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Memory-Type Control Charts for Monitoring
the Process Dispersion
Nasir Abbas,a*† Muhammad Riazb,c and Ronald J. M. M. Doesd
Control charts have been broadly used for monitoring the process mean and dispersion. Cumulative sum (CUSUM) and
exponentially weighted moving average (EWMA) control charts are memory control charts as they utilize the past
information in setting up the control structure. This makes CUSUM and EWMA-type charts good at detecting small
disturbances in the process. This article proposes two new memory control charts for monitoring process dispersion, named
as floating T� S2 and floating U� S2 control charts, respectively. The average run length (ARL) performance of the proposed
charts is evaluated through a simulation study and is also compared with the CUSUM and EWMA charts for process
dispersion. It is found that the proposed charts are better in detecting both positive as well as negative shifts. An additional
comparison shows that the floating U� S2 chart has slightly smaller ARLs for larger shifts, while for smaller shifts, the floating
T� S2 chart has better performance. An example is also provided which shows the application of the proposed charts on
simulated datasets. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: average run length; control chart; Johnson SB transformation; logarithmic transformation; process variability; statistical
process control (SPC)
1. Introduction

V
ariations in a manufacturing process can be categorized into common cause and special cause variations. In the presence of
common cause variation only, a process is considered in-control, but once special cause variations sum up with the common
cause variations, the process is stated out-of-control. Control charts are very popular due to their capability to detect the

presence of special cause variations and hence to operationalize whether a process is out-of-control or not. The presence of
special cause variation is generally limited on the location or/and spread parameters of the process. A process can go from
in-control to out-of-control situation if the mean of that process is shifted to a new level. Similarly, an increased spread will also
cause inconsistency in the process resulting into an out-of-control situation. In contrast, any decrease in the spread parameter
may improve the quality of that process (see Montgomery1 for more details). The present article only deals with monitoring the
spread/dispersion parameter of a process.

Shewhart2 started the concept of control charts with some useful charts for monitoring the process dispersion, e.g. the range (R), the
standard deviation (S), and the variance (S2) charts. The drawback of these charts is that their interpretation is merely based on the
present sample which means that they pay no attention to the past data resulting into a relatively bad performance for small
disturbances in the process. This deficiency of Shewhart-type charts is covered by the memory-type control charts which achieve better
performance for detecting small shifts as they exploit past data along with present data. Popular memory-type control structures are the
cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts. There is a lot of literature available on
CUSUM and EWMA-type control charts for monitoring the process dispersion, e.g. see Page,3 Hawkins,4 Acosta-Mejia et al.5 and Chang
and Gan6 for CUSUM-type charts and Ng and Case,7 Crowder and Hamilton8 and Huwang et al.9 for EWMA-type charts.

Most of these charts are based on transforming the sample variance such that the new transformed statistic may be closely
approximated by a normally distributed variable and hence applying the usual CUSUM and EWMA structures (recommended by
Page10 and Roberts,11 respectively) on it. In a similar direction, Castagliola12 proposed a new EWMA ln� S2 chart for monitoring
the process dispersion. He used a logarithmic three-parameter transformation to obtain a normal approximation for the sample
variance. A similar transformation is used by Castagliola et al.13 to set up a CUSUM S2 chart for monitoring process dispersion.
Following their previous work, Castagliola et al.14 proposed an EWMA J� S2 chart based on a four parameter Johnson transformation.
aDepartment of Statistics, University of Sargodha, Pakistan
bDepartment of Statistics, Quaid-i-Azam University Islamabad, Pakistan
cDepartment of Mathematics and Statistics, King Fahad University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
dDepartment of Quantitative Economics, IBIS, UvA, University of Amsterdam, Plantage Muidergracht 12, 1018 TV, Amsterdam, The Netherlands
*Correspondence to: Nasir Abbas, Department of Statistics, University of Sargodha, Pakistan.
†E-mail: nasirabbas55@yahoo.com

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 623–632

6
2
3



N. ABBAS, M. RIAZ AND R. J. M. M. DOES

6
2
4

Recently, Abbas et al.15 proposed a new memory-type control chart for location, which they named as progressive mean
control chart. They show that the progressive mean chart is better than the standard EWMA and CUSUM control charts and
some of their modifications. An extension to their work in a non-parametric setting is proposed by Abbasi et al..16 Following
the structure of progressive charts, we propose two new memory-type control charts for monitoring the process dispersion,
named as floating T� S2 chart (which is based on a three-parameter logarithmic transformation) and floating U� S2 chart
(based on a four parameter Johnson transformation). The average run length (ARL) is used as the performance measure which
is defined as the average number of subgroups that should be monitored before an out-of-control signal is received. ARL0 is
referred as the in-control ARL, and ARL1 is the notation used for the out-of-control ARL.

In the next section, the details regarding the proposed charts are provided. Comparison of the proposed chart with some
of the memory-type control charts for monitoring the process dispersion is given in Section 3. Section 4 contains the
implementation of the proposed chart on a simulated dataset, whereas the summary and conclusions are given in Section 5.
2. The proposed floating control charts

Let Xj,1, Xj,2, . . ., Xj,i, . . ., Xj,n be a random sample from a normal distribution with mean m and variance s20, i.e.

Xj;ieN m; s20
� �

for all i ¼ 1; 2; . . . ; nand j ¼ 1; 2; . . . . . . (1)

Let S2j ¼
Xn

i¼1
Xj;i � �Xj

� �2
= n� 1ð Þ be the sample variance of the j th sample. Under (1), it is known through the probability

distribution theory that S2j follows a chi-square distribution, i.e. S2j e s20
n�1 w

2
n�1ð Þ . Castagliola

12 discussed that if we transform S2j using

a three-parameter logarithmic transformation, the resulting transformed variable (denoted by Tj) approximately follows a normal
distribution with mean mT(n) and variance s2T nð Þ. Hence, from Castagliola12, we obtain that

Tj ¼ aT þ bT ln S2j þ cT
� �

(2)

where bT= BT(n), cT ¼ CT nð Þs20 and aT=AT(n)� 2BT(n)In(s0). Table I provides the values of mT nð Þ;s2T nð Þ;AT nð Þ; BT nð Þ and CT(n) for
n= 3, 4, 5, . . . . . . . . ., 15. For more details on the distribution of Tj and calculation of the constants, see Castagliola.12

Castagliola et al.14 proposed another similar type of transformation based on a four parameter Johnson SB transformation.
They claimed that this four parameter transformation gives a better approximation to the normal distribution as compared to the
three-parameter logarithmic transformation. With the notation of Castagliola et al.,14 it follows that

Uj ¼ aU þ bU ln
S2j � cU

dU þ cU � S2j

 !
(3)

where aU ¼ AU nð Þ; bU ¼ BU nð Þ; cU ¼ CU nð Þs20 and dU ¼ DU nð Þs20. Variable Uj in (3) follows approximately a normal distribution with
mean mU(n) and variance s2U nð Þ where the values of mU nð Þ;s2U nð Þ; AU nð Þ; BU nð Þ;CU nð Þ and DU(n) for n= 3, 4, 5, . . ., 15 are given in
Table II.

Note that in case of dU þ cU � S2j ≤0 , the transformation given in (3) is not possible, but Castagliola et al.14 showed that the

probability of occurrence of this event is so close to zero that it can be neglected. From the values of cU and dU, it can be noticed that
Table I. Values of mT(n), sT(n), AT(n), BT(n) and CT(n)

n mT(n) sT(n) AT(n) BT(n) CT(n)

3 0.02472 0.9165 �0.6627 1.8136 0.6777
4 0.01266 0.9502 �0.7882 2.1089 0.6261
5 0.00748 0.9670 �0.8969 2.3647 0.5979
6 0.00485 0.9765 �0.9940 2.5941 0.5801
7 0.00335 0.9825 �1.0827 2.8042 0.5678
8 0.00243 0.9864 �1.1647 2.9992 0.5588
9 0.00182 0.9892 �1.2413 3.1820 0.5519
10 0.00141 0.9912 �1.3135 3.3548 0.5465
11 0.00112 0.9927 �1.3820 3.5189 0.5421
12 0.00090 0.9938 �1.4473 3.6757 0.5384
13 0.00074 0.9947 �1.5097 3.8260 0.5354
14 0.00062 0.9955 �1.5697 3.9705 0.5327
15 0.00052 0.9960 �1.6275 4.1100 0.5305
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Table II. Values of mU(n),sU(n),AU(n), BU(n) and CU(n)

n mU(n) sU(n) AU(n) BU(n) CU(n) DU(n)

3 0.0184 0.9475 3.1936 1.1952 �0.2588 15.077
4 0.0078 0.9739 3.3657 1.3983 �0.2438 12.591
5 0.0039 0.9852 3.5402 1.5727 �0.2352 11.312
6 0.0022 0.9908 3.7111 1.7281 �0.2295 10.530
7 0.0014 0.994 3.8768 1.8698 �0.2254 10.000
8 0.0009 0.9958 4.0369 2.0010 �0.2224 9.618
9 0.0006 0.9970 4.1918 2.1238 �0.2200 9.328
10 0.0004 0.9978 4.3417 2.2396 �0.2181 9.100
11 0.0003 0.9983 4.4869 2.3495 �0.2166 8.917
12 0.0002 0.9987 4.6279 2.4544 �0.2152 8.766
13 0.0002 0.9989 4.7648 2.5549 �0.2141 8.640
14 0.0001 0.9991 4.8981 2.6515 �0.2132 8.532
15 0.0001 0.9993 5.0279 2.7446 �0.2123 8.440
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dU þ cU � S2j ≤0 implies a very large value of S2j as compared to the value of s20 so it can be taken as an out-of-control situation with a

large positive shift. For more about the distributional properties of Uj, see Castagliola et al..14

Furthermore, it should be noted that any change in the process standard deviation will change the mean of the normalized
variables given in (2) and (3). Hence, based on the these two (approximately) normalized statistics, we are now able to define our
new control structures, denoted as floating T� S2 and floating U� S2 charts, respectively. These charts monitor basically the mean
of the transformed statistics in (2) and (3) and hence control the process dispersion.

2.1. Floating T� S2 control chart

The first proposed chart, named as floating T� S2 chart, is based on the three-parameter logarithmic transformation given in (2).
The plotting statistic is given as:

FTj ¼
Xj

k¼1
Tk

j
(4)

The statistic in (4) is a cumulative average of the three-parameter logarithmic transformation given in (2). According to the
probability distribution theory, we have that, if Tj follows (approximately) a normal distribution with mean mT(n) and variance s2T nð Þ,
then FTj ¼

Xj

k¼1
Tk=j will also be approximately normal (for a fixed value of j) with mean mT(n) and variance

s2T nð Þ
j . This implies that

the control limits (including the upper control limit (UCL), center line (CL) and lower control limit (LCL)) for the floating statistic given
in (4) can be defined as:

LCLj ¼ mT nð Þ � KT
sT nð Þffiffi

j
p ; CL ¼ mT nð Þ; UCLj ¼ mT nð Þ þ KT

sT nð Þffiffi
j

p (5)

where the width of the control limits is determined by KT. The ARL0 can be controlled by adjusting this constant (KT) as the ARLs for a
control chart with wider limits are larger and vice versa. A problem seen in the above structure is that, once the value of j becomes
larger, it becomes almost impossible for the plotting statistic in (4) to cross the control limits in (5), in case of shifted variance.
This implies that the width of the control structure in (5) remains too wide for the larger values of j (wide relative to the plotting
statistic). Note that if a process shift has occurred from time zero, then using the progressive mean, i.e. floating T� S2 chart from
(4) averages all observed process results with equal weight, and all of them reflect the process change. However, if the process shift
occurs at some other time, the progressive mean chart will not be so good. Now, it gives equal weight to some observations before
the process change and thus underestimates/overestimates the current process variance. This issue is resolved by putting a function
of j, i. e. f( j) = j q, in the denominator of sT(n) such that the limits become a bit narrower for the larger values of j (cf. Abbas et al.,15

where the same kind of penalty function is used). This results in control limits for the proposed floating T� S2 chart as:

LCLTj ¼ mT nð Þ � K ’
T

sT nð Þ
jqþ0:5

; CLT ¼ mT nð Þ;UCLTj ¼ mT nð Þ þ K ’
T

sT nð Þ
jqþ0:5

(6)

where K ’
T is the adjusted control limit coefficient, and it becomes the design parameter for the proposed chart along with q. Note

that the control limits given in (5) are a special case of the limits in (6) with q=0. Tables III–VII contain the ARL values for the proposed
floating T� S2 chart where d=s1/s0 represents the amount of shift in the process standard deviation. Standard deviation of run
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Table III. ARL (SDRL in parentheses) values of floating T� S2 chart with n= 3 and ARL0ffi 370

d q=0.15 q= 0.2 q= 0.25 q= 0.3 q=0.35 q=0.4

K ’
T ¼ 2:724 K ’

T ¼ 3:568 K ’
T ¼ 4:68 K ’

T ¼ 6:152 K ’
T ¼ 8:1 K ’

T ¼ 10:67

0.5 5.61 (1.7) 7.16 (1.79) 8.91 (1.89) 10.84 (1.96) 12.94 (2.03) 15.18 (2.09)
0.6 7.64 (3.05) 9.58 (3.22) 11.77 (3.38) 14.11 (3.49) 16.6 (3.58) 19.23 (3.67)
0.7 11.52 (5.95) 14.17 (6.22) 16.96 (6.42) 19.99 (6.62) 23.13 (6.7) 26.32 (6.81)
0.8 20.4 (13.68) 24.6 (14.16) 28.65 (14.49) 32.94 (14.68) 37.08 (14.72) 41.19 (14.8)
0.9 52.35 (48.55) 61.12 (49.51) 69.13 (49.86) 76.05 (49.72) 82.5 (49.41) 88.32 (48.6)
0.95 115.8 (143.2) 134.7 (143.4) 150.1 (143.6) 161.9 (140.8) 171.5 (137.2) 179.2 (134.9)
1 371.5 (1035.6) 368.9 (736.9) 370.4 (570.9) 371.3 (476.9) 370.7 (411.1) 369.0 (366.1)
1.05 109.2 (147.02) 129.3 (150.5) 145.7 (150.7) 158.5 (148.6) 168.8 (145.1) 177.7 (141.7)
1.1 50.28 (55.64) 60.35 (58.07) 69.57 (59.71) 77.51 (60.14) 84.68 (59.47) 90.91 (59.08)
1.2 20.99 (19.99) 25.75 (21.13) 30.17 (21.82) 34.81 (22.35) 39.2 (22.5) 43.67 (22.6)
1.3 12.3 (10.87) 15.43 (11.8) 18.49 (12.2) 21.77 (12.65) 25.15 (12.99) 28.41 (13.03)
1.4 8.55 (7.26) 10.78 (7.84) 13.14 (8.27) 15.63 (8.54) 18.36 (8.83) 21.15 (9.08)
1.5 6.52 (5.33) 8.21 (5.76) 10.15 (6.15) 12.24 (6.42) 14.51 (6.65) 16.9 (6.86)
2 3 (2.17) 3.8 (2.42) 4.82 (2.63) 5.96 (2.8) 7.27 (2.97) 8.71 (3.1)
3 1.69 (1.01) 2.03 (1.18) 2.56 (1.3) 3.24 (1.37) 4.02 (1.49) 4.91 (1.57)

Table IV. ARL (SDRL in parentheses) values of floating T� S2 chart with n= 5 and ARL0ffi 370

d q= 0.15 q=0.2 q= 0.25 b q=0.3 q= 0.35 q= 0.4

K ’
T ¼ 2:724 K ’

T ¼ 3:568 K ’
T ¼ 4:68 K ’

T ¼ 6:152 K ’
T ¼ 8:1 K ’

T ¼ 10:67

0.5 3.4 (0.95) 4.43 (1.01) 5.63 (1.07) 7.01 (1.13) 8.55 (1.17) 10.22 (1.22)
0.6 4.58 (1.67) 5.9 (1.78) 7.39 (1.89) 9.09 (1.99) 10.93 (2.04) 12.92 (2.12)
0.7 6.85 (3.21) 8.66 (3.42) 10.68 (3.58) 12.85 (3.72) 15.19 (3.83) 17.69 (3.94)
0.8 12.24 (7.43) 15.03 (7.78) 18.02 (8.1) 21.12 (8.23) 24.34 (8.38) 27.68 (8.49)
0.9 32.09 (26.71) 38.39 (27.69) 44.05 (28.26) 49.23 (28.15) 54.54 (28.13) 59.67 (28.06)
0.95 77.92 (85.43) 91.23 (86.51) 101.7 (85.95) 111.4 (86.1) 119.2 (84.48) 126.7 (83.39)
1 369.1 (1019.9) 368.9 (734.8) 370.9 (570.2) 370.6 (474.6) 370.2 (412.4) 369.5 (366.0)
1.05 74.34 (87.98) 89.12 (91.88) 101.1 (92.03) 111.0 (92.83) 120.3 (92.6) 127.3 (90.36)
1.1 31.95 (31.47) 38.79 (32.97) 45.02 (33.92) 50.88 (34.34) 56.34 (34.45) 61.32 (33.95)
1.2 12.92 (10.85) 16.09 (11.55) 19.26 (12.05) 22.51 (12.34) 25.91 (12.62) 29.38 (12.76)
1.3 7.66 (5.94) 9.64 (6.37) 11.8 (6.71) 14.16 (7.01) 16.68 (7.22) 19.26 (7.35)
1.4 5.35 (3.9) 6.79 (4.21) 8.42 (4.49) 10.25 (4.73) 12.26 (4.92) 14.35 (5.08)
1.5 4.09 (2.84) 5.23 (3.14) 6.56 (3.36) 8.05 (3.53) 9.71 (3.71) 11.51 (3.84)
2 2 (1.17) 2.52 (1.33) 3.21 (1.43) 4.03 (1.54) 4.99 (1.64) 6.07 (1.72)
3 1.25 (0.51) 1.43 (0.64) 1.78 (0.76) 2.3 (0.77) 2.85 (0.84) 3.52 (0.88)
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lengths (SDRL) are given in the parentheses. Due to a number of difficulties faced in applying the Markov chain procedure for
approximating the run length properties, these properties are evaluated by running 105 simulations. The main reason, that we were
not able to generalize the procedure of Steiner,17 is that the distribution of FTj statistic keeps varying with j, which disturbs the
partitioning of the states at every time point j. It makes the computation of transition probabilities quite cumbersome for the floating
chart. This is not the case with the EWMA chart (cf. Steiner).17 The simulation program is developed in R language and available on
request from the authors.

Tables III-VI indicate that an increase in the value of q increases the ARL1 values and decreases the value of SDRL0 for a fixed value
of n. In general, a large value of SDRL0 is not recommended for a control structure (cf. Ryan,18 and Govindaraju and Zhang19), and also
smaller values of ARL1 are desired so that a shift is detected as early as possible. Therefore, it becomes a tradeoff between ARL1 values
and SDRL0 by adjusting the design parameter q.

Also, we note that as the value of q approaches 0, the value of SDRL0 tends to infinity which makes it impossible to compute
the ARL0 value.

2.2. Floating U� S2 control chart

The plotting statistic for the second proposed chart (based on a four parameter Johnson SB transformation) to monitor the process
dispersion is given as:
2



Table V. ARL (SDRL in parentheses) values of floating T� S2 chart with n=7 and ARL0ffi 370

d q=0.15 q= 0.2 q=0.25 q= 0.3 q= 0.35 q=0.4

K ’
T ¼ 2:724 K ’

T ¼ 3:568 K ’
T ¼ 4:68 K ’

T ¼ 6:152 K ’
T ¼ 8:1 K ’

T ¼ 10:67

0.5 2.59 (0.67) 3.39 (0.73) 4.35 (0.79) 5.46 (0.83) 6.73 (0.86) 8.14 (0.9)
0.6 3.44 (1.18) 4.48 (1.27) 5.68 (1.36) 7.05 (1.42) 8.58 (1.49) 10.27 (1.56)
0.7 5.13 (2.27) 6.54 (2.42) 8.15 (2.55) 9.95 (2.67) 11.92 (2.77) 14.03 (2.85)
0.8 9.08 (5.19) 11.31 (5.46) 13.75 (5.69) 16.36 (5.89) 19.11 (6.05) 22.01 (6.14)
0.9 24.19 (18.95) 29.02 (19.67) 33.68 (19.93) 38.15 (20.17) 42.77 (20.28) 47.25 (20.22)
0.95 60.22 (61.4) 71.02 (62.63) 79.77 (63.02) 87.60 (62.78) 95.06 (62.72) 100.9 (61.39)
1 368.9 (1021.6) 368.9 (737.46) 370.5 (571.14) 371.2 (478.75) 371.8 (412.52) 371.7 (366.86)
1.05 58.25 (64.78) 69.91 (67.04) 79.80 (68.2) 88.46 (68.59) 95.70 (67.68) 102.7 (67.29)
1.1 24.28 (22.33) 29.61 (23.48) 34.75 (24.21) 39.4 (24.36) 44.41 (24.87) 48.9 (24.62)
1.2 9.75 (7.57) 12.23 (8.12) 14.77 (8.49) 17.61 (8.86) 20.4 (9.05) 23.4 (9.16)
1.3 5.77 (4.1) 7.38 (4.49) 9.1 (4.73) 11.04 (4.97) 13.14 (5.15) 15.38 (5.28)
1.4 4.08 (2.72) 5.22 (2.96) 6.53 (3.17) 8.04 (3.36) 9.68 (3.5) 11.5 (3.66)
1.5 3.15 (1.98) 4.03 (2.17) 5.11 (2.34) 6.34 (2.51) 7.72 (2.64) 9.24 (2.75)
2 1.6 (0.81) 2 (0.95) 2.56 (1.02) 3.24 (1.11) 4.02 (1.17) 4.93 (1.24)
3 1.1 (0.32) 1.21 (0.44) 1.45 (0.57) 1.89 (0.6) 2.37 (0.58) 2.92 (0.67)

Table VI. ARL (SDRL in parentheses) values of floating T� S2 chart with n= 9 and ARL0ffi 370

d q= 0.15 q=0.2 q=0.25 q=0.3 q= 0.35 q= 0.4

K ’
T ¼ 2:724 K ’

T ¼ 3:568 K ’
T ¼ 4:68 K ’

T ¼ 6:152 K ’
T ¼ 8:1 K ’

T ¼ 10:67

0.5 2.18 (0.51) 2.81 (0.63) 3.63 (0.65) 4.6 (0.67) 5.71 (0.71) 6.95 (0.74)
0.6 2.85 (0.91) 3.70 (1.01) 4.72 (1.08) 5.92 (1.14) 7.26 (1.20) 8.74 (1.25)
0.7 4.18 (1.75) 5.38 (1.89) 6.76 (2.00) 8.33 (2.12) 10.05 (2.2) 11.93 (2.28)
0.8 7.38 (4.02) 9.29 (4.29) 11.36 (4.48) 13.63 (4.66) 16.11 (4.79) 18.64 (4.9)
0.9 19.70 (14.78) 23.81 (15.42) 27.83 (15.65) 32.01 (15.93) 36.07 (16.05) 40.23 (16.11)
0.95 49.78 (48.29) 59.26 (49.96) 66.86 (50.77) 73.83 (50.29) 80.36 (49.83) 86.3 (49.4)
1 368.1 (1027.8) 369.9 (737.0) 371.3 (574.9) 371.4 (479.1) 369.3 (409.4) 368.2 (363.9)
1.05 48.61 (51.39) 58.69 (53.49) 67.36 (54.44) 74.35 (54.37) 81.35 (54.35) 87.41 (53.88)
1.1 20.03 (17.46) 24.52 (18.43) 28.77 (18.85) 33.09 (19.34) 37.42 (19.55) 41.65 (19.68)
1.2 7.99 (5.89) 10.03 (6.31) 12.31 (6.69) 14.68 (6.91) 17.25 (7.13) 20.0 (7.34)
1.3 4.76 (3.17) 6.08 (3.47) 7.6 (3.7) 9.29 (3.89) 11.13 (4.06) 13.13 (4.2)
1.4 3.39 (2.10) 4.33 (2.30) 5.5 (2.49) 6.77 (2.64) 8.24 (2.78) 9.84 (2.89)
1.5 2.63 (1.54) 3.38 (1.72) 4.3 (1.84) 5.36 (1.97) 6.58 (2.09) 7.92 (2.18)
2 1.4 (0.63) 1.71 (0.76) 2.19 (0.83) 2.78 (0.87) 3.46 (0.94) 4.27 (0.99)
3 1.04 (0.2) 1.1 (0.31) 1.27 (0.46) 1.64 (0.55) 2.11 (0.45) 2.55 (0.57)
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FUj ¼
Xj

k¼1
Uk

j
(7)

Like FTj in (4), here FUj also follows approximately a normal distribution with mean mU(n) and variance
s2U nð Þ

j . Therefore, the

control limits for this second proposed chart, named as floating U� S2 chart, are given as:

LCLUj ¼ mU nð Þ � K ’
U

sU nð Þ
jqþ0:5

; CLU ¼ mU nð Þ;UCLUj ¼ mU nð Þ þ K ’
U

sU nð Þ
jqþ0:5

(8)

where K ’
U is the control limit coefficient for this second proposed chart. The ARL and SDRL values for the floating U� S2 chart are

given in Table VII with q ¼ 0:3; K ’
U ¼ 6:152 and ARL0ffi 370. For other values of q, similar results can easily be obtained.

From Tables III-VII, we may conclude that:

i. both floating charts are performing good, not only for positive shifts but also for negative shifts in the process standard
deviation;
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 623–632



Table VII. ARL (SDRL in parentheses) values of floating U� S2 chart with q=0.3, K ’
T ¼ 6:152 and ARL0ffi 370

d n= 3 n= 5 n=7 n=9

0.5 10.34 (2.15) 6.62 (1.22) 5.14 (0.89) 4.33 (0.73)
0.6 13.76 (3.76) 8.77 (2.10) 6.79 (1.51) 5.69 (1.21)
0.7 19.86 (7.02) 12.66 (3.91) 9.77 (2.78) 8.15 (2.18)
0.8 33.18 (15.44) 21.12 (8.53) 16.26 (6.07) 13.53 (4.77)
0.9 77.39 (51.33) 49.66 (28.91) 38.26 (20.55) 32.01 (16.21)
0.95 164.07 (143.25) 112.22 (87.55) 88.15 (63.55) 74.04 (50.63)
1 371.22 (482.6) 370.25 (477.14) 371.26 (479.81) 369.62 (480.89)
1.05 161.35 (150.65) 112.68 (93.37) 89.01 (68.96) 74.84 (54.97)
1.1 78.84 (60.92) 51.46 (34.58) 39.89 (24.61) 33.41 (19.52)
1.2 35.56 (22.69) 22.92 (12.58) 17.64 (8.82) 14.75 (6.97)
1.3 22.32 (12.92) 14.31 (7.03) 11.10 (4.99) 9.29 (3.92)
1.4 15.98 (8.73) 10.35 (4.82) 8.05 (3.42) 6.75 (2.68)
1.5 12.41 (6.61) 8.06 (3.62) 6.29 (2.57) 5.28 (2.03)
2 5.74 (2.97) 3.78 (1.67) 3.00 (1.22) 2.55 (0.98)
3 2.76 (1.54) 1.88 (0.89) 1.53 (0.65) 1.34 (0.52)
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ii. for a fixed ARL0, the proposed floating T� S2 chart is performing better for small shifts, like d2 [0.9,1.3], whereas the
performance of floating U� S2 chart is better for large shifts, like d≤ 0.8 and d≥ 1.4;

iii. for fixed values of q and ARL0, the values of the control limit coefficients are the same for both proposed charts;
iv. for larger values of n, the ARL values for both charts are more symmetric with respect to d as the distribution of both Tj and Uj

becomes very close to normal as n increase.
3. Comparisons

In this section, we compare the performance of the proposed floating charts with some recently proposed CUSUM and EWMA-type
control charts for monitoring the process dispersion. The control charts selected for the comparison purpose include the EWMA ln�
S2 by Castagliola,12 EWMA J� S2 by Castagliola et al.14 and CUSUM � S2 by Castagliola et al.13 directly, while we have also compared
the performance of our proposed charts with the Shewhart R� chart, a CUSUM chart for process dispersion proposed by Page3 and
an EWMA chart proposed by Crowder and Hamilton,8 indirectly.
3.1. Proposed versus EWMA ln� S2 and EWMA J� S2

Castagliola12 proposed an EWMA chart for monitoring the process dispersion based on the same logarithmic transformation as in (2),
named as EWMA ln� S2. Following him, Castagliola et al.14 proposed another EWMA chart based on the same four parameter
Johnson SB transformation as in (3), named as EWMA J� S2 for controlling the process standard deviation. The two parameters of
these charts are the smoothing parameter l and the control limit coefficient K. The ARL values of these two charts for the optimal
choices of l and K are given in Table VIII.

Comparing the performance of the proposed charts (having q=0.3) with these EWMA-type charts, we notice that both proposed
charts have smaller ARL1 values for a fixed ARL0 = 370. Moreover, the proposed charts are showing more dominance for the smaller
shifts as compared to the larger values of d (cf. Tables IV and VII vs. Table VIII).

Castagliola12 showed in his article that the EWMA ln� S2 control chart performs better than the Shewhart R� chart for small
shifts like d ≤ 2. He also proved the dominance of his proposed chart over the CUSUM chart proposed by Page3 and the EWMA
charts proposed by Crowder and Hamilton.8 Therefore, we can state that the performance of our proposed charts is better than these
charts also.
3.2. Proposed versus CUSUM � S2

Castagliola et al.13 proposed a CUSUM � S2 chart based on the three-parameter logarithmic transformation as in (2). The sensitivity
parameter is denoted by L and the control limit coefficient is represented by K. The ARLs of the CUSUM � S2 chart with optimal
parameter choices are given in Table IX.

The performance of this CUSUM � S2 control chart is more or less similar to that of EWMA ln� S2 and EWMA J� S2 charts.
Comparing the performance of our proposed charts (having q= 0.3) with the CUSUM� S2, we may conclude that the proposed charts
are performing better than the CUSUM � S2 chart for almost all the values of d (cf. Tables IV and VII vs. Table IX).
pyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 623–632



Table VIII. ARL values for the EWMA ln� S2 and EWMA J� S2 charts with ARL0 = 370

d EWMA ln� S2 EWMA J� S2

n=3 n=5 n=7 n=9 n=3 n= 5 n= 7 n= 9

0.5 10 5.6 4 3.1 9.4 5.2 3.7 2.9
0.6 13.9 8 5.7 4.5 13.6 7.7 5.5 4.3
0.7 21.3 12.6 9.1 7.1 21.2 12.4 8.9 7
0.8 40.8 23.1 17 13.5 40.8 23 16.8 13.4
0.9 130.3 68.9 48.5 38.2 126.5 68.3 48.4 38.1
0.95 289.7 184.8 137.6 110.3 274.3 179.9 135.8 109.4
1.05 173.2 142.3 115.1 96.8 195.9 148 118.1 98.8
1.1 91.9 59.8 45.2 36.9 97 61.6 46.1 37.5
1.2 36.5 22.8 17 13.8 38.8 23.5 17.4 14
1.3 20.3 12.4 9.3 7.5 21.3 13 9.6 7.7
1.4 13.4 8.1 6.1 4.9 13.8 8.4 6.3 5.1
1.5 9.8 5.8 4.4 3.6 9.8 6 4.5 3.7
2 3.9 2.3 1.8 1.5 3.8 2.3 1.8 1.5

Table IX. ARL values for the CUSUM � S2 chart with ARL0 = 370

d n=3 n=5 n= 7 n= 9

0.5 10.8 5.6 3.8 2.9
0.6 15.4 8.3 5.7 4.4
0.7 24.1 13.4 9.4 7.3
0.8 44 25.4 18.2 14.3
0.9 108.9 68.4 51.1 41.3
0.95 216.9 154.8 122.9 103.1
1.05 183.3 145.7 117.5 99.5
1.1 98.6 64.6 49.2 40.3
1.2 39.5 24.3 18 14.5
1.3 21.7 13.1 9.6 7.7
1.4 14.1 8.3 6.1 4.9
1.5 10.2 5.9 4.3 3.5
2 3.8 2.3 1.8 1.5
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Figure 1. ARL curves for floating T� S2, floating U� S2, EWMA ln� S2, EWMA J� S2 and CUSUM S2 charts for decrease in the process dispersion
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Apart from the tabular comparison, Figures 1 and 2 provide the ARL curves of the charts discussed in this Section for a decrease
and an increase, respectively, in the process dispersion.

It is clear from Figures 1 – 2 that the ARL curves of both proposed charts are on the lower side of other curves. This shows that
the proposed charts have smaller ARL1 values for a fixed ARL0 = 370. In addition, both proposed charts are showing almost
same performance as their ARL curves are coinciding in both figures.
4. Illustrative example

Authors like Hawkins4 and Thaga20 suggested to provide an illustrative example in order to explain the implementation of the
proposed chart. For the same purpose, we generate two datasets (namely dataset 1 and dataset 2) having 25 subgroups each of size
Table X. Calculation details of the proposed charts for dataset 1

Subgroup number S2j Tj FTj LCLTj UCLTj Uj FUj LCLUj UCLUj

1 1.652 1.021 1.021 �5.942 5.956 1.011 1.011 �6.057 6.065
2 1.51 0.866 0.943 �3.409 3.424 0.864 0.937 �3.477 3.485
3 1.551 0.912 0.933 �2.463 2.478 0.908 0.928 �2.513 2.521
4 0.761 �0.172 0.657 �1.955 1.97 �0.136 0.662 �1.995 2.003
5 0.829 �0.057 0.514 �1.634 1.649 �0.022 0.525 �1.669 1.676
6 0.606 �0.458 0.352 �1.411 1.426 �0.425 0.367 �1.442 1.449
7 0.47 �0.742 0.196 �1.247 1.262 �0.723 0.211 �1.274 1.282
8 1.546 0.906 0.285 �1.12 1.135 0.902 0.297 �1.144 1.152
9 1.131 0.397 0.297 �1.018 1.033 0.418 0.311 �1.041 1.049
10 1.057 0.294 0.297 �0.935 0.95 0.318 0.311 �0.957 0.964
11 0.901 0.06 0.275 �0.866 0.881 0.093 0.292 �0.886 0.894
12 0.945 0.129 0.263 �0.807 0.822 0.159 0.281 �0.826 0.834
13 0.703 �0.275 0.222 �0.757 0.772 �0.239 0.241 �0.775 0.783
14 0.378 �0.955 0.138 �0.713 0.728 �0.957 0.155 �0.73 0.738
15 0.259 �1.263 0.044 �0.674 0.689 �1.315 0.057 �0.691 0.698
16 1.024 0.246 0.057 �0.64 0.655 0.273 0.071 �0.656 0.663
17 1.526 0.884 0.106 �0.609 0.624 0.881 0.118 �0.624 0.632
18 1.712 1.083 0.16 �0.582 0.597 1.07 0.171 �0.596 0.604
19 2.473 1.756 0.244 �0.557 0.572 1.722 0.253 �0.571 0.579
20 0.648 �0.377 0.213 �0.534 0.549 �0.342 0.223 �0.548 0.556
21 3.049 2.163 0.306 �0.513 0.528 2.135 0.314 �0.527 0.534
22 3.061 2.171 0.39 �0.494 0.509 2.143 0.397 �0.507 0.515
23 3.022 2.145 0.467 �0.477 0.492 2.116 0.472 �0.489 0.497
24 2.518 1.791 0.522a �0.461 0.476 1.757 0.525b �0.473 0.481
25 1.839 1.209 0.549a �0.446 0.46 1.191 0.552b �0.458 0.465

aindicates an out-of-control signal by floating T� S2 chart
bindicates an out-of-control signal by floating U� S2 chart

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 623–632
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Figure 4. Chart output of floating U� S2 chart for dataset 1 and 2
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Figure 3. Chart output of floating T� S2 chart for dataset 1 and 2
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n= 5, i.e. one for an increase and the other for a decrease in the process standard deviation. For dataset 1, the first 15 subgroups are
generated from N(0,1) showing an in-control standard deviation while the remaining 10 subgroups are generated from N(0,1.3)
referring to an out-of-control standard deviation with d=1.3. Similarly, for dataset 2 the first 15 subgroups are the same as for
dataset 1, whereas the remaining 10 subgroups are taken from N(0,0.7) showing an negative shift in the process dispersion
with d= 0.7. Both proposed charts are applied to the datasets with parameters; mT(n) = 0.00748, sT(n) = 0.967,AT(n) =� 0.8969, BT
(n) = 2.3647, CT(n) = 0.5969, q= 0.3 and K ’

T ¼ 6:152 for the proposed floating T� S2 chart; mU(n) = 0.0039, sU(n) = 0.9852,AU
(n) = 3.5402, BU(n) = 1.5727, CU(n) =� 0.2352,DU(n) = 11.312, q= 0.3 and K ’

U ¼ 6:152 for the proposed floating U� S2 chart.
The calculations for both the proposed charts with dataset 1 are given in Table X. Figure 3 shows the chart output of the proposed
floating T� S2 chart for both datasets, while the chart output of floating U� S2 chart is given in Figure 4.

It can be seen from Figures 3 – 4 that the proposed charts are effectively detecting both positive and negative shifts. This can
also be confirmed from Table X, where both the proposed charts are signaling at subgroups # 24 and 25.
6
3
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5. Summary and conclusions

In this article, we have proposed and studied two memory-type control charts, named as the floating T� S2 control chart (based on a
three-parameter logarithmic transformation) and the floating U� S2 control chart (based on a four-parameter Johnson SB
transformation). The performance evaluation of the proposed charts is done by calculating the ARL and SDRL values using
simulation procedures. These ARLs are compared with some EWMA- and CUSUM-type control charts for monitoring the process
standard deviation. The comparisons show that the proposed charts are dominating the other charts under discussion in terms of
ARL values. Moreover, an inter-proposed charts comparison shows that the floating T� S2 chart is better for small shifts, whereas
the floating U� S2 chart is superior for large shifts in the process dispersion. At the end, an illustrative example is provided which
shows the application of the proposed charts on simulated datasets.
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2014, 30 623–632
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