as

large as the difference between B and A’’ (since 3�1

is two times 2�1) is in general empirically

meaningless.

The conception of measurement as a homomor-

phism shows that, in addition to the measurement

of quantitative properties such as temperature and

weight, ratings on a nominal scale, quality inspec-

tions on a binary scale, and diagnoses by radiologists

or physicians on a nominal or ordinal scale can

be conceived of as measurement. Thus, the given

definition seems more general than typical

definitions of measurement in metrology (e.g., Joint

Committee for Guides in Metrology [JCGM] 2008;

Kimothi 2002) that seem especially geared to quanti-

tative measurements (JCGM 2008, p. 16, explicitly

states that the word measurement does not apply

to nominal properties).

In addition to the notion of measurement as a

homomorphism, we need the concepts of measur-

and, true value, and measurement error. The measur-

and is the empirical property that the measurements

aim to reflect. It can be a continuous property, such

as the length of cables, but also a dichotomous or

polytomous property or a more complex combi-

nation of properties, such as this one:

Visual inspection (M: I!fAccept, Rejectg) of products
for scratches:

. The inspections should yield Reject if a product has

one or more scratches with a depth of at least

40mm and a width of at least 100mm, and Accept

otherwise.

The definition of the measurand should not be

confused with the operational definition of the

measurement procedure. Often, a measurand is not

assessed directly but via a known relationship with

other, more readily observable properties. Examples

include the determination of an item’s mass by deter-

mining the compression of a spring in a scale, a preg-

nancy test that produces a positive result if the levels

of certain chemical markers are beyond a threshold

value, or a spam filter that classifies messages on

the basis of the usage of certain indicative words

resulting in a spam score. In these cases, the measur-

ands are the mass of items, whether a woman is or is

not pregnant, and the intention with which a mess-

age was sent. The compression of the spring, levels

of chemical markers, or spam score are merely part

of the operating procedure or algorithm.

The true value T (A) of a measured item A is the

value that should be assigned according to the mea-

surand’s definition ( JCGM 2008), and it is a homo-

morphic map T: I!S (with S the measurement

scale). It is generally acknowledged that the true

value is more a construct than a concept that can be

given operational meaning, and the JCGM (2008)

acknowledges that it is not in general a unique value.

For example, if we define the measurand to be ‘‘the

22 J. de Mast, T. Akkerhuis, and T. Erdmann
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length of cables,’’ we ignore the fact that cables do

not have a unique length, because this depends on

temperature and tension. A better definition of the

measurand would be ‘‘the length of cables at 20�C

and under a tension of 10N,’’ but even this does not

define a unique value, because length depends on

more variables, and their infinite number cannot be

captured in a finite definition.

Because the true value is usually unknowable on

principle, a more pragmatic concept is the reference

value R(A), a value obtained from an authoritative

measurement system that is accepted by convention

to play the role of the true value (c.f. JCGM, 2008). In

medicine, a similar concept is that of a gold standard

(or criterion standard), an authoritative test for eval-

uating diagnostic and screening tests. Reference

values and gold standards should be of a higher

order of accuracy than the measurement system

under study, but it is generally acknowledged in

metrology and medicine that they are usually not

perfect.

Actual measurements are subject to random

measurement error and therefore are a stochastic

map M: I�X!S (with X a probability space).

Measurement error is the discrepancy between a

measurement result M(A) and the true value T(A)

or reference value R(A). The numerical expression

of measurement error depends on a scale’s algebraic

structures and operators. Binary and nominal scales

are only equipped with the simplest of structures—

the equivalence relation—and measurement error

therefore takes the form of misclassification: fM(A) 6¼
R(A)g. A statistical evaluation will typically be in

terms of a probability of misclassification. For ordi-

nal scales, measurement error can refer to misclassi-

fication but, in addition, to whether pairs of items

are ordered correctly (fM(A)�M(B), R(A)	R(B)g).
For measurements on an interval scale, measure-

ment error can be defined as the difference

M(A)�R(A) between a measurement result and the

reference value, and a statistical evaluation can be

in terms of the mean and standard deviation of this

difference. For ratio scales, finally, one could even

consider the relative measurement error (M(A)�
R(A))=R(A).

Based on this conceptual framework, in recent

years we have presented methodologies for evaluat-

ing categorical measurements by statistical modeling

of the measurement error. The next sections

present this type of modeling, especially for binary

measurements.

STATISTICAL MODELING OF BINARY
MEASUREMENT

Examples of binary measurement include leak

tests, visual inspections, inspections based on go–

no go gauges, and diagnostic and screening tests in

medicine. Until recently, the statistical evaluation of

such tests has been impeded greatly by overly sim-

plistic statistical modeling. In addition to the

measurement result Y¼ 0 (Reject) or Y¼ 1 (Accept),

traditional models featured a true state X¼ 0

(Defective) or X¼ 1 (Good). The measurements

were evaluated in terms of misclassification proba-

bilities, such as the false acceptance probability

FAP¼P(Y¼ 1jX¼ 0) and the false rejection proba-

bility FRP¼P(Y¼ 0jX¼ 1) (depending on the situ-

ation, also called the false positive and false

negative rate, or their complements, specificity and

sensitivity). Implicitly or explicitly, statistical meth-

ods for estimating these misclassification probabil-

ities from experiments hinge on a very important

assumption, that of conditional independence. This

assumption amounts to the claims that for parts

i¼ 1, 2,. . . and repeated appraisals j¼ 1, 2,. . ., the

Yij are i.i.d. conditional on the events fXi¼ 0g or

fXi¼ 1g. And this in turn amounts to the assumption

that the measurand dichotomizes the parts into two

subpopulations that are homogeneous with respect

to Yij:

FAP ¼ P Yij ¼ 1jX ¼ 0
� �

is identical for all defective

items, and

FRP ¼ PðYij ¼ 0jX ¼ 1Þ is identical for all good

items:

This modeling is widespread in medicine and engin-

eering alike (Boyles 2001; Danila et al. 2008; Van

Wieringen and De Mast 2008, to mention just a few

examples).

Recent research in engineering and medicine

(e.g., Danila et al. 2012; De Mast et al. 2011; Irwig

et al. 2002) has revealed that such modeling appro-

aches are misguided in most situations. Although

binary scales have a simple structure, the empirical

phenomena with which they are homomorphic can

Statistical Evaluation of Measurements 23
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in fact have a very complex structure. The measur-

and is typically related to continuous properties,

and misclassification probabilities are in addition

affected by properties of the parts not related to

the measurand that create intricate dependency

structures among the Y. De Mast et al. (2011) dem-

onstrated that statistical evaluations based on

unwarranted conditional independence assumptions

may lead to substantially biased estimates of mis-

classification probabilities.

In many cases, the measurand underlying the

binary classification is related to a continuous pro-

perty. Erdmann et al. (2013) discussed the inspection

of car parts for the misalignment of a clip to a pad to

which it should be attached. Here, the true value

X2f0, 1g is determined by the misalignment Z2R,

namely, X¼ 1 if Z�USL and X¼ 0 otherwise, with

USL the upper specification limit that demarcates

the acceptable extent of misalignment. The con-

ditional independence assumption implies that the

rejection probability P(Yij¼ 0) is a step function with

values FRP and 1� FAP (Figure 3). But it is much

more plausible that the rejection probability, as a

function of misalignment, is a continuous S-curve

q(z)¼P(Y¼ 0jZ¼ z), where the rejection probability

gradually changes from 0.0 to 1.0. Put differently, the

rejection probability does not only depend on

X2f0, 1g (whether the part is good or defective)

but also on the degree of defectiveness or goodness.

The type of modeling that we have explored in

recent years is based on the concept of the character-

istic curve q(z)¼P(Y¼ 0jZ¼ z), where q could be

the logistic function:

log
q zð Þ

1 � q zð Þ

� �
¼ a z � dð Þ ½3�

(see Figure 4). The parameter d is the point where

q(d)¼ 0.5 and can be interpreted as a decision

threshold: parts with a misalignment z> d are likely

to be rejected. The difference d�USL could be inter-

preted as systematic measurement error. The para-

meter a determines the steepness of the curve

(larger a corresponding to a steeper curve). The dis-

tribution of misalignment in the population of parts

is denoted FZ(z)¼P(Z� z), with associated density

fZ(z).

For any specific part the misclassification prob-

ability now depends on the part’s misalignment Z,

but the average probabilities (weighted by fZ) are

FAP ¼ P Y ¼ 1jX ¼ 0ð Þ ¼
R1
USL 1 � q zð Þð ÞfZ zð Þdz

R1
USL fZ zð Þdz ;

½4�

and

FRP ¼ P Y ¼ 0jX ¼ 1ð Þ ¼
RUSL
�1q zð ÞfZ zð Þdz

RUSL
�1 fZ zð Þdz : ½5�

The traditional way of estimating FAP and FRP is as

follows (see, for instance, the cross-tab method in

AIAG 2003). One obtains a sample of n1 good parts

and has them each appraised once; the resulting

number of rejected parts is m0j1. Likewise, one takes

a sample of n0 defective parts and has them

appraised, resulting in m1j0 accepted parts. The

FAP and FRP are estimated by the sample propor-

tions m0j1=n1 and m1j0=n0. Equations [4] and [5]

show, however, that it is crucial for this to work that

the distribution of misalignment in the samples is

representative for the population distribution FZ. If,

for example, parts with a misalignment Z near d

FIGURE 3 P(Y¼ 0) as a function of misalignment (a) under con-

ditional independence (step function) and (b) as a continuous

characteristic curve.

FIGURE 4 Density function fz of misalignment and character-

istic curve q. (Color figure available online.)
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are overrepresented in the samples, FAP and FRP are

overestimated (De Mast et al. 2011). Random sam-

ples from the populations of defective and good

parts ensure that the sample distribution of misalign-

ment is representative for the population distri-

bution, but in practice it is not at all clear how

such random samples can be obtained. In practice,

one has the streams of rejected and accepted parts,

but taking random samples from these and removing

the incorrectly rejected and accepted parts does

not result in representative samples and may lead

to substantial bias (De Mast et al. 2011). Note, for

example, that for low defect rates P(Xi¼ 0) and

realistic FAP and FRP, the stream of rejected parts

consists mostly of good parts that have been rejected

falsely (De Mast et al. 2011).

Alternatively, one could take a representative sam-

ple from the total population of parts, establish for

each part the reference value (which gives n0 defec-

tive and n1 good parts), and next have them

appraised by the inspection system under study

(yielding m0j1 and m1j0). However, in a typical manu-

facturing process, the defect rate is very small and,

consequently, the number n0 of defectives in the

sample will be zero or very small. This makes esti-

mation of the FAP in particular precarious.

We advocate an approach in which the FAP and

FRP are determined indirectly, by fitting the charac-

teristic curve q(z) and population distribution FZ(z)

and substituting these in [4] and [5]. If reference (that

is, X-) values for parts can be obtained, the character-

istic curve can be fitted by logistic regression, and

this is essentially what is done in AIAG’s so-called

analytic method (AIAG 2003). A representative sam-

ple of parts will do to fit FZ(z).

It is quite common, however, that reference values

cannot be obtained, for lack of a higher order

measurement system. Erdmann et al. (2013) demon-

strated how to deal with such situations. By having a

sample of parts inspected more than once by each of

the appraisers, one can use techniques from latent

variable modeling to fit FZ(z) and q(z) simultane-

ously. Such approaches require sophisticated sam-

pling strategies. The challenge is that defects are

remote tail phenomena: given that d and USL will

typically be in the remote tail of fZ, a representative

sample from the total population of parts will contain

zero or very few parts with misalignment values

around and above d, resulting in large standard

errors for the estimated FAP. Taking a nonrepresen-

tative sample with more parts with misalignment

around d, to the contrary, would result in a substan-

tial bias in the estimation of the parameters of FZ.

Erdmann et al. (2013) proposed a method based on

a combination of samples from various streams (total

parts population, the stream of rejected parts, and a

historical reject rate). The parameters FZ and q are

estimated by a maximum likelihood procedure, in

which the bias induced by the nonrepresentativeness

of some of the samples is corrected by calculating the

likelihood contributions conditional on the source of

the samples.

In these situations where reference values cannot

be obtained, USL is typically ill defined, making the

definitions of the FAP and FRP problematic. Note,

however, that the FAP and FRP decompose into

(Erdmann et al. 2013) the systematic error d�USL

and the random errors

IAP ¼ P Y ¼ 1jZ > dð Þðinconsistent acceptance

probabilityÞ; and

IRP ¼ PðY ¼ 0jZ � dÞðinconsistent rejection

probabilityÞ:

The latter components are the probability that an

appraiser’s classification is inconsistent with his or

her own decision threshold d. They can be inter-

preted as the random measurement error, and they

can be estimated instead of the FAP and FRP if the

USL is not well defined.

This type of modeling sometimes requires new

statistical techniques. Danila et al. (2010) have

explored the incorporation of historical data in

model fitting. In Erdmann et al. (2013) we described

the technique of fitting the characteristic curve and

measurand distribution simultaneously based on

combinations of random samples, and we proposed

techniques for model diagnostics. Erdmann and De

Mast (2012) explored alternative and especially

asymmetrical functions for the characteristic curve.

De Mast and Van Wieringen (2010) studied the appli-

cation of similar latent variable models for the

evaluation of ordinal measurements, which required

the development of a new optimization algorithm to

determine maximum likelihood estimates and

powerful model diagnostics. Assuming an ordinal

scale f1, 2, . . . , ag, and a continuous property Z

Statistical Evaluation of Measurements 25
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underlying the ordinal measurements, the model in

question fits characteristic curves of the form

PðY ¼ kjZ ¼ zÞ ¼ q kjzð Þ

¼
exp

Pk�1
m¼1 a z � dmð Þ

� �
Pa

n¼1 exp
Pn�1

m¼1 a z � dmð Þ
� � ;

where the d1, . . . , da�1 are the thresholds in between

the scale’s a categories, and the a parameter

determines the steepness of the curves (similar to

the d and a in [3]). The model allows the calculation

of probabilities of inconsistent classificationPa
k¼1 PðYi 6¼ kjdk�1<Zi<dkÞPðdk�1<Zi<dkÞ (com-

parable to the IAP and IRP) and probabilities of

incorrect order P(Yi1>Yi2jZi1�Zi2).

A CASE OF REALISTIC COMPLEXITY

Approaches such as agreement studies, based on

sample statistics without a solid statistical modeling

and not grounded in a notion of measurement error,

are too simplistic, and the results are often mean-

ingless. Estimation of FAP and FRP based on the con-

ditional independence assumption is also precarious,

because it may be difficult to obtain estimates with

no or acceptably small bias. The approach based

on univariate characteristic curves is, we think, appli-

cable in some real cases. We have found, however,

that most real cases are substantially more complex

even than the car parts example in the previous

section.

In the previous year, our group has been involved

in assessment studies of a number of real binary

measurement systems. We cannot present here the

cases that we have been involved in but, instead,

we constructed a fictitious but realistic example, con-

cerning inspection of products for scratches. On the

basis of this example we want to bring across what

we think is a realistic level of complexity of such

situations and offer an approach for coping with it.

The measurand in the example is a complex

property. The true value is defined as follows (see

also Figure 5):

. If a product has scratches with a width Z1 of at

least 100 mm and a depth Z2 of at least 40mm, it

is nonconforming (X¼ 0).

. If a product has no scratches wider than 60mm and

deeper than 30mm, it is acceptable (X¼ 1).

. Otherwise, it is marginal (X¼ 0.5), meaning that

either inspection result is acceptable.

We will assume (not very unrealistically) that there is

at most one scratch on a product. The measurand is

defined in terms of Z1 and Z2 but, in this example,

the probability of rejection depends on more

covariates:

Z3 is the color of the part. The product is sold in 16

standard colors, and scratches are more easily

spotted on light than on dark surfaces.

Z4 is appraiser fatigue at the time when a part is

measured.

Z5 quantifies light conditions at the time when a part

is measured.

The misclassification probabilities are affected by all

of these covariates. Let

qðz1; . . . ;z5Þ ¼ PðY ¼ 0 j scratch;Z1 ¼ z1; . . . ;Z5 ¼ z5Þ;
for z1 > 0 and z2 > 0;

and

rðz3; z4; z5Þ ¼ PðY ¼ 0 j noscratch;Z3

¼ z3; . . . ;Z5 ¼ z5Þ;

FIGURE 5 Contour plot of fitted characteristic curve in scratch

width (Z1) and depth (Z2) (fictitious results); contours for q(z1,
z2)¼0.05, 0.50, and 0.95 indicated by solid curves. (Color figure

available online.)
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with limz1#0qðz1; . . . ; z5Þ ¼ limz2#0qðz1; . . . ; z5Þ ¼
rðz3; z4; z5Þ. We have

where L is the L-shaped area f(z1, z2): z1� 60 or

z2� 30;z1> 0;z2> 0g. The reader will realize that

the complexity of such situations is a far cry from

the simplistic depiction of measurement results being

independent conditionally on a dichotomous

measurand. Note, however, that also this approach

ultimately makes a conditional independence assum-

ption: the Y are assumed independent conditional on

X and the Z1, . . . , Z5. The point is not that our mod-

eling approach avoids conditional independence

assumptions altogether but, rather, that more of

the underlying complexity is accounted for in the

statistical model.

Practically, fitting q, r, P(scratch), and the

densities fZ is unfeasible. Instead, we propose

three simplification strategies. Although they

reduce the number of arguments in q and r, they

do require that the covariates have been identified

beforehand.

1. Sidelining covariates: It may be possible to make

some covariates irrelevant by ensuring in the

measurement protocol that they are always con-

stant during the inspections. This is in fact a strat-

egy to improve the measurement procedure itself,

but as a by-product it also simplifies an evaluation

of its performance.

2. Averaging out by experimental randomization:

Suppose that we are not interested in modeling

the effect of, say, Z5. The strategy is to ensure

that during the experiment from which the

characteristic curve is fitted, the values of Z5 are

representative for FZ5
and that they are assigned

randomly to the runs in the experiment. This

ensures that we fit, in effect:

qz5 z1; . . . ; z4ð Þ ¼
Z 1

�1
q z1; . . . ; z4; zð ÞfZ5

zð Þdz:

The approach typically requires thoughtful plan-

ning, and just sampling haphazardly is unlikely

to achieve representativeness, with biased esti-

mates as a consequence. Note that the extreme

version of this strategy, averaging out over all

Z1, . . . , Z5, boils down to the traditional approach

of estimating the average FAP and FRP from sam-

ple proportions. This extreme form lets go of the

idea of determining FAP and FRP indirectly by

first fitting the fZ(z) and q(z) functions and com-

puting FAP and FRP from there and, as stated ear-

lier, only works under the doubtful assumption

that one can obtain samples that are representa-

tive with respect to fZ1
; . . . ; fZ5

.

3. Worst-case evaluation: Instead of averaging out

the effect of Z5, we can fit characteristic curves

with Z5 fixed to the values �zzA0
5 and �zzR0

5 that

maximize the FAP and FRP:

�zzA0
5 ¼ arg max

z

Z
z1;...;z4

1� q z1; . . . ; z4; zð Þð Þ

fZ1
z1ð Þ � � � fZ4

z4ð Þdz4 � � � dz1

(and analogously for �zzR0
5 ). Instead of q z1; . . . ; z5ð Þ

we fit q�zzA0
5

z1; . . . ; z4ð Þ ¼ q z1; . . . ; z4;�zz
A0
5

� �
and

FAP ¼
Z 1
z1¼40

Z 1
z2¼100

Z
z3;z4;z5

ð1� qðz1; . . . ; z5ÞÞfZ1
ðz1Þ � � � fZ5

ðz5Þdz5 � � � dz1
R1
z1¼40

R1
z2¼100 fZ1

ðz1ÞfZ2
ðz2Þdz2dz1

; ½6�

FRP ¼
Pðno scratchÞ

Z
z3;z4;z5

rðz3; . . . ; z5Þfz3ðz3Þ � � � fz5ðz5Þdz5 � � � dz3

Pðno scratchÞ þ PðscratchÞ
Z 1

ðz1;z2Þ;2L
fz1ðz1Þfz2ðz2Þdz2dz1

þ
PðscratchÞ

Z 1

ðz1;z2Þ2L

Z
z3;z4;z5

qðz1; . . . z5Þfz1ðz1Þ � � � fz5ðz5Þdz5 � � � dz1

Pðno scratchÞ þ PðscratchÞ
Z 1

ðz1;z2Þ;2L
fz1ðz1Þfz2ðz2Þdz2dz1

; ½7�
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q�zzR0
5

z1; . . . ; z4ð Þ ¼ q z1; . . . ; z4;�zz
R0
5

� �
, and these

curves represent worst-case bounds. In addition,

this strategy requires that one is aware of a covari-

ate and that its worst value can be guessed with

reasonable plausibility.

We demonstrate these techniques for the inspections

for scratches. We assume that it is possible to create

scratches with specified width and depth (with

sufficient precision). First, Z5 (light conditions) could

be made irrelevant by screening off the inspections

from ambient light. Second, we deal with the part’s

color by limiting the evaluation to its most challeng-

ing values (worst-case evaluation). In this case, the

values �zzA0
3 and �zzR0

3 that maximize the FAP and FRP

are the same (namely, black). We will average out

the effect of appraiser fatigue Z4 by experimental

randomization. Thus, we need an experimental

design in the two remaining covariates scratch width

Z1 and depth Z2, suitable for fitting the link function

q. We could take the 7� 7 grid f0, 15,. . ., 120g�f0,

20,. . ., 90g. The experiment now involves creating 49

parts with scratches with width and depth defined by

the design points and color �zzA0
3 (¼ �zzR0

3 , black). These

parts are judged repeatedly and in randomized order

by appraisers under situations that are representative

for the variation in fatigue under normal conditions.

This should be carefully planned, one option being

that appraisers take part in the experiment on, say,

four moments distributed evenly over a shift and

do their normal work in between. The characteristic

curve q�zzA0
3 ;z4

z1; z2ð Þ is fitted on the results.

As an example, the contours in Figure 5 represent

the fitted characteristic curve (for fictitious data).

Note two properties crucial in understanding the

performance of the measurement system: random

and systematic errors. The random error can be

represented by the distance between the contours

showing 0.05 and 0.95 rejection probabilities.

Ideally, this distance is small enough to fit in the

marginal region X¼ 0.5. The systematic error is the

location of the region between the 0.05 and 0.95

contours; ideally, this region falls as much as possible

in the marginal region.

Figure 5 suggests that the scratch inspections

perform well with regards to scratch depth, because

the location and width of the horizontal area in

between the 0.05 and 0.95 contours match well with

the specifications of the inspection’s true values. As

for the scratch width aspect, we note that the

inspections seem to be systematically off, although

the random error seems relatively modest. It should

be kept in mind that these contours represent the

worst-case situation that the part color is black and

that the characteristic curves for other colors are

expected to be closer to the ideal behavior implied

by the measurand definition.

Estimation of the FAP and FRP from the estimated

characteristic curves requires the determination of

P(scratch) and FZ1
and FZ2

, which requires a rep-

resentative sample of scratched parts. This returns

us to the earlier described challenge that defects

are a remote-tail phenomenon. Sampling from the

stream of rejected parts is likely to give a substantial

overrepresentation of wide and deep scratches.

Sampling from the total parts population and then

using gold-standard measurements to identify scratched

parts implies an enormous effort in the plausible

scenario that P(scratch) is very small. From the cases

that we have been involved in, our impression is that

it is quite common that reliable estimation of FAP

and FRP is problematic. Typically, there are one or

two covariates for which it is very difficult to obtain

representative samples, and this precludes the deter-

mination of FAP and FRP either directly (traditional

estimation from sample proportions) or indirectly

(by determining the characteristic curve and popu-

lation distribution separately and obtaining the FAP

and FRP from equations such as [6] and [7]).

To the contrary, fitting of the characteristic curves

in the most important covariates seems generally

feasible, and we have come to prefer the following

approach. Instead of reporting FAP and FRP, we

report the points z0.05, d, and z0.95. For a character-

istic curve in one argument, these are the z values

for which q(z)¼ 0.05, 0.50, and 0.95, which repre-

sent the decision threshold and limiting values

demarcating the grey area where inspection results

are highly random. For the scratch inspections, we

have a characteristic curve with two arguments.

One could now choose a point z0:95¼ z0:95
1 ; z0:95

2

� �
such that parts with scratches with Z1	z0:95

1 and

Z2	z0:95
2 have a rejection probability of at least

0.95. Note that this is generally not a unique point.

In Figure 5 we chose z0.95¼ (53, 42), and we could

now characterize the measurements as follows:

‘‘Parts with scratches with width >53 mm and depth

>42 mm are rejected with a least 0.95 probability.’’
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Similarly, one can choose a point z0.05 such that

scratches with Z1 � z0:05
1 or Z2 � z0:05

2 are rejected

with 0.05 probability or less. In Figure 5, this is the

point z0.05¼ (12, 29), with its coordinates determined

by the horizontal and vertical asymptotes of the 0.05

contour. Parts with scratches with width <12mm or

depth <29mm are accepted with a probability of at

least 0.05.

In addition to the practical problems in

obtaining reliable estimates, there are other practical

drawbacks of reporting the validity of measurement

systems in terms of an FAP and FRP and thus mot-

ivate an evaluation in terms of z0.05, d, and z0.95

instead. Changes in the production process (and

therefore in the distributions of the covariates)

immediately render the estimated FAP and FRP inva-

lid. Further, it is often desirable to quantify the val-

idity of a measurement system in values that are

not tied to a specific population of parts and manu-

facturing context; for example, for a manufacturer

of measuring equipment wishing to specify the per-

formance of its equipment. For such reasons, we

have come to favor approaches where we fit the

characteristic curve in the most important covariates

(and report z0.05 and z0.95 points) but are not overly

concerned with estimating FAP and FRP.

STEPWISE APPROACH

The experiences and (sometimes complex) argu-

ments introduced and explained in the previous sec-

tions motivate a certain approach to the statistical

evaluation of categorical measurement systems. We

suggest that the modeling of the behavior of such

systems naturally follows seven steps, which we

discuss below.

Step 1: Measurement Model and

Identification of Covariates

Measurements are on a categorical scale C¼f0,

1, . . . , a�1g (binary, nominal, ordinal, or other).

The measurement system is evaluated for application

to a population of items I. Each item in I has

properties Z1, . . . , Zk (usually not measured directly

and sometimes even not more than a construct). In

addition, the appraisals are done under circum-

stances that have properties Zkþ 1, . . . , Zl.

In this first step, the inquirer critically reviews

whether the measurement protocol is clearly speci-

fied and identifies the covariates Z1, . . . , Zk and

Zkþ 1, . . . , Zl. In addition, the inquirer carefully con-

siders the definition of the measurand in terms of

some of the Z1, . . . , Zk, which defines the true values

X as a mapping X: Rk!C. The true value is usually

unobservable in principle, and the inquirer should

consider whether reference or gold-standard mea-

surements R: I!C are available for some items.

For identifying the covariates, the inquirer may

consider these categories:

1. Covariates related to the measurand.

2. Covariates related to test conditions and apprai-

sers performing the measurements.

3. Covariates related to properties of the items but

not related to the measurand.

Step 2: Statistical Model

The actual measurements are a stochastic map Y:

I�X!C. The second step concerns the statistical

model for this stochastic behavior in terms of which

the measurement system will be evaluated. In gen-

eral, the Y cannot be assumed i.i.d. conditional

on the events fX¼ 0g, . . . , fX¼a� 1g. This is

accounted for by the two main elements of the stat-

istical model: q and FZ. The characteristic curves

q(z)¼P(Y¼ 0jZ¼ z) attribute variability in P(Y¼ 0)

to the covariates Z. The distributions FZ of the covari-

ates model variability of properties of the items and

appraisal conditions in I.

Step 3: Reducing Dimensionality of
the Problem

In case there are more than, say, two covariates,

we suggest reducing the dimensionality of the

problem by applying the simplification strategies

mentioned before:

. Sidelining of covariates

. Averaging out by experimental randomization

. Worst-case evaluation

Step 4: Functional Form

In the fourth step, the inquirer chooses a func-

tional form for the characteristic curve. It is
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convenient to find one that can be parameterized in

such a way that random and systematic measurement

error can be discerned (this is allowed by the para-

meters a and d in the car parts example). A straight-

forward option is logistic curves:

q zð Þ ¼ P Y ¼ 0jZ ¼ z½ � ¼ 1 þ exp �a z � dð Þf gð Þ�1:

½8�
Erdmann and De Mast (2012) explored options for

nonsymmetrical characteristic curves. An option for

a two-dimensional characteristic curve, such as in

the scratches example, is the bivariate logistic

function qb, proposed by Ali et al. (1978):

qb z1; z2ð Þ ¼ P Y ¼ 0jZ1 ¼ z1;Z2 ¼ z2½ �
¼ ð1 þ exp �a1 z1 � d1ð Þf g
þ exp �a2 z2 � d2ð Þf g
þ ð1 � vÞ expf�a1ðz1 � d1Þ
� a2ðz2 � d2ÞgÞ�1:

The ds represent the vertical and horizontal position

of the asymptotes of the 0.50 contours in Figure 5,

and the as determine the distance between the 0.05

and 0.95 contour lines. The parameter v can be var-

ied for �1� v� 1 and is a parameter of association.

When v¼ 0, the characteristic curve equals qb(z1,

z2)¼ q1(z1)� q2(z2), where q1 and q2 are univariate

logistic functions of the form [8]. This restricted form

is suited when the rejection of items can be seen as

the result of stochastically independent evaluations

on the underlying characteristics Z1 and Z2.

The restriction may be tested by means of a likeli-

hood ratio test or may be argued on a priori grounds.

Alternatively, the bivariate normal distribution

function may be used:

qb z1; z2ð Þ ¼ Ul;R z1; z2ð Þ;with l ¼ d1; d2ð Þand

¼
a�2

1 v

v a�2
2

� �
:

Again, the value n¼ 0 corresponds to the restricted

form suited when the rejection of items can be seen

as the result of stochastically independent evalua-

tions on the underlying characteristics Z1 and Z2.

Step 5: Evaluation Metrics

In step 5, the inquirer determines what metrics he

or she wishes to determine from the fitted model in

order to evaluate the measurement system. We

strongly advocate that such metrics be based on

the notion of measurement error; that is, somehow

quantifying the statistical distribution of the discrep-

ancy between the true value and the measurement

values. For nominal and binary measurements,

measurement error should be defined in terms of

misclassification, and this motivates an evaluation

in terms of the FAP and FRP or the random error

components IAP and IRP. For ordinal scales, one

could, in addition, estimate a probability of incorrect

order (De Mast and Van Wieringen 2010).

As discussed, for pass–fail inspection, one often

comes across the combination of challenges that

obtaining representative samples from the popula-

tions of good and defective items is not possible,

and working with a representative sample from the

total population of items is hampered by the enor-

mous sample sizes needed to obtain a reasonable

number of parts with z-values in the steep and right

part of the characteristic curve. In such cases, report-

ing z0.05, d, and z0.95 points, as described above, is a

good alternative to an evaluation in terms of the FAP

and FRP.

Step 6: Experimental Design and

Experiment

Lastly, the inquirer needs to set up the measurement

system analysis study. For the covariates that are

retained as arguments of the characteristic curve, one

needs an experimental design suited for fitting the cho-

sen link function q. For the covariates that are dealt

with by an averaging-out strategy, one needs to

ascertain that their values during the experiment are

representative for regular conditions. This was

illustrated for the inspection of scratches, where

spreading the trials over a day improves the representa-

tiveness of appraiser fatigue. In many situations, it may

not be possible to stage representative test conditions,

and an averaging-out strategy may not be feasible.

In addition to the experiment, one needs representa-

tive samples of parts for fitting the FZ distributions.

Step 7: Execution, Analysis, and

Conclusion

The execution and analysis of the experiment

follow from steps 1 through 6, but in several case
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studies we have found that residual analysis and

goodness-of-fit studies are very important in this type

of study. For example, in each of the studies by Van

Wieringen and De Mast (2008), De Mast and Van

Wieringen (2010), and Erdmann et al. (2013), items

were identified with anomalous results, drawing

attention to properties of the items that are poorly

captured in measurement instructions and algo-

rithms. It is important to identify such items with

salient results, not only because of their possibly

large impact on the quality of estimates but also

because a close investigation of such parts can

greatly help in improving the measurement system.

CONCLUSIONS

Categorical scales have a simple mathematical

structure. But this does not mean that the underlying

empirical reality, with which they are homomorphic,

is simple as well. Simple methods, such as j statistics

and FAP and FRP estimated from sample propor-

tions, are treacherous. They evaluate measurement

systems in one or two numbers between 0 and 1.

At best, the extreme values have a clear interpret-

ation, but it is difficult to give a tangible meaning

to intermediate values and substantiate what the dif-

ference is between, say, j¼ 0.6 and j¼ 0.8. As far as

interpretations are offered, these typically depend

critically on rather strict assumptions about con-

ditional independence and the representativeness

of samples, assumptions that are almost always

violated in such applications.

The approaches that we advocate are more

involved in terms of statistical modeling. Research

is still ongoing to design effective approaches and

new modeling techniques for common situations,

and once these have found their way into statistical

software packages, we do not believe that they will

pose insurmountable challenges for practitioners.

The approaches based on characteristic curves have

a clear relation to the important notion of measure-

ment error, which provides a solid basis for their

interpretation. In addition, the results offer much

more detailed insight into the functioning of a

measurement system than a summary in one or

two numbers. In particular, the distinction between

systematic and random error is very valuable for

improving a measurement system that performs

poorly.
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