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A Robust �X Control Chart
Marit Schoonhoven*† and Ronald J. M. M. Does**{
This article studies alternative standard deviation estimators that serve as a basis to determine the �X control chart limits used
for real-time process monitoring (phase II). Several existing (robust) estimation methods are considered. In addition, we
propose a new estimation method based on a phase I analysis, that is, the use of a control chart to identify disturbances
in a data set retrospectively. The method constructs a phase I control chart derived from the trimmed mean of the sample
interquartile ranges, which is used to identify out-of-control data. An efficient estimator, namely the mean of the sample
standard deviations, is used to obtain the final standard deviation estimate from the remaining data. The estimation
methods are evaluated in terms of their mean squared errors and their effects on the performance of the �X phase II control
chart. It is shown that the newly proposed estimation method is efficient under normality and performs substantially better
than standard methods when disturbances are present in phase I. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

T
he �X control chart is a widely applied technique for effectively monitoring the location of processes. When the parameters of a
quality characteristic of the process are unknown, control charts can be applied in a two-stage procedure. In phase I, control
charts are used retrospectively to study a historical data set and determine the samples that are out of control. On the basis

of the resulting reference sample, the process parameters are estimated and control limits are calculated for phase II. In phase II,
control charts are used for real-time process monitoring (cf. Vining1). Recent initiatives on phase II control charts address, amongst
other things, the joint statistical design of the �X and the standard deviation control charts (Mukherjee and Chakraborti2 and Chen
and Pao3), the variable sampling interval �X control chart (Zhang et al.4), the use of different control charting rules (Kim et al.5 and Riaz
et al.6) and the use of alternative estimators (Schoonhoven et al.7 and Schoonhoven and Does8).

Let Yij, i= 1, 2, 3, . . ..and j= 1, 2, . . ., n denote phase II samples of size n taken in sequence of the process variable to be monitored.
We assume the Yij’s to be independent and N(m+ ds, s2) distributed, where d is a constant. When d= 0, the mean of the process is in
control; otherwise the process mean has changed. Let �Yi ¼ 1

n

Pn
j¼1Yij be an estimate of m+ ds based on the ith sample Yij, j= 1, 2, . . ., n.

In practice, the process parameters m and s are usually unknown. Therefore, they must be estimated from samples taken when the
process is assumed to be in control (i.e., phase I). The resulting estimates are used to monitor the location of the process in phase II.
Define m̂ and ŝ as unbiased estimates of m and s, respectively, based on k phase I samples of size n, which are denoted by Xij, i=1,
2, . . ., k. The control limits can be estimated by

ÛCL ¼ m̂ þ Cnŝ=
ffiffiffi
n

p
; L̂CL ¼ m̂ � Cnŝ=

ffiffiffi
n

p
; (1)

where Cn is the factor such that the expected probability of having a false alarm p equals the desired type I error probability. Let Fi
denote the event that �Yi is above ÛCL or below L̂CL. We define P Fi m̂; ŝj Þð as the probability that sample i generates a signal given
m̂ and ŝ, that is,

P Fi m̂; ŝj Þ ¼ P m̂ i < L̂CL or m̂ i > ÛCL m̂; ŝj Þ:��
(2)

Given m̂ and ŝ, the distribution of the run length (RL) is geometric with parameter P Fi m̂; ŝj Þð . Consequently, the conditional average
run length (ARL) is given by

EðRL m̂; ŝj Þ ¼ 1

P Fi m̂; ŝj Þ:ð (3)
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In contrast with the conditional RL distribution, the unconditional RL distribution takes into account the random variability intro-
duced into the charting procedure through parameter estimation. It can be obtained by averaging the conditional RL distribution
over all possible values of the parameter estimates. The unconditional p is

p ¼ E P Fi m̂; ŝj Þð Þ;ð (4)

and the unconditional ARL is

ARL ¼ Eð 1

P Fijm̂; ŝð ÞÞ: (5)

Quesenberry9 showed for the �X control chart that the unconditional ARL is higher than in the case where the process parameters are
known. He concluded that, if limits are to behave like known limits, the number of samples in phase I should be at least 400/(n� 1).

Jensen et al.10 conducted a literature survey of the effects of parameter estimation on control chart properties and identified some
issues for future research. One of their main recommendations is to study robust estimators for m and s, because most studies have
only considered standard estimators. The effect of using these robust estimators on phase II should also be assessed (Jensen et al.,10

p. 360). Schoonhoven et al.11 analyzed several robust location estimation methods, including several methods that use a phase I
control chart. In addition, they proposed a new phase I control chart derived from the trimean. Their results indicate that the �X phase
II control chart (with s known) based on the new estimation method performs well under normality and outperforms the other charts
when contaminations are present in phase I. However, the effect of the process location method on the performance of the �X phase II
control chart is more limited than the effect of the standard deviation estimator. The present article therefore looks at the effect of
alternative standard deviation estimators under various phase I scenarios.

So far the literature has proposed several robust standard deviation estimators. Rocke12 considered the interquartile range and the
25% trimmed mean of the interquartile ranges. Rocke13 gave the practical details for the construction of the charts based on these
estimators. Tatum14 proposed a method, constructed around a variant of the biweight A estimator, that is resistant to diffuse
disturbances, that are, disturbances that are equally likely to perturb any observation, and localized disturbances, that is, disturbances
that affect all observations in a sample. Schoonhoven et al.15 studied several estimators used to construct the standard deviation
phase II control chart. They found that Tatum’s estimator is robust against diffuse disturbances but less robust against shifts in the
process standard deviation in phase I. They proposed an estimator based on the mean deviation to the median supplemented with
sample screening in phase I. The advantage of this estimator is that it works well when localized variance disturbances are present but
it is less robust when there are asymmetric diffuse disturbances. Finally, Schoonhoven and Does16 proposed a standard deviation
estimation method where the control chart based on the mean deviation to the median is supplemented with screening using an
individual control chart in phase I. They investigated the effect of the estimation method on the standard deviation control chart.

In this article, we develop an estimation method to derive the standard deviation for the �X control chart when both m and s are
unknown. Apart from the new method, several alternative estimation methods are included in the comparison. The methods are
evaluated in terms of their mean squared errors (MSE) and their effect on the �X phase II control chart performance. We consider the
situation where the phase I data are uncontaminated and normally distributed, as well as various types of contaminated phase I situations.

The paper is structured as follows. Subsequently, we present the estimation methods for the standard deviation and assess the
MSE of the estimators. In the following sections, we present the design schemes for the �X phase II control chart and derive the control
limits. Next, we describe the simulation procedure and present the effect of the proposed methods on the phase II performance. The
final section offers some recommendations and issues for future research.
2. Proposed phase I estimators

To understand the behavior of the estimators, it is useful to distinguish two groups of disturbances, namely diffuse and localized
(cf. Tatum14). Diffuse disturbances are outliers that are spread over all of the samples, whereas localized disturbances affect all
observations in one sample. We analyze various types of standard deviation estimators and compare them under various types
of disturbances. The first and second subsections introduce the standard deviation and location estimators, respectively, whereas
the second subsection presents the MSE of the standard deviation estimators.

2.1. Standard deviation estimators

Recall that Xij, i=1, 2, . . ., k and j=1, 2, . . ., n denote the phase I data. The Xij’s are assumed to be independent and N(m, s2) distributed.
We denote by Xi,(v), v=1, 2, . . ., n the vth order statistic in sample i. We look at several robust estimators proposed in the existing
literature and introduce a new method incorporating a phase I control chart.

The first estimator of s is based on the mean of the sample standard deviations

�S ¼ 1

k

Xk
i¼1

Si (6)

where Si is the ith sample standard deviation defined by
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 951–970
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Si ¼ 1

n� 1

Xn
j¼1

Xij � �Xi

� �2 !1=2

:

An unbiased estimator of s is given by �S=c4 nð Þ, where c4(n) is defined by

c4 nð Þ ¼ 2

n� 1

� �1=2 Γ n=2ð Þ
Γ n� 1ð Þ=2ð Þ :

Note that this estimator is slightly less efficient under normality than the pooled sample standard deviation. The latter, however, is
most sensitive to contaminations (Schoonhoven et al.15).

The second estimator is based on the mean sample range

�R ¼ 1

k

Xk
i¼1

Ri; (7)

where Ri is the range of the ith sample

Ri ¼ Xi; nð Þ � Xi; 1ð Þ:

An unbiased estimator of s is �R=d2 nð Þ, where d2(n) is the expected range of a random N (0,1) sample of size n. Values of d2(n) can be
found in Duncan17 (Table M).

Rocke12 proposed the mean of the sample interquartile ranges

IQR�¼ 1

k

Xk
i¼1

IQRi; (8)

where IQRi is the interquartile range of sample i defined by

IQRi ¼ Qi;3 � Qi;1;

with Qi,q the qth quartile of sample i (with q= 1, 2, 3). We use the following definitions for the quartiles: Qi,1 = Xi,(a) and Qi,3 = Xi,(b) with
a= dn/4e and b= n� a+1, where dze denotes the ceiling function, that is, the smallest integer not less than z. This means that Qi,1 and
Qi,3 are defined as the second smallest and the second largest observations, respectively, for 4 ≤ n≤ 7 and as the third smallest and the
third largest values, respectively, for 8 ≤ n≤ 11. An unbiased estimator of s is given by

―
IQR=dIQR, where dIQR is a normalizing constant.

The value of this normalizing constant is 0.990 for n= 5 and 1.144 for n= 9.
Rocke12 also proposed the trimmed mean of the sample interquartile ranges

―
IQRa ¼ 1

k � 2 kad e �
Xk� kad e

v¼ kad eþ1

IQR vð Þ

2
4

3
5; (9)

where IQR(v) denotes the vth ordered value of the sample interquartile ranges. We consider the 20% trimmed mean of the sample
interquartile ranges, which trims the 10 smallest and the 10 largest sample interquartile ranges when k=50 and the 20 smallest
and the 20 largest sample interquartile ranges when k= 100. An unbiased estimator of s is given by

―
IQR20=dI�QR20 , where dI�QR20 is a

normalizing constant. The value of this normalizing constant is 0.925 for n=5 and 1.108 for n= 9.
We also evaluate a robust estimator proposed by Tatum.14 His method has proven to be robust to both diffuse and localized

disturbances. The estimation method is constructed around a variant of the biweight A estimator. The method begins by calculating
the residuals in each sample, which involves substracting the sample median Mi from each value: resij= Xij�Mi. If n is odd, then in
each sample, one of the residuals will be zero and is dropped. As a result, the total number of residuals is equal to m0 = nk when n
is even and m0 = (n� 1)k when n is odd. Tatum’s estimator is given by

S�c ¼
m

0

m0 � 1ð Þ1=2

Pk
i¼1

P
j: uijj j<1 res

2
ij 1� u2ij

� �4� �1=2

Pk
i¼1

P
j: uijj j<1 1� u2ij

� �
1� 5u2ij

� �				
				
; (10)

where uij= hiresij/(cM
*), M* is the median of the absolute values of all residuals,

hi ¼
1 Ei ≤ 4:5;
Ei � 3:5 4:5 < Ei ≤ 7:5;
c Ei > 7:5;

8<
:

and Ei= IQRi/M
*. The constant c is a tuning constant. Each value of c leads to a different estimator. Tatum showed that c=7 gives an

estimator that loses some efficiency when no disturbances are present but gains efficiency when disturbances are present. We apply
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 951–970
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this value of c in our study. Note that we have hi= Ei� 3.5 for 4.5< Ei ≤ 7.5 in the equations instead of hi= Ei� 4.5 as presented by
Tatum (Tatum,14 p.129). An unbiased estimator of s is given by S�c=d

� c; n; kð Þ, where d*(c, n, k) is the normalizing constant. In our study,
we use the corrected normalizing constants given in Schoonhoven et al.15

We now present a new estimation method based on the principle of phase I control charting (cf. Jones-Farmer et al.18). We build a

phase I control chart using a robust estimator for the standard deviation, namely
―
IQR20. A disadvantage of this estimator is that it is not

very efficient under normality. To address this, we use
―
IQR20 to construct the phase I limits with which we screen the estimation data

for disturbances, but then use the efficient estimator �S to obtain a standard deviation estimate from the remaining data. The phase I

standard deviation control chart limits are given by ÛCLI�QR20 ¼ Un
―
IQR20=dI�QR20 and L̂CLI�QR20 ¼ Ln

―
IQR20=dI�QR20 . For simplicity, we derive

Un and Ln from the 0.99865 and 0.00135 quantiles of the distribution of IQR/dIQR. These quantiles are obtained by simulation, and
1,000,000 simulation runs are used. The respective values of Un and Ln are 3.220 and 0.035 for n= 5 and 2.487 and 0.145 for n= 9.
We then plot the IQRi/dIQR’s of the phase I samples on the phase I control chart. Charting the IQR instead of the sample standard
deviation or the sample range ensures that localized variance disturbances are identified and samples that contain only one single
outlier are retained. A standard deviation estimate that is expected to be robust against localized variance disturbances is based
on the mean of the sample interquartile ranges of the samples that fall between the control limits

―
IQR 0 ¼ 1

k 0

X
ieK

IQRi � 1̂ LCL I�QR20
≤ IQRi=dIQR ≤̂UCLI�QR20

IQRið Þ;

with K the set of samples which are not excluded and k0 the number of non-excluded samples. The resulting estimate �IQR0 =dIQR is
unbiased.

Although the remaining phase I samples are expected to be free from localized variance disturbances, they could still contain
diffuse disturbances. To eliminate such disturbances, the next step is to screen the individual observations using a phase I individuals
control chart. To screen the individual observations, we determine the residuals in each sample by subtracting the trimean value from
each observation in the corresponding sample: residij= Xij� TMi with

TMi ¼ Qi;1 þ 2Qi;2 þ Qi;3

� �
=4:

Note that Qi,2 is the median of sample i. Substracting the sample trimeans ensures that the variability is measured within samples
and not between samples. According to Tukey,19 using the trimean instead of the mean or the median gives a more useful assess-

ment of location or centering. The control limits of the individuals chart are given by ÛCLI�QR0 ¼ 3
―
IQR0=dIQR and L̂CLI�QR0 ¼

�3
―
IQR0

=dIQR. The residuals residij that fall above ÛCLI�QR0 or below L̂CLI�QR0 are considered out of control and their corresponding obser-
vations are removed from the phase I data set. The final estimate is the mean of the sample standard deviations Si and is calculated
from the observations deemed to be in control

�S0 ¼ 1

k∧

X
ieK∧

Si Xij � 1̂ LCL
I�QR

0 ≤ residij ≤̂ UCL
I�QR

0


 �� �
Xij
� �

; (11)

with K∧ the set of samples which are not excluded and k∧ the number of non-excluded samples. The normalizing constant is 0.980 for
n= 5 and 0.984 for n= 9. This adaptively trimmed standard deviation is denoted by ATS.

The proposed standard deviation estimators are summarized in Table I.
2.2. Location estimator

The aforementioned standard deviation estimators are used to construct the �X phase II control limits. To ensure a fair comparison, we
use the same location estimator in each case. The location estimation method uses a procedure similar to ATS. This procedure was
proposed by Schoonhoven et al.11 and turned out to perform much better than the standard estimating procedures based on, for
example, the mean, median, trimmed mean and Hodges–Lehmann estimator. The procedure consists of two steps.

In the first step, we determine a location estimate that is robust against both localized and diffuse mean disturbances, namely the
20% trimmed mean of the sample trimeans
Table I. Proposed standard deviation estimators

Estimators Notation

Mean of sample standard deviations �S
Mean of sample ranges �R
Mean of sample interquartile ranges �IQR
20% trimmed mean of sample interquartile ranges �IQR20

Tatum’s estimator D7
�IQR0 control chart with screening ATS

Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 951–970
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―
TMa ¼ 1

k � 2 kad e �
Xk� kad e

v¼ kad eþ1

TM vð Þ

2
4

3
5:

Note that we start with the entire data set. The respective upper and lower control limits for the sample location are given by

ÛCL �TM20
¼―
TM20 þ 3ŝ=

ffiffiffi
n

p
and L̂CL �TM20

¼―
TM20 � 3ŝ=

ffiffiffi
n

p
, where s is estimated by the corresponding standard deviation estimator

from Table I. We then plot the TMi’s of the phase I samples on the control chart. Charting the TMi’s instead of the �Xi ’s ensures that
localized disturbances are identified and samples that contain only one single outlier are retained. A location estimate that is
expected to be robust against localized mean disturbances is the mean of the sample trimeans of the samples that fall between
the control limits

―
TM 0 ¼ 1

k�
X
ieK�

TMi � 1̂ LCL �TM20
≤ TMi ≤̂UCL �TM20

TMið Þ;

with K* the set of samples which are not excluded and k* the number of non-excluded samples.
Although the remaining phase I samples are expected to be free from localized mean disturbances, they could still contain diffuse

disturbances. To eliminate such disturbances, the next step is to screen the individual observations using a phase I individuals control

chart with respective upper and lower control limits given by ÛCL �TM0 ¼―
TM0 þ 3ŝ and L̂CL �TM0 ¼―

TM0 � 3ŝ, where s is estimated by the

corresponding standard deviation estimator from Table I. The observations Xij that fall above ÛCL �TM0 or below L̂CL �TM0 are considered

out of control and removed from the phase I data set. The final estimate is the mean of the sample means and is calculated from the
observations deemed to be in control

��X
0
¼ 1

k00

X
ieK 00

1

n0
i

X
jeN0

i

Xij � 1̂LCL―
TM0 ≤Xij≤̂UCL―TM0

Xij
� �

; (12)

with K00 the samples which are not excluded, k00 the number of non-excluded samples, N
0
i the observations that are not excluded in

sample i and n
0
i the number of non-excluded observations in sample i.
9
5
5

2.3. Efficiency of proposed standard deviation estimators

For comparison purposes, we assess the MSE of the proposed standard deviation estimators as was performed in Tatum.14 The MSE
will be estimated as

MSE ¼ 1

N

XN
i¼1

ŝ i � s
� �2

;

where ŝ i is the value of the unbiased estimate in the ith simulation run and N is the number of simulation runs. We consider the
uncontaminated case, that is, the situation where all Xij are from the N (0,1) distribution as well as four types of disturbances
(cf. Tatum14):

1. A model for diffuse symmetric variance disturbances in which each observation has a 95% probability of being drawn from the
N (0,1) distribution and a 5% probability of being drawn from the N(0, a) distribution, with a=1.5, 2.0, . . ., 5.5, 6.0.

2. A model for diffuse asymmetric variance disturbances in which each observation is drawn from the N(0, 1) distribution and has a
5% probability of having a multiple of a w21 variable added to it, with the multiplier equal to 0.5, 1.0, . . ., 4.5, 5.0.

3. A model for localized variance disturbances in which observations in five (when k=50) or 10 (when k= 100) samples are drawn
from the N(0, a) distribution, with a=1.5, 2.0, . . ., 5.5, 6.0.

4. A model for diffuse mean disturbances in which each observation has a 95% probability of being drawn from the N(0, 1)
distribution and a 5% probability of being drawn from the N(b, 1) distribution, with b=0.5, 1.0, . . ., 9.0, 9.5.

The MSE is obtained for k=50, 100 samples of sizes n= 5, 9. The number of simulation runs N is equal to 50,000.
Figures 1–4 show the MSE of the proposed estimators. The following results can be observed. The standard estimators �S and �R are

not robust against either localized or diffuse disturbances. The �IQR is less efficient under normality when there are no contaminations,
but performs reasonably well when there are diffuse disturbances. The reason why �IQR performs so well in these situations is that it
trims the highest and lowest observations in each sample. However, this estimator remains biased when there are asymmetric diffuse
disturbances because the trimming method does not take the distribution of the contaminations into account. Furthermore, this
estimator is not efficient when there are localized variance disturbances as it trims only the observations within the sample instead
of the sample interquartile ranges.

An estimator that combines within-sample and between-sample trimmings, namely �IQR20, performs reasonably well for all types of
contaminations. However, its efficiency is relatively low under normality. D7 is efficient under normality as well as for contaminated
data but relatively less so when the contamination consists of localized variance disturbances.
Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 951–970
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Figure 1. Mean squared errors of estimators when symmetric diffuse variance disturbances are present: (a) n = 5, k = 50; (b) n = 5, k = 100; (c) n = 9, k = 50;
and (d) n = 9, k = 100
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Figure 2. Mean squared errors of estimators when asymmetric diffuse variance disturbances are present: (a) n = 5, k = 50; (b) n = 5, k= 100; (c) n = 9, k = 50;
and (d) n = 9, k = 100
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Figure 3. Mean squared errors of estimators when localized variance disturbances are present: (a) n= 5, k= 50; (b) n= 5, k= 100; (c) n= 9, k= 50; and (d) n= 9, k= 100
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Figure 4. Mean squared errors of estimators when diffuse mean disturbances are present: (a) n= 5, k= 50; (b) n= 5, k= 100; (c) n= 9, k= 50; and (d) n= 9, k= 100
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The estimator ATS is slightly less efficient under normality than the standard estimators, but much more robust than �IQR and �IQR20.
Moreover, it shows outstanding performance when contaminations are present. We can therefore conclude that this estimator
effectively filters out extreme observations.
3. Derivation of the phase II control limits

We now turn to the effect of the proposed estimators on the performance of the �X phase II control chart. The formulae for the �X
control limits with estimated limits are given by (1). The factor Cn that is used to obtain accurate control limits when the process
parameters are estimated is derived, such that the probability of a false signal equals the chosen type I error probability p. The factors
cannot be obtained easily in analytic form. Therefore, they are obtained by means of simulation. The chosen type I error probability
p is 0.0027. 50,000 simulation runs are used. The resulting factors are presented in Table II.
4. Control chart performance

In this section, we evaluate the effect on �X phase II performance of the proposed standard deviation estimators. We consider the same
phase I situations as those used to assess the MSE with a, b and the multiplier equal to 4 to simulate the contaminated case (cf. the
Section on Efficiency of Proposed Standard Deviation Estimators).

The performance of the phase II control charts is assessed in terms of the unconditional p and ARL as well as the conditional ARL.
The conditional ARL values express the ARL values for the control limits associated with the 2.5% and 95.7% quantiles of simulated
p in the in-control situation. We consider different shifts of size ds in the mean in phase II, namely d equal to 0, 0.25, 0.5 and 1.
The performance characteristics are obtained by simulation. The next section describes the simulation method, followed by the
results for the control charts constructed in the uncontaminated situation and various contaminated situations.

4.1. Simulation procedure

The performance characteristics p and ARL for estimated control limits are determined by averaging the conditional characteristics,
that is, the characteristics for a given set of estimated control limits, over all possible values of the control limits. Recall the definitions

of p Fi m̂; ŝj Þð from (2), E RL m̂; ŝj Þð from (3), p ¼ E p Fi m̂; ŝj Þð Þð from (4) andARL ¼ E 1
pðFi m̂;ŝj Þ
� �

from (5). These expectations will be obtained

by simulation: numerous data sets are generated, and for each dataset, p Fi m̂; ŝj Þð and E RL m̂; ŝj Þð are computed. By averaging these
values we obtain the unconditional values.

Enough replications of the aforementioned procedure were performed to obtain sufficiently small relative estimated standard
errors for p and ARL. The relative estimated standard error is the estimated standard error of the estimate relative to the estimate.
The relative standard error of the estimates is never higher than 0.80%.

4.2. Simulation results

The performance metrics are obtained in the in-control situation (d= 0) as well as in the out-of-control situation (d 6¼ 0). When d=0,
the process is in control, so we want p to be as low as possible and ARL to be as high as possible. When d 6¼ 0, that is, in the
out-of-control situation, we want to achieve the opposite.

Table III shows the performance metrics for the �X phase II charts under normality. In this case, we have estimated both the
in-control m and s in phase I. Compared with the �X phase II performance presented in Schoonhoven et al.,11 where only the mean
was estimated to isolate the effect of estimating the location parameter, the ARL values are much higher than the desired 370. Thus,
Table II. Factors Cn to determine Phase II control limits

Factors for control limits

n= 5 n= 9
Chart

k= 50 k= 100 k= 50 k= 100

�S 3.065 3.030 3.050 3.025
�R 3.070 3.035 3.055 3.025
�IQR 3.125 3.060 3.080 3.040
�IQR20 3.155 3.080 3.090 3.045
D7 3.070 3.035 3.050 3.025
ATS 3.085 3.040 3.055 3.025

Copyright © 2012 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013, 29 951–970
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also estimating the process standard deviation has substantially more impact on the �X phase II control chart than only estimating the
process mean.

The conditional ARL values are presented in parentheses. The first value in parentheses represents the ARL for the control limits
associated with the 97.5% quantile of the simulated p in the in-control situation, whereas the second value represents the ARL for
the control limit associated with the 2.5% quantile of the simulated p in the in-control situation. The results show that the conditional
ARL values vary quite strongly, even when k equals 100.

In the absence of any contamination, the charts based on �S, �R, D7 and ATS show comparable performance. The charts based on �IQR
and �IQR20 are less powerful under normality.

The analysis shows that, when there are disturbances in the phase I data, the performance of all charts changes considerably:
p decreases and the ARL values increase. Thus, when the phase I data are contaminated, shifts in the process mean are less quickly
detected. When symmetric disturbances are present (Table IV), their impact is the smallest for the charts based on �IQR, �IQR20, D7 and
ATS. These charts are also least affected when there are asymmetric disturbances (Table V). Both tables show that the chart based on
ATS outperforms the others.

When there are localized disturbances (Table VI), the charts based on the estimators D7 and ATS perform best, the reason being
that these charts trim extreme samples. Finally, in the case of diffuse mean disturbances (Table VII), the charts based on �IQR20, D7
and ATS perform better than the other charts.

Overall, the ATS chart performs best. Under normality, the chart essentially matches the performance of the standard charts based
on �S and �R and, in the presence of any contamination, the chart outperforms the alternatives.
5. Concluding remarks and future research

In this article, we have considered several estimation methods for the standard deviation parameter. The MSE of the estimators has
been assessed under various circumstances: the uncontaminated situation and various situations contaminated with diffuse
symmetric and asymmetric variance disturbances, localized variance disturbances and diffuse mean disturbances. Moreover, we have
investigated the effect of estimating the standard deviation estimator on the �X phase II control chart performance when the methods
are used to determine the phase II limits.

The standard methods suffer from a number of problems. Estimators that are based on the principle of trimming observations
(e.g., �IQR) perform reasonably well when there are diffuse disturbances but not when there are localized disturbances. In the latter
situation, estimators that include a method to trim sample statistics (e.g., �IQR20) are efficient. All of these methods are biased when
there are asymmetric disturbances, as the trimming principle does not take into account the asymmetry of the disturbance.

A phase I analysis—using a control chart to study a historical dataset retrospectively and trim the data adaptively—does take into
account the distribution of the data and is therefore very suitable for use during the estimation of s. In this article, we have proposed
a new type of phase I analysis. The initial estimate of s for the phase I control chart is given by an estimator that is robust against both
diffuse and localized disturbances, namely �IQR20. We have shown that this estimator is not very efficient under normality. However,
when �IQR20 is only used to construct the phase I control chart limits, and when the standard estimation method�S is used to determine
the final estimate of s after screening, the resulting estimator (ATS) is efficient under normality. Moreover, ATS outperforms the other
estimation methods when there are contaminations. It is therefore a suitable method for determining the value of s in the �X phase II
control chart limits.
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