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Statistical process control (SPC) is an important application of statistics in which the
outputs of production processes are monitored. Control charts are an important tool of
SPC. A very popular category is the Shewhart’s X̄-chart used to monitor the mean of a
process characteristic. Two alternatives to the Shewhart’s X̄-chart are the cumulative
sum and exponentially weighted moving average (EWMA) charts which are designed to
detect moderate and small shifts in the process mean. Targeting on small and moderate
shifts in the process mean, we propose an EWMA-type control chart which utilizes a
single auxiliary variable. The regression estimation technique for the mean is used in
defining the control structure of the proposed chart. It is shown that the proposed chart is
performing better than its univariate and bivariate competitors which are also designed
for detecting small shifts.

Keywords Auxiliary variable; Average run length (ARL); Control charts; Cumulative
sum; Exponentially weighted moving average; MXEWMA; Regression estimator.
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1. Introduction

Statistical process control (SPC) is broadly used in the manufacturing industry to attain
the process stability and to improve the quality of the output of the process by reducing
the amount of variation in it. The variation in the output is classified into common cause
and special cause variations. The former is the essential part of any production process
and in presence of only this variation, the process is said to be statistically in-control (cf.
Montgomery, 2009). The latter is the type of variation which is targeted by SPC and most
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3486 Abbas et al.

of the time there are assignable causes associated with this type of variation. A process
working under both types of variation is said to be out-of-control and SPC techniques
are available to detect the presence of special cause variation. Out of these techniques the
control chart is the most important and most widely used.

Control charts are mainly classified into two categories (with respect to their design
structure) named as memoryless (Shewhart-type) and memory control charts. Cumulative
sum (CUSUM) control charts proposed by Page (1954) and exponentially weighted moving
average (EWMA) control charts proposed by Roberts (1959) are the two most commonly
used memory control charts. Their control structure is made so that (instead of ignoring the
past information like Shewhart-type charts) they utilize the past information along with the
current to give a better performance for small and moderate shifts. Details regarding the
structure of the CUSUM charts and their averagerunlength(ARL) performance for different
choices of parameters may be found in Hawkins and Olwell (1998) and references therein.
Particulars of the EWMA control charts are given in detail in Sec. 2.

The concept of using auxiliary information is frequently used in the field of survey sam-
pling and estimation techniques. Information accessible at the estimation stage other than
that of sampled information is known as auxiliary information and regression estimation is
one of the most efficient ways of using the auxiliary information. This auxiliary information
is also used in control charting techniques in order to enhance their performance. Examples
are the regression control chart proposed by Mandel (1969) and cause-selecting control
charts proposed by Zhang (1985). The control structure of these control charts is based on
regressing the study variable on the auxiliary variable. The residuals obtained from that
regression are used for monitoring the process (see also Wade and Woodall, 1993).

Riaz (2008a) introduced the concept of using auxiliary information at the time of
estimating the plotting statistic of a control chart. He proposed a control chart which uses
a regression-type estimator as the plotting statistic to monitor the variability of the process
and showed the dominance (in terms of power) of his proposed control chart over the well-
known Shewhart-type control charts for the same purpose (i.e., R, S and S2 charts). Riaz
(2008b) proposed a regression-type estimator to monitor the location of the process. He
not only showed the superiority of his proposal over the Shewhart’s X̄-chart but also over
the regression charts (cf. Mandel, 1969) and the cause-selecting charts (cf. Zhang, 1985).
In this article, we introduce an EWMA-type control chart, named as MXEWMA, based on
a regression estimator using a single auxiliary variable for monitoring the location of the
process. The performance of the proposed chart is evaluated in terms of ARL where ARL is
defined as the expected number of samples until a shift has been detected. ARL0 and ARL1

are the in-control and out-of-control ARLs, respectively. For more details on ARL and other
performance measures see Frisen (2003).

Section 2 contains the details of the basic structure of the classical EWMA. The
design of the proposed MXEWMA and its performance evaluation is provided in Sec. 3.
Comparison of the proposed chart with some recent CUSUM- and EWMA-type control
charts is presented in Sec. 4. Also a comparison is made with a bivariate EWMA chart. To
demonstrate the application of the proposed chart in real situations, an illustrative example
is provided in Sec. 5 and finally the article is summarized in Sec. 6.

2. The Classical EWMA Control Chart

Let X represent a random variable from a normal distribution with mean μX and standard
deviation σX. Then the EWMA statistic (cf. Roberts, 1959) for monitoring the process
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EWMA-Type Control Chart 3487

mean is defined as

Zi = γ X̄i + (1 − γ ) Zi−1, (1)

where i is the sample number, γ is known as the smoothing constant and is chosen such
that 0 < γ ≤ 1, and X̄i is the average of the ith sample. The sizes of the samples are all
equal to n. The quantity Zi−1 represents the past information and its initial value (i.e.,
Z0) is taken equal to the target mean or the average of the preliminary samples. The
parameter γ determines the rate at which past information comes into the calculation of the
EWMA statistic. A large value of γ gives more weight to the current information and less
weight to the past information, whereas a small value of γ gives more weight to the past
information and less weight to the current information. γ = 1 implies that only the most
recent observation is used for the calculation of the EWMA statistic and then the EWMA
coincides with well-known Shewhart X̄-chart. The in-control mean and the variance of the
EWMA statistic (cf. Roberts, 1959) are

E (Zi) = μ0, V (Zi) = σ 2
X̄

(
γ

2 − γ
(1 − (1 − γ )2i)

)
, (2)

where μ0 represents the target mean of X and σX̄ represents the standard deviation of X̄,
i.e., σX̄ = σX√

n
. In case either or both μ0 and σX̄ are unknown, they may be estimated from

the preliminary samples. Hence the lower control limit (LCL), the center line (CL) and the
upper control limit (UCL) of the EWMA chart are given as

LCLi = μ0 − LσX̄

√
γ

2 − γ

(
1 − (1 − γ )2i

)

CL = μ0

UCLi = μ0 + LσX̄

√
γ

2 − γ

(
1 − (1 − γ )2i

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (3)

where L determines the width of the control limits for the EWMA chart (i.e., it is used to
control the in-control ARL of the EWMA chart) and its value is chosen according to the
tables given by Steiner (1999). From (3) it can be seen that the control limits are dependent
of the number of samples used. The relation implies that the control limits are narrow for
the initial samples and as time goes on, these limits converge toward constant levels given
as

LCL = μ0 − LσX̄

√
γ

2 − γ
, CL = μ0, UCL = μ0 + LσX̄

√
γ

2 − γ
. (4)

The control limits given in (3) are known as time varying limits while the limits given in (4)
are called constant limits. The time varying limits use the exact width of the control limits
for the initial samples and therefore an EWMA control chart using time varying limits will
be more powerful than that of using the constant limits to detect the initial out-of-control
points (cf. Montgomery, 2009). The ARL values for the classical EWMA with time varying
limits in (3) (cf. Steiner, 1999) are given in Table 1. Here δ represents the amount of shift
(defined as δ = √

n|μ1 − μ0|/σX where μ0 and μ1 are the in-control and the out-of-control
mean, respectively) and ARL0 is fixed at 500.

Many modifications of the CUSUM and EWMA control charts are suggested in order
to get smaller ARL1 values for a fixed in-control ARL0. These modifications include the first
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3488 Abbas et al.

Table 1
ARL values for the classical EWMA chart with time varying limits and ARL0 = 500

γ = 0.03 γ = 0.05 γ = 0.1 γ = 0.25 γ = 0.5 γ = 0.75
δ L = 2.483 L = 2.639 L = 2.824 L = 3.001 L = 3.072 L = 3.088

0 500 500 500 500 500 500
0.25 66.54 77.75 103.3 169.5 254.7 321.3
0.5 21.23 23.71 28.81 47.38 88.47 140.3
0.75 10.75 11.87 13.61 19.32 35.59 62.46
1 6.64 7.31 8.21 10.41 17.18 30.53
1.5 3.45 3.77 4.17 4.78 6.27 9.81
2 2.24 2.43 2.66 2.94 3.39 4.46
2.5 1.66 1.77 1.92 2.09 2.26 2.62
3 1.34 1.41 1.51 1.62 1.70 1.82
4 1.07 1.09 1.12 1.16 1.18 1.20
5 1.01 1.01 1.01 1.02 1.03 1.03

initial response (FIR) CUSUM and FIR EWMA presented by Lucas and Crosier (1982)
and Rhoads et al. (1996), respectively. The idea of the FIR feature is to assign a head
start to the initial value of the statistic rather than setting it equal to zero. Recently, Riaz
et al. (2011) and Abbas et al. (2011) proposed the use of the runs rules schemes with the
CUSUM and EWMA charts, respectively. They show that the CUSUM and EWMA charts
with the extra runs rules schemes were superior to the FIR CUSUM and FIR EWMA charts,
respectively. We propose, in the next section, an MXEWMA control chart which uses the
information of a single auxiliary variable on the regression estimator’s pattern to monitor
the location of a process and without loss of generality we have considered the case of
individual observations.

3. The Proposed MXEWMA Control Chart

Let an auxiliary variable Wi be correlated with the variable of interest Xi and let us denote
the correlation between these two variables by ρXW . The observations of X and W are
obtained in the paired form for each sample and the population mean and variance of
W (i.e., μW and σ 2

W , respectively) are assumed to be known. Also we assume bivariate
normality of X and W , i.e., (X,W ) ∼ N2(μX,μW, σ 2

X, σ 2
W, ρXW ) where N2 represents

the bivariate normal distribution. The regression estimate of the population mean μX (cf.
Cochran, 1977) is given as

MX = X̄ + bXW (μW − W̄ ), (5)

where bXW is the change in X due to one unit change in W and is bXW = ρXW ( σX

σW
). The

mean and variance of the statistic MX are given as

E (MX) = μX, V (MX) = σ 2
M = σ 2

X

n

(
1 − ρ2

XW

) = σ 2
X − b2

XWσ 2
W

n
. (6)

Equation (6) implies that MX is also an unbiased estimator of μX (like X̄) and V (MX) >

V (X̄) as long as ρ2
XW > 0. Based on the regression estimator in (5), the plotting statistic
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EWMA-Type Control Chart 3489

for the proposed MXEWMA chart is defined as

Yi = γMMXi
+ (1 − γM ) Yi−1, (7)

where γM is the smoothing constant for the proposed statistic and MXi
is the value of

statistic MX for the ith sample. Yi−1 represents the past information (like Zi−1 in (1)) and
its initial value (i.e., Y0) is also taken equal to the target mean μ0. Now based on (6) the
time varying control limits for the proposed chart are

LCLi = μ0 − LMσM

√
γM

2 − γM

(
1 − (1 − γM )2i

)

CL = μ0

UCLi = μ0 + LMσM

√
γM

2 − γM

(
1 − (1 − γM )2i

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (8)

where LM determines the width of the control limits for the proposed MXEWMA chart.
Following Steiner (1999) we have also done a complete performance evaluation of the
proposed chart in terms of ARL which are calculated through a Monte Carlo simulation
procedure by running 50,000 replications. The ARL values for the proposed MXEWMA
chart with time varying limits are given in Tables 2–6 for some selective choices of ρXW in
which δ represents the amount of shift in the study variable, where μW remains constant.

The ARL0 in Tables 2–6 is fixed at 500 which will enable us to make comparison of
the proposed control chart with some other charts/schemes. Tables 2–6 refer to a situation
where the information about the population correlation coefficient is assumed to be known,
because the information about the population correlation coefficient ρXW is known in many
practical situations (cf. Garcia and Cebrian, 1996).

Riaz et al. (2011) and Abbas et al. (2011) suggested reporting the relative standard
errors of the results so we replicated some of the results in Tables 2–6 repeatedly and found
that the relative standard errors of the results are about 0.8%.

Table 2
ARL values for the proposed MXEWMA chart with time varying limits, ρXW = 0.05 and

ARL0 = 500

γM = 0.03 γM = 0.05 γM = 0.1 γM = 0.25 γM = 0.5 γM = 0.75
δ LM = 2.483 LM = 2.639 LM = 2.824 LM = 3.001 LM = 3.072 LM = 3.088

0 500.3011 500.8313 499.7023 499.6045 500.9026 499.9704
0.25 66.3103 77.5273 103.1312 168.8081 254.324 321.6227
0.5 21.2101 23.6211 28.7434 47.2173 88.1445 139.8713
0.75 10.7125 11.8433 13.592 19.2345 35.401 62.2502
1 6.632 7.2905 8.2072 10.3617 17.1148 30.3995
1.5 3.4443 3.7573 4.1644 4.7647 6.2628 9.7633
2 2.244 2.4205 2.6563 2.9313 3.3701 4.4521
2.5 1.6555 1.7719 1.9147 2.0831 2.2565 2.6079
3 1.3401 1.4104 1.5112 1.6109 1.6904 1.8151
4 1.0642 1.0882 1.1224 1.1609 1.184 1.1946
5 1.0049 1.0085 1.0131 1.0221 1.0265 1.0281
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3490 Abbas et al.

Table 3
ARL values for the proposed MXEWMA chart with time varying limits, ρXW = 0.25 and

ARL0 = 500

γM = 0.03 γM = 0.05 γM = 0.1 γM = 0.25 γM = 0.5 γM = 0.75
δ LM = 2.483 LM = 2.639 LM = 2.824 LM = 3.001 LM = 3.072 LM = 3.088

0 500.0592 500.5358 499.1371 499.8049 499.951 500.5678
0.25 63.1554 73.8038 97.5858 161.9697 245.9632 313.2722
0.5 20.1268 22.4316 27.1393 44.1797 83.0098 132.8202
0.75 10.1982 11.2488 12.8277 18.0008 32.9028 57.9059
1 6.3049 6.9254 7.7548 9.7748 15.8281 28.0123
1.5 3.2871 3.5816 3.9532 4.5005 5.832 8.9444
2 2.1384 2.3119 2.5261 2.7962 3.1754 4.0979
2.5 1.5945 1.6997 1.8406 1.9877 2.1497 2.4354
3 1.2952 1.363 1.4519 1.5523 1.6178 1.7158
4 1.0495 1.0687 1.0955 1.132 1.1476 1.1565
5 1.0044 1.0067 1.0108 1.0149 1.0178 1.0183

The main findings about our proposed MXEWMA control chart for monitoring the
location of a process are given as (cf. Tables 2–6):

i. the use of auxiliary information in the form of a regression estimator boosts the
performance of EWMA control chart, especially for the larger values of ρXW ;

ii. for the fixed values of ρXW and δ, the performance of the proposed chart with time
varying limits is better for smaller values of γM ;

iii. for the fixed values of γM , LM and δ, the performance of the proposed chart is
better for the larger values of ρXW ;

Table 4
ARL values for the proposed MXEWMA chart with time varying limits, ρXW = 0.5 and

ARL0 = 500

γM = 0.03 γM = 0.05 γM = 0.1 γM = 0.25 γM = 0.5 γM = 0.75
δ LM = 2.483 LM = 2.639 LM = 2.824 LM = 3.001 LM = 3.072 LM = 3.088

0 500.7792 499.5635 499.8114 499.692 500.7859 500.9686
0.25 52.6523 61.1011 80.6591 135.7683 216.0974 285.4555
0.5 16.6817 18.5391 22.044 34.5785 65.3989 108.1412
0.75 8.4242 9.3261 10.5432 14.1099 24.7989 44.3004
1 5.2477 5.7592 6.4306 7.8001 11.9099 20.6193
1.5 2.7663 3.0129 3.3183 3.7182 4.5573 6.5619
2 1.8392 1.9673 2.1455 2.3486 2.5852 3.136
2.5 1.3979 1.48 1.5834 1.7044 1.7964 1.9476
3 1.17 1.2168 1.2786 1.3501 1.3947 1.4325
4 1.0155 1.0253 1.038 1.0513 1.0606 1.064
5 1.0007 1.0012 1.0019 1.002 1.0028 1.0056
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EWMA-Type Control Chart 3491

Table 5
ARL values for the proposed MXEWMA chart with time varying limits, ρXW = 0.75 and

ARL0 = 500

γM = 0.03 γM = 0.05 γM = 0.1 γM = 0.25 γM = 0.5 γM = 0.75
δ LM = 2.483 LM = 2.639 LM = 2.824 LM = 3.001 LM = 3.072 LM = 3.088

0 500.0659 499.5868 500.7509 500.4051 499.2859 499.7069
0.25 33.8532 38.4587 48.8401 84.1265 146.8905 211.6496
0.5 10.6126 11.7078 13.4213 18.9673 34.9019 61.2737
0.75 5.398 5.9343 6.6291 8.0816 12.4585 21.7022
1 3.4068 3.7177 4.1045 4.7175 6.1522 9.5862
1.5 1.8835 2.0268 2.2095 2.4126 2.6787 3.2731
2 1.3299 1.4043 1.4969 1.5949 1.6784 1.7904
2.5 1.1006 1.1309 1.1772 1.2269 1.2577 1.2721
3 1.0199 1.0296 1.0429 1.0608 1.0733 1.0742
4 1.0001 1.0004 1.0006 1.0011 1.0014 1.0017
5 1 1 1 1 1 1

iv. for all the choices of γM , LM and ρXW the proposed chart is ARL unbiased, i.e.,
ARL1 never exceeds ARL0 for any value of δ;

v. for smaller values of ρXW , the ARL for the proposed scheme decreases gradually
with an increase in the value of δ but for the larger values of ρXW , the ARL for the
proposed scheme decreases rapidly with an increase in the value of δ.

4. Comparisons

In this section, we provide a broad comparison of our proposed MXEWMA chart with the
classical CUSUM, the classical EWMA, some of their recent modifications in which ARL

Table 6
ARL values for the proposed MXEWMA chart with time varying limits, ρXW = 0.95 and

ARL0 = 500

γM = 0.03 γM = 0.05 γM = 0.1 γM = 0.25 γM = 0.5 γM = 0.75
δ LM = 2.483 LM = 2.639 LM = 2.824 LM = 3.001 LM = 3.072 LM = 3.088

0 500.1483 499.3424 500.5895 500.2327 500.0067 500.7743
0.25 9.6039 10.6139 12.1289 16.7024 30.2287 53.736
0.5 3.1274 3.4017 3.7577 4.2576 5.389 8.1474
0.75 1.75 1.8739 2.0315 2.2142 2.4181 2.8603
1 1.2547 1.3136 1.3951 1.4846 1.5468 1.622
1.5 1.0102 1.0162 1.0216 1.034 1.0418 1.0432
2 1 1.0003 1.003 1.0005 1.0006 1.0013
2.5 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
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3492 Abbas et al.

is the performance measure used for comparison purposes, and the bivariate EWMA chart
introduced by Lowry et al. (1992). Below, we present the one by one comparison of the
proposed scheme with its counterparts:

4.1. MXEWMA vs. Classical EWMA

The classical EWMA chart proposed by Roberts (1959) is discussed comprehensively
in Sec. 2. ARLs for the classical EWMA chart with time varying are given in Table 1.
Comparing the MXEWMA chart (with γM = 0.25) with the classical EWMA chart we can
see that for all the values of ρXW the ARL performance of the MXEWMA chart is better
than the classical EWMA for a fixed value of δ (cf. Table 1 vs. Tables 2–6). Moreover, an
important point here is that the classical EWMA is a special case of the MXEWMA chart,
i.e., applying MXEWMA chart to a process where ρXW = 0 is equivalent to applying the
classical EWMA. From Table 2, we see that for ρXW = 0.25 the results almost coincides
with the results of Table 1 as was to be expected.

It is to be noted here that the results of proposed MXEWMA chart with time varying
limits are on the same pattern as compared to the classical EWMA with time varying limits
while the proposed chart with asymptotic limits (computational results are not provided
here) is mainly following the pattern of classical EWMA with asymptotic limits.

4.2. MXEWMA vs. Classical CUSUM

The classical CUSUM proposed by Page (1954) is discussed briefly in Sec. 1. A compre-
hensive study on the CUSUM charts is given by Hawkins and Olwell (1998). The ARLs for
the CUSUM chart are given in Table 7 with ARL0 fixed at 500.

Comparing the MXEWMA chart with the classical CUSUM chart we observe that the
newly proposed chart is outperforming the classical CUSUM even for the smaller values
of ρXW (cf. Table 7 vs. Tables 2–6).

4.3. MXEWMA vs. Runs Rules Based CUSUM and EWMA

Riaz et al. (2011) introduced the concept of applying runs rules with the CUSUM charts
followed by Abbas et al. (2011) who applied two runs rules schemes with the EWMA
charts. The ARLs for the runs rules based CUSUM and EWMA are given in Tables 8 and
9, respectively.

Table 7
ARL values for the classical CUSUM scheme

δ

k h 0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5

0.25 8.585 500 94.8 31.08 17.54 12.17 7.58 5.55 4.41 3.69 2.84 2.26
0.5 5.071 500 145.5 38.87 17.32 10.52 5.82 4.06 3.15 2.6 2.03 1.72
0.75 3.539 500 200.7 57.07 22.13 11.6 5.45 3.55 2.67 2.18 1.63 1.24
1 2.665 500 249.5 81.44 30.9 14.67 5.75 3.41 2.45 1.94 1.38 1.09
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EWMA-Type Control Chart 3493

Table 8
ARL1 values for the runs rules based CUSUM at ARL0 = 500

Limits δ

Scheme WL AL 0.25 0.5 0.75 1 1.5 2

I 4.8 5.12 141.1114 38.5986 17.3916 10.5176 5.9052 4.0574
4.7 5.2 150.3718 38.5942 17.5288 10.5994 5.8984 4.14
4.6 5.39 145.1886 38.1954 17.468 10.5584 6.0066 4.2374
4.49 ∞ 146.564 38.4918 17.7254 10.8566 6.3326 4.6894

II 4.8 5.11 139.7048 38.8562 17.4586 10.5056 5.8222 4.0776
4.7 5.19 142.1588 37.9752 17.2674 10.5826 5.8716 4.1036
4.6 5.5 145.7868 38.3342 17.3938 10.734 6.0526 4.2726
4.54 ∞ 149.0352 39.9042 17.5682 10.9658 6.4506 4.873

WL and AL in Table 8 represent the warning and action limits, respectively (for more
details cf. Riaz et al., 2010). Comparing the MXEWMA chart with runs rules based CUSUM
and EWMA, we can see that the proposed chart is uniformly surpassing both the CUSUM
schemes I and II and EWMA scheme I. The EWMA scheme II is performing better than
the proposed chart as long as ρXW < 0.5 but once we have ρXW ≥ 0.5, the proposed chart
outperforms the EWMA scheme II as well (cf. Table 8 and 9 vs. Tables 2–6).

4.4. MXEWMA vs. MEWMA

Lowry et al. (1992) introduced a multivariate extension of the EWMA chart named as
MEWMA chart. For the bivariate case, the MEWMA statistic is(

Zi

Yi

)
= r

(
Xi

Wi

)
+ (1 − r)

(
Zi−1

Yi−1

)
,

where r is the smoothing constant. The chart gives an out-of-control signal if T 2
i =

C1( Zi Yi )( σ 2
W −σXW

−σWX σ 2
X

)( Zi

Yi
) > h4. Here C1 = 2−r

r(1−(1−r)2i )σ 2
Xσ 2

W (1−ρ2
XW )

and h4 is the UCL.

Table 9
ARL values for the runs rules based EWMA at ARL0 = 500

Scheme I Scheme II

λ = 0.1 λ = 0.25 λ = 0.5 λ = 0.1 λ = 0.25 λ = 0.5
δ Ls = 2.556 Ls = 2.554 Ls = 2.36 Ls = 2.3 Ls = 2.345 Ls = 2.002

0 501.7558 505.5284 501.2598 502.883 499.6153 505.3564
0.25 103.3109 169.1349 235.1138 66.6864 97.0108 133.7117
0.5 29.5748 47.0105 78.0771 21.4251 31.2023 46.3541
0.75 14.3216 19.2776 30.8742 11.7427 14.4295 20.6223
1 8.9561 10.5964 15.1992 7.5539 8.6761 11.0991
1.5 4.9197 5.2578 6.1014 4.4676 4.7066 5.1336
2 3.4498 3.5527 3.6815 3.4534 3.549 3.6276
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Table 10
ARL Values for MEWMA charts with r = 0.1 and h4 = 10.833 at ARL0 = 500

δ ρXW = 0.05 ρXW = 0.25 ρXW = 0.5 ρXW = 0.75 ρXW = 0.95

0 500.57 500.6147 500.9223 499.2386 500.4125
0.5 36.81699 34.50276 27.63295 16.425 4.41316
1 9.8781 9.31899 7.66392 4.85723 1.55707
1.5 4.91344 4.65957 3.88276 2.54956 1.05029
2 3.08706 2.94745 2.47956 1.6849 1.00066
2.5 2.19454 2.10018 1.79616 1.27854 1.00001
3 1.6936 1.6269 1.41069 1.08457 1

Lowry et al. (1992) assume that the mean of both variables are equal (i.e., μX = μW = μ).
According to this assumption the ARL values of MEWMA only depend upon the shift

parameter λ =
√

2
1+ρXW

μ. We have developed a code in R language to evaluate the ARL

values of this bivariate EWMA chart through Monte Carlo simulation. To validate our
simulation code, we have replicated the results of Table 1 (by running 100,000 replications)
of Lowry et al. (1992) article and found the same results.

Now using our simulation code, we find the ARL values of bivariate EWMA with the
mean of W fixed and the shift in the mean of X as we have defined in Secs. 2 and 3. These
ARLs are given in Table 10, where r = 0.1 and h4 = 10.833 with ARL0 = 500.

Comparing the performance of the bivariate EWMA with the proposed chart, it can
be noticed that the proposed chart has smaller ARL1 values as compared to the bivariate
EWMA chart for all corresponding values of ρXW (cf. Table 10 vs. Tables 2–6).

5. Illustrative Example

It is recommended by the authors like Steiner (1999) and Lucas and Saccucci (1990) to
provide an illustrative example of the proposed chart to show the application of the proposed
chart in real situation. For this purpose, we generate a dataset containing 20 observations
from N2(μX + δσX, μW , σ 2

X, σ 2
W, ρXW ). We use δ = 0.5 (referring to an out-of-control

situation with a 0.5 sigma shift in the study variable X), and μX and μW are taken equal to
zero, whereas σ 2

X and σ 2
W are taken equal to unity for convenience. The correlation between

the study and auxiliary variables is 0.5 (i.e., ρXW = 0.5). In the comparison we use the
classical CUSUM, the classical EWMA and the MXEWMA charts. The parameters for the
classical CUSUM are selected as k = 0.5 and h = 5.071 (cf. Table 7); for the classical
EWMA with time varying limits we have taken γ = 0.1 and L = 2.824 (cf. Table 1) and
for the MXEWMA with time varying limits we have used γM = 0.1 and LM = 2.824 in
order to obtain for all three charts an ARL0 = 500. Table 11 contains the calculations done
for the MXEWMA chart, whereas the graphical display for the three control charts is given
in Figs. 1–3. The plotting statistic for the classical CUSUM are C+

i and C−
i ; for the classical

EWMA is Zi and for the MXEWMA is Yi .
We can clearly see from Fig. 1 that the proposed MXEWMA chart is giving out-of-

control signals at samples # 18, 19 and 20. In total, we have three out-of-control signals
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Table 11
Example of the proposed MXEWMA control chart with time varying limits for dataset

with known μ0 = 0, σX = 1, μW = 0, σW = 1, ρXW = 0.5 and parameters of chart
γM = 0.1 and LM = 2.824 at ARL0 = 500

Sample No Xi Wi MX Yi UCLi LCLi

1 0.39 −0.865 0.823 0.082 0.245 0.39
2 −0.242 −1.686 0.601 0.134 0.329 −0.242
3 −0.919 −1.046 −0.396 0.081 0.384 −0.919
4 −1.22 −1.366 −0.537 0.019 0.423 −1.22
5 2.01 0.574 1.722 0.19 0.453 2.01
6 1.395 1.61 0.59 0.23 0.475 1.395
7 1.66 1.542 0.889 0.296 0.493 1.66
8 −0.514 0.816 −0.922 0.174 0.506 −0.514
9 −0.213 −0.907 0.24 0.18 0.517 −0.213

10 −0.588 −1.923 0.374 0.2 0.526 −0.588
11 0.074 0.132 0.008 0.181 0.533 0.074
12 1.673 1.64 0.853 0.248 0.538 1.673
13 1.765 0.575 1.478 0.371 0.543 1.765
14 0.061 −0.008 0.065 0.34 0.546 0.061
15 1.537 −1.084 2.079 0.514 0.549 1.537
16 −0.519 −0.52 −0.259 0.437 0.551 −0.519
17 1.198 −0.246 1.32 0.525 0.553 1.198
18 1.853 0.028 1.839 0.656∗ 0.555 1.853
19 0.733 1.715 −0.125 0.578∗ 0.556 0.733
20 0.108 −0.6 0.408 0.561∗ 0.557 0.108

∗indicates proposed chart giving out-of-control signal
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Figure 1. The proposed MXEWMA control chart with time varing limits, known μ0 = 0, σX = 1,
μW = 0, σW = 1, ρXW = 0.5 and parameters of chart γM = 0.1 and LM = 2.824 at ARL0 = 500.
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Figure 2. The classical EWMA control chart with time varying limits, known μ0 = 0, σX = 1, and
parameters of chart γ = 0.1 and L = 2.824 at ARL0 = 500.

which can also be confirmed through Table 11. Both the classical EWMA and the classical
CUSUM failed to detect any shift in the process mean (cf. Figs. 2 and 3, respectively).
This shows the superiority of the proposed chart over the classical EWMA and the classical
CUSUM in the form of signaling earlier.
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C i

Sample Number
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Figure 3. The classical CUSUM control chart with known μ0 = 0, σX = 1, and parameters of chart
k = 0.5 and h = 5.071 at ARL0 = 500.
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6. Summary and Conclusions

Control charts are commonly used to monitor quality characteristics from manufacturing
processes. Shewhart-type control charts are good at detecting the larger shifts in the process
while CUSUM- and EWMA-type control charts are specialized to detect small and moderate
shifts in the process. After the introduction of CUSUM and EWMA charts, many authors
have proposed modifications of these two control charts in order to further enhance their
performance. We have proposed, in this article, a new EWMA-type control chart, called the
MXEWMA control chart, which is based on a regression estimator using the information of
a single auxiliary variable. Note that the proposed MXEWMA chart is equal to the classical
EWMA chart, when the correlation between the study and auxiliary variables is equal to 0.
The performance of the proposed chart is evaluated in terms of ARL for different values of
the correlation between the study variable and the auxiliary variable. A comparison of the
proposed chart with the classical CUSUM, the classical EWMA and some of their univariate
and bivariate modifications is also made. The comparisons showed that the proposed chart
is good at detecting small to moderate shifts in the process location, while its ability to
detect large shifts is not bad either.
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