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ABSTRACT Cumulative sum (CUSUM) control charts are very effective in

detecting special causes. In general, the underlying distribution is supposed

to be normal. In designing a CUSUM chart, it is important to know how the

chart will respond to disturbances of normality. The focus of this article is to

control the location parameter using a CUSUM structure and the major

concern is to identify the CUSUM control charts that are of more practical

value under different normal, non-normal, contaminated normal, and special

cause contaminated parent scenarios. In this study, we propose and compare

the performance of different CUSUM control charts for phase II monitoring of

location, based on mean, median, midrange, Hodges-Lehmann, and trimean

statistics. The average run length is used as the performance measure of the

CUSUM control charts.

KEYWORDS average run length (ARL), contaminated environments, control

charts, CUSUM statistic, fast initial response, normality, process location

INTRODUCTION

Statistical process control is a collection of different techniques that

help differentiate between the common cause and the special cause var-

iations in the response of a quality characteristic of interest in a process.

Out of these techniques, the control chart is the most important one. It is

used to monitor the parameters of a process, such as its location and

spread. Some major classifications of the control charts are variable and

attributes charts, univariate and multivariate charts, and memoryless charts

(Shewhart’s type) and memory charts (like cumulative sum [CUSUM] and

exponentially weighted moving range [EWMA]). The commonly used

Shewhart’s variable control charts are the mean (X), median, and

mid-range charts for monitoring the process location and the range (R),

standard deviation (S), and variance (S2) charts for monitoring the process

variability (cf. Montgomery 2009). The main deficiency of Shewhart-type

control charts is that they are less sensitive to small and moderate shifts

in the process parameter(s).

Another approach to address the detection of small shifts is to use

memory control charts. CUSUM control charts proposed by Page (1954)

and EWMA control charts proposed by Roberts (1959) are two commonly

used memory-type control charts. These charts are designed such that they

use the past information along with the current information, which makes

them very sensitive to small and moderate shifts in the process parameters.
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In order to obtain efficient control limits for phase

II monitoring, it is generally assumed that the process

has a stable behavior when the data are collected

during phase I (cf. Vining 2009; Woodall and

Montgomery 1999). Most of the evaluations of

existing control charts depend on the assumptions

of normality, no contaminations, no outliers, and

no measurement errors in phase I for the quality

characteristic of interest. In case of violation of these

assumptions, the design structures of the charts

lose their performance ability and hence are of less

practical use. There are many practical situations

where non-normality is more common (see, for

example, Janacek and Miekle 1997). One of the

solutions to deal with this is to use control charts

that are robust against violations of the basic

assumptions, like normality.

To date, numerous papers on robust control charts

have been published. Langenberg and Iglewicz

(1986) suggested using the trimmed mean X and R

charts. Rocke (1992) proposed the plotting of X

and R charts with limits determined by the mean of

the subgroup interquartile ranges and showed that

this method resulted in easier detection of outliers

and greater sensitivity to other forms of out-of-

control behavior when outliers are present. Tatum

(1997) suggested an interesting method for robust

estimation of the process standard deviation for con-

trol charts. Moustafa and Mokhtar (1999) proposed a

robust control chart for location that uses the

Hodges-Lehmann and the Shamos-Bickel-Lehmann

estimators as estimates of location and scale para-

meters, respectively. Wu et al. (2002) studied the

median absolute deviations–based estimators and

their application to the X chart. Moustafa (2009)

modified the Shewhart chart by introducing the

median as a robust estimator for location and absol-

ute deviations to median as a robust estimator for

dispersion. Recently, properties and effects of viola-

tions of ideal assumptions (e.g., normality, outliers

free environment, no special causes, etc.) on the

control charts have been studied in detail by Riaz

(2008) and Schoonhoven et al. (2011a, 2011b).

Some authors have also discussed the robustness

of the CUSUM chart to situations where the underly-

ing assumptions are not fulfilled. Lucas and Crosier

(1982) studied the robustness of the standard CUSUM

chart and proposed four methods to reduce the

effect of outliers on the average run length (ARL)

performance. McDonald (1990) proposed the use

of the CUSUM chart that is based on a nonparametric

statistic. He used the idea of ranking the observations

first and then using those ranks in the CUSUM struc-

ture. Hawkins (1993) proposed a robust CUSUM

chart for individual observations based on Winsori-

zation. MacEachern et al. (2007) proposed a robust

CUSUM chart based on the likelihood of the variate

and named their newly proposed chart the RLCU-

SUM chart. Li et al. (2010) proposed a nonparametric

CUSUM chart based on the Wilcoxon rank-sum test.

Reynolds and Stoumbos (2010) considered the

robustness of the CUSUM chart for monitoring the

process location and dispersion simultaneously. Midi

and Shabbak (2011) studied the robust CUSUM con-

trol charting for the multivariate case. Lee (2011) pro-

posed the economic design of the CUSUM chart for

non-normally serially correlated data. S. F. Yang

and Cheng (2011) proposed a new nonparametric

CUSUM chart that is based on the sign test. They

studied the ARL performance of the proposed chart

for monitoring different location parameters. Simi-

larly, much work has been done in the direction of

robust EWMA control charting; for example, see

Amin and Searcy (1991), S. F. Yang et al. (2011),

and Graham et al. (2012).

Most of the CUSUM control charting techniques

discussed above are based on first transforming the

observed data into a nonparametric statistic and then

applying the CUSUM chart on that transformed stat-

istic. Unlike these approaches, L. Yang et al. (2010)

proposed the use of a robust location estimator

(i.e., the sample median) with the CUSUM control

structure. Extending their approach, in this article

we present a robust CUSUM chart that is based on

five different estimators for monitoring the process

location of phase II samples. The performance of

the CUSUM chart with different robust estimators is

studied in the presence of disturbances to normality,

contaminations, outliers, and special causes in the

process of interest. Before moving on toward the

robust estimators, we provide the basic structure of

the CUSUM chart in the next section.

THE CLASSICAL MEAN CUSUM

CONTROL CHART

The mean CUSUM control chart proposed by Page

(1954) has become one of the most popular methods

H. Z. Nazir et al. 212
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to monitor processes. For a two-sided CUSUM chart,

we plot the two statistics Cþ
i and C�

i against a single

control limit H. These two plotting statistics are

defined as:

Cþ
i ¼ max 0; Xi � l0ð Þ � K þ Cþ

i�1½ �
C�
i ¼ max 0;� Xi � l0ð Þ � K þ C�

i�1

� ��; ½1�

where i is the subgroup number, Xi is the mean of

study variable X, l0 is the target mean of the study

variable X, and K is the reference value of the

CUSUM scheme (cf. Montgomery 2009). The starting

value for both plotting statistics is usually taken

equal to zero; that is, Cþ
0 ¼ C�

0 ¼ 0. Next, we plot

these two statistics together with the control limit

H. It is concluded that the process mean has moved

upward if Cþ
i > H for any value of i, whereas the

process mean is said to be shifted downwards if

C�
i > H for any value of i. Thus, the CUSUM chart

is defined by two parameters—that is K and H—that

have to be chosen carefully, because the statistical

properties of the CUSUM chart are sensitive to these

parameters. These two parameters are used in the

standardized manner (cf. Montgomery 2009) and

are given as:

K ¼ krX ; H ¼ hrX ; ½2�

where rX ¼ rXffiffiffi
n

p , rX is the standard deviation of the

study variable X and n is the sample size. The

CUSUM statistic in [1] is given for the mean of

samples.

DESCRIPTION OF THE PROPOSED
ESTIMATORS AND THEIR

CORRESPONDING CUSUM CHARTS

Let h be the population location parameter that

will be monitored through control charting and ĥh
be its estimator based on a subgroup of size n. There

are many choices for ĥh out of which we consider

here the following: mean, median, mid-range,

Hodges-Lehmann estimator, and trimean.

Based on a random sample X1, X2, . . . , Xn of size

n, these estimators are defined as follows:

. Mean: This estimator is included in the study to

provide a basis for comparison, because it is the

most efficient estimator for normally distributed

data. The sample mean X is defined as

X ¼
Pn

j¼1
Xj

n , is a linear function of data, and is

widely used to estimate the population location

parameter. According to Rousseeuw (1991), the

sample mean X performs well under the normality

assumption but it is highly affected due to

non-normality, is sensitive to outliers, and has zero

breakdown point, which means that even a single

inconsistent observation can change its value.

. Median: The sample median ~XX is defined as the

middle-order statistic for odd sample sizes and

the average of the two middle-order statistics in

case of even sample sizes. The median is a robust

estimator, so it is less affected by non-normality.

Dixon and Massey (1969) showed that the

efficiency of the median with respect to the mean

decreases with an increase in sample size and the

efficiency approaches 0.637 for large sample sizes.

. Mid-range: The mid-range is defined as

MR ¼ Xð1ÞþXðnÞ
2 , where X(1) and X(n) are the lowest

and highest order statistics in a random sample

of size n. It is highly sensitive to outliers because

its design structure is based on only extreme

values of data and therefore it has a zero break-

down point. Although its use is not very common

due to its low efficiency for mesokurtic distribu-

tions, its design structure has the ability to perform

good in the case of small samples from platykurtic

distributions. Ferrell (1953) presented a compari-

son of both the efficiency of estimation and

the detection of disturbances by medians and

midranges. He indicated an advantage of these less

conventional measures in detecting outliers while

not losing much efficiency in detecting a change

in the central value.

. Hodges-Lehmann estimator: This estimator

is defined as the median of the pairwise Walsh

averages; that is, HL¼median((XjþXk)=2, 1� j�
k�n). The main advantage of the HL estimator is

that it is robust against outliers in a sample. It

has a breakdown point of 0.29 (i.e., 29% is the

least portion of data contamination needed to

derive the estimate beyond all bounds; cf.

Hettmansperger and McKean 1998). If the underlying

distribution for the data is normal, then the asymp-

totic relative efficiency (ARE) of the HL estimator

relative to the sample mean is 0.955; otherwise, it is

often greater than unity (cf. Lehmann 1983).
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. Trimean: The TriMean (TM) of a sample is the

weighted average of the sample median and two

quartiles: TM ¼ Q1þ2Q2þQ3

4 (cf. Tukey 1977; Wang

et al. 2007). It also equals the average of the

median and the mid-hinge: TM ¼ 1
2 Q2 þ Q1þQ3

2

� �
,

where Qp is the pth quartile of the sample (cf.

Weisberg 1992). Like the median and the

mid-hinge, but unlike the sample mean, TM is

a statistically resistant L-estimator (a linear combi-

nation of order statistics) having a breakdown

point of 25%. According to Tukey (1977), using

TM instead of the median gives a more useful

assessment of the location parameter. According

to Weisberg (1992), the ‘‘statistical resistance’’

benefit of TM as a measure of the center (of a dis-

tribution) is that it combines the median’s empha-

sis on center values with the mid-hinge’s attention

to the extremes. If the underlying distribution for

the data is normal, then the ARE of the TM relative

to the sample mean is 0.83 (cf. Wang et al. 2007).

The performance of these five estimators for

phase I analysis could be seen in Schoonhoven

et al. (2011a). In the current article, we study the

performance of these estimators with the CUSUM

structure for the phase II analysis. Following [1],

the bhh-CUSUM control chart statistics Sþi and S�i can

be represented as:

Sþi ¼ max 0; bhhi � m0
� �

� Kbhh þ Cþ
i�1

h i
S�i ¼ max 0;� bhhi � m0

� �
� Kbhh þ C�

i�1

h i
9=
; ½3�

In [3], ĥh may be any choice of the estimators men-

tioned above. Initial values for the statistics given

in [3] are taken equal to zero; that is, Sþ0 ¼ S�0 ¼ 0.

The decision rule for the proposed chart(s), follow-

ing the spirit of [2], is given in the form of Kĥh and Hĥh
defined as:

Kĥh ¼ kĥhrbhh; Hĥh ¼ hĥhrbhh ½4�

PERFORMANCE OF THE PROPOSED

CUSUM CONTROL CHARTS

The performance of the proposed CUSUM control

charting design structures given in [3] and [4] is eval-

uated in this section. The performance is measured

in terms of their ARLs, which is the expected number

of subgroups before a shift is detected. The in-

control ARL is denoted by ARL0 and an out-of-

control ARL is denoted by ARL1.

A code developed in R language is used to

simulate ARL. For the said purpose, first we have

simulated the standard errors for all estimators; that

is, 5� 105 samples of size n are generated and for

each sample the value of estimator is determined.

The standard deviation of those 5� 105 values of

estimator is represented by rbhh. Then the phase II

samples of size n from different environment

(explained later in this section) are generated under

an in-control situation and the proposed charts are

applied on those samples until an out-of-control

signal is detected. The respective sample number

(when the shift is detected by the chart) is noted,

which is the in-control run length. This process is

repeated 10,000 times so that we can average out

these run lengths to get the ARL0. Finally, a shift in

the form of d is introduced in the process to evaluate

the ARL1 performance of the proposed charts, where

d is the difference between l0 and l1, and l1 is the

shifted mean. We have chosen to have ARL0ffi 370.

Uncontaminated Normal
Environment

An uncontaminated normal distribution means

that all observations come from N l0; r
2
0

� �
. The ARLs

of the CUSUM charts using different estimators

under the uncontaminated environment are given

in Tables 1 and 2.

Tables 1 and 2 indicate that all estimators have

almost the same in-control ARL; that is, ARL0ffi 370.

For the out-of-control case, the ARLs of the CUSUM

based on the mean are clearly smaller compared to

the other estimators. Here the performance of the

HL estimator is comparable to the mean estimator

because the ARL performance of both is almost the

same, whereas the other estimators have larger

ARL1 values. Moreover, the effect of change in

subgroup size and kĥh is identical for all estimators.

To further describe the run length distribution, we

also report the standard deviations of the run length

(SDRL) and some percentile points of the run length

distribution in Tables 3 and 4, respectively.

Considering the results of Tables 3 and 4, we

observe that the run length distribution of all of

H. Z. Nazir et al. 214

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
6:

41
 0

6 
Ju

ne
 2

01
3 



the proposed CUSUM charts is positively skewed as

long as there is some variation in the run lengths.

By decreasing the value of kĥh from 0.5 to 0.25,

the standard deviation of all of the proposed charts

also decreases for small values of d. The percentiles

can also be used to compare the median run length

(MRL) for CUSUM charts with different estimators.

Lucas and Crosier (1982) proposed the use of a

fast initial response (FIR) feature with the CUSUM

charts in which they recommended not to set the

initial values of CUSUM statistics equal to zero. They

found that the choice of a head start S0 ¼ Hĥh=2 is

optimal in the sense that its effect on the ARL0 is very

minor but it significantly decreases the ARL1 values.

The intention of FIR was to enhance the CUSUM

chart sensitivity in detecting the shifts that occur

immediately after the start of the process. As an

example, we provide the ARL values of FIR CUSUM

based on different estimators for n¼ 10, kĥh ¼ 0:5,

and S0 ¼ Hĥh=2 at ARL0ffi 370. The results are given

in Table 5, where the uncontaminated normal distri-

bution is taken as the parent environment.

It is gratifying to note that the FIR feature indeed

enhances the performance of the proposed CUSUM

charts. In the upcoming sections we will not give

the additional tables for the SDRL, percentile points

of the run length, and the FIR features, although they

can be easily obtained along the same lines.

Variance-Contaminated Normal
Environment

A (u) 100% variance-contaminated normal distri-

bution is one that contains (1�u) 100% observa-

tions from N l0;r
2
0

� �
and (u) 100% observations

from N l0; sr
2
0

� �
, where 0< s<1. The ARL values

of the CUSUM charts using different estimators for

the variance-contaminated normal environment are

TABLE 2 ARL Values for the CUSUM Chart Based on Different Estimators under Uncontaminated Normal Distribution with

kĥh ¼ 0:5 and hĥh ¼ 4:774

Subgroup size Estimator

d

0 0.25 0.5 0.75 1 1.5 2

n¼ 5 Mean 370.469 28.338 8.304 4.788 3.383 2.242 1.803

Median 374.278 41.831 11.267 6.073 4.205 2.665 2.065

Mid-range 370.110 37.528 10.265 5.712 3.974 2.534 1.986

HL 367.095 29.990 8.790 4.999 3.521 2.306 1.851

TM 368.020 32.519 9.363 5.247 3.699 2.392 1.908

n¼ 10 Mean 367.292 14.845 5.156 3.177 2.364 1.708 1.148

Median 367.663 19.538 6.390 3.837 2.774 1.946 1.468

Mid-range 368.529 26.582 7.919 4.568 3.275 2.175 1.756

HL 373.781 15.607 5.393 3.277 2.438 1.753 1.194

TM 370.949 16.720 5.640 3.421 2.528 1.816 1.261

TABLE 1 ARL Values for the CUSUM Chart Based on Different Estimators under Uncontaminated Normal Distribution with

kĥh ¼ 0:25 and hĥh ¼ 8:03

Subgroup size Estimator

d

0 0.25 0.5 0.75 1 1.5 2

n¼ 5 Mean 370.096 24.592 10.006 6.353 4.645 3.151 2.395

Median 372.498 31.594 12.377 7.702 5.600 3.734 2.850

Mid-range 370.754 29.815 11.677 7.309 5.352 3.545 2.729

HL 373.121 25.834 10.438 6.545 4.806 3.245 2.476

TM 373.932 27.589 10.918 6.900 5.066 3.393 2.599

n¼ 10 Mean 372.356 15.352 6.722 4.391 3.322 2.251 1.976

Median 372.746 18.954 8.053 5.194 3.877 2.653 2.057

Mid-range 373.508 23.407 9.578 6.043 4.503 3.039 2.292

HL 370.992 15.988 6.963 4.539 3.420 2.315 1.990

TM 375.278 16.773 7.284 4.707 3.526 2.411 2.001
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given in Table 6 with /¼ 0.05 and s¼ 9 and in

Table 7 with /¼ 0.1 and s¼ 9.

In Tables 6 and 7, the ARL0 for the TM and HL

CUSUM charts are affected least by the contami-

nation, whereas the mid-range estimator is affected

the most by this variance contamination. Similarly,

in terms of ARL1 values, TM and HL outperform all

of the other estimators under discussion.

Location-Contaminated Normal
Environment

A (u) 100% location-contaminated normal distri-

bution is the one that contains (1�u) 100% observa-

tions from N l0;r
2
0

� �
and (u) 100% observations from

N l0 þ xr0; r20
� �

, where �1<x<1. The ARL

values of the CUSUM chart using different estimators

for a location-contaminated normal environment are

given in Table 8 with /¼ 0.05 and x¼ 4.

Table 8 shows that none of the estimators is able

to adequately detect the location contamination in

the process when n¼ 5, because the ARL0 for all

the estimators is substantially lower than that for

the uncontaminated environment. Increasing the

subgroup size may be a better option because the

mid-range and median CUSUM charts have a reason-

able ARL0 for n¼ 10 but the ARL1 performance of the

mid-range CUSUM chart is way too poor compared

to the median CUSUM.

Special Cause Environment

Asymmetric variance disturbances are created in

which each observation is drawn from N(0,1) and

has a u probability of having a multiple of a v2ð1Þ vari-
able added to it, with a multiplier equal to 4. ARLs of

the CUSUM chart under this environment with

/¼ 0.01 and /¼ 0.05 are given in Tables 9 and 10,

respectively.

TABLE 4 Percentile Run Length Values for the CUSUM Chart

Based on Different Estimators under Uncontaminated Normal Dis-

tribution with n¼10, kĥh ¼ 0:5, and hĥh ¼ 4:774 at ARL0ffi370

Estimator Percentile

d

0 0.25 0.5 0.75 1 1.5 2

Mean P10 44 6 3 2 2 1 1

P25 111 8 4 3 2 1 1

P50 255 12 5 3 2 2 1

P75 504 19 6 4 3 2 1

P90 833.1 27 8 4 3 2 2

Median P10 45 7 3 2 2 1 1

P25 112 10 4 3 2 2 1

P50 256 16 6 4 3 2 1

P75 501 25 8 5 3 2 2

P90 843 37 10 5 4 2 2

Mid-range P10 46 8 4 3 2 2 1

P25 113 12 5 3 3 2 1

P50 255 21 7 4 3 2 2

P75 504 35 10 5 4 2 2

P90 828 53 13 7 4 3 2

HL P10 44 6 3 2 2 1 1

P25 111 9 4 3 2 1 1

P50 260 13 5 3 2 2 1

P75 518 20 7 4 3 2 1

P90 847.1 29 8 5 3 2 2

TM P10 44 6 3 2 2 1 1

P25 109 9 4 3 2 2 1

P50 258 14 5 3 2 2 1

P75 517 21 7 4 3 2 2

P90 846.1 31 9 5 3 2 2

TABLE 3 SDRL Values for the CUSUM Chart Based on Different Estimators under Uncontaminated Normal Distribution

with n¼10 at ARL0ffi370

Chart parameters Estimator

d

0 0.25 0.5 0.75 1 1.5 2

kĥh ¼ 0:25

hĥh ¼ 8:03

Mean 360.523 6.590 1.902 0.994 0.641 0.437 0.164

Median 356.984 9.085 2.477 1.264 0.824 0.533 0.241

Mid-range 360.781 12.457 3.195 1.611 1.021 0.564 0.459

HL 350.709 6.980 1.991 1.032 0.669 0.469 0.142

TM 356.536 7.674 2.143 1.099 0.706 0.501 0.130

kĥh ¼ 0:5

hĥh ¼ 4:774

Mean 367.992 9.498 1.963 0.939 0.577 0.465 0.355

Median 363.205 13.603 2.766 1.245 0.764 0.403 0.499

Mid-range 361.144 20.159 3.764 1.623 0.975 0.479 0.446

HL 367.477 10.194 2.141 0.988 0.626 0.450 0.395

TM 365.022 11.056 2.278 1.043 0.647 0.421 0.439
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In the presence of special causes, the median

CUSUM seems more robust, whereas the mid-range

CUSUM is affected the most. TM and HL CUSUM

have good detection ability with a reasonable ARL0.

TM and HL estimators are affected positively by the

increase in subgroup size; that is, their ARL0 increase

as we increase the value of n and vice versa.

Non-normal Environments

To investigate the effect of using non-normal distri-

butions, we consider two cases: one by changing the

kurtosis and the other by changing the symmetry of

the distribution. For the case of disturbing the kurtosis,

we use Student’s t distribution with 4 degrees of free-

dom (T4) and the logistic distribution (Logis(0,1)), and

for the disturbance in symmetry we use the chi-square

distribution with 5 degrees of freedom v2ð5Þ

� �
.

Tables 11–13 contain the ARL values for the proposed

CUSUM charts under T4, Logis(0,1), and v2ð5Þ, respect-

ively, where the ARL0 is kept fixed at 370.

For the case of Student’s t distribution, TM CUSUM

performs the best among all of the other estimators

followed by the HL CUSUM. Median CUSUM has also

reasonable performance compared to the others, but

the mid-range CUSUM seems to have worst perfor-

mance for the said case (cf. Table 11). For the logistic

distribution, the HL and TM CUSUM outperform the

median and mid-range CUSUM charts, whereas the

mean CUSUM reasonably maintains its performance

(cf. Table 12). Similarly, TM and mean CUSUM charts

show very good performance in case of chi-square

distribution. HL also performs well, whereas the

mid-range CUSUM has the worst performance (cf.

Table 13).

We provide the ARL curves of the CUSUM charts

with different estimators under different environ-

ments discussed above. Figures 1–5 contain the

ARL curves of the CUSUM charts based on different

estimators with n¼ 10, kĥh ¼ 0:5, and hĥh ¼ 4:774.

From Figures 1–5 we see that the ARLs of the

mid-range CUSUM are affected the most in case of

some non-normal, contaminated, and special cause

environments. The mean CUSUM is also poorly

influenced under special cause environments. The

ARL0 values of the median, TM, and HL CUSUM

TABLE 6 ARL Values for the CUSUM Chart Based on Different Estimators under 5% Variance-Contaminated Normal Dis-

tribution with k
ĥh
¼ 0:5 and h

ĥh
¼ 4:774

Subgroup size Estimator

d

0 0.25 0.5 0.75 1 1.5 2

n¼ 5 Mean 303.375 40.319 10.911 5.900 4.129 2.630 2.037

Median 353.227 44.057 11.895 6.454 4.424 2.789 2.125

Mid-range 198.394 77.199 20.560 9.772 6.300 3.746 2.733

HL 342.091 35.703 10.112 5.604 3.918 2.511 1.975

TM 354.750 36.583 10.288 5.700 3.955 2.527 1.988

n¼ 10 Mean 330.826 20.222 6.475 3.844 2.803 1.959 1.474

Median 366.873 21.549 6.797 4.009 2.891 1.995 1.545

Mid-range 197.230 83.124 22.377 10.551 6.622 3.920 2.866

HL 359.458 17.524 5.845 3.552 2.601 1.864 1.332

TM 361.461 18.050 6.040 3.606 2.652 1.886 1.350

TABLE 5 ARL Values for the FIR CUSUM Chart Based on Different Estimators under Uncontaminated Normal Distribution

with n¼ 10, kĥh ¼ 0:5, and S0 ¼ Hĥh=2 at ARL0ffi370

Estimator hĥh

d

0 0.25 0.5 0.75 1 1.5 2

Mean 4.86 371.772 9.920 3.088 1.919 1.436 1.031 1.000

Median 4.87 371.999 14.114 3.886 2.297 1.694 1.134 1.007

Mid-range 4.9 370.930 19.588 4.853 2.699 1.969 1.295 1.043

HL 4.86 369.097 10.216 3.182 1.979 1.479 1.045 1.001

TM 4.86 372.281 11.417 3.364 2.069 1.523 1.068 1.002
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seem less affected by the change of the parent

normal environment.

For a graphical comparison of the proposed charts

with non-normal environments, the ARL curves of all

the charts under T4, Logis(0,1), and v2ð5Þ distributions
are given in Figures 6, 7, and 8, respectively, with

kĥh ¼ 0:5 and ARL0 fixed at 370. These figures clearly

indicate that, in general, TM and HL CUSUM are

TABLE 7 ARL Values for the CUSUM Chart Based on Different Estimators under 10% Variance-Contaminated Normal

Distribution with kĥh ¼ 0:5 and hĥh ¼ 4:774

Subgroup size Estimator

d

0 0.25 0.5 0.75 1 1.5 2

n¼ 5 Mean 296.883 51.619 13.442 7.054 4.816 2.984 2.226

Median 340.203 49.462 12.875 6.927 4.704 2.924 2.222

Mid-range 222.020 99.674 29.238 13.460 8.273 4.683 3.340

HL 306.853 42.497 11.465 6.248 4.288 2.723 2.077

TM 335.199 41.117 11.131 6.152 4.195 2.688 2.067

n¼ 10 Mean 329.818 25.775 7.771 4.482 3.196 2.141 1.727

Median 356.416 22.899 7.161 4.213 3.026 2.057 1.624

Mid-range 242.112 113.064 34.908 15.300 9.298 5.152 3.642

HL 342.307 20.108 6.486 3.853 2.785 1.961 1.475

TM 361.443 20.064 6.473 3.807 2.774 1.950 1.464

TABLE 8 ARL Values for the CUSUM Chart Based on Different Estimators under 5% Location-Contaminated Normal

Distribution with kĥh ¼ 0:5 and hĥh ¼ 4:774

Subgroup size Estimator

d

0 0.25 0.5 0.75 1 1.5 2

n¼ 5 Mean 317.549 48.560 13.543 7.138 4.801 2.973 2.222

Median 301.845 49.447 13.245 6.928 4.682 2.933 2.210

Mid-range 315.737 78.997 25.153 12.361 7.818 4.429 3.124

HL 285.025 45.634 12.369 6.565 4.485 2.806 2.124

TM 297.391 43.218 11.775 6.330 4.372 2.742 2.085

n¼ 10 Mean 344.932 24.938 7.639 4.450 3.155 2.106 1.710

Median 357.296 22.676 7.076 4.160 2.979 2.038 1.601

Mid-range 391.235 78.931 24.038 11.693 7.523 4.367 3.097

HL 303.981 21.554 6.811 3.978 2.879 1.986 1.543

TM 329.528 20.369 6.464 3.869 2.793 1.957 1.489

TABLE 9 ARL Values for the CUSUM Chart Based on Different Estimators under Special Cause Normal Distribution with

u¼ 0.01, kĥh ¼ 0:5, and hĥh ¼ 4:774

Subgroup size Estimator

d

0 0.25 0.5 0.75 1 1.5 2

n¼ 5 Mean 221.158 52.954 12.241 6.338 4.295 2.699 2.065

Median 365.619 41.318 11.252 6.094 4.230 2.671 2.052

Mid-range 168.113 132.188 48.782 15.514 8.731 4.740 3.301

HL 356.893 31.754 9.094 5.156 3.607 2.359 1.888

TM 364.754 33.872 9.704 5.368 3.762 2.418 1.921

n¼ 10 Mean 211.164 23.559 6.853 3.989 2.861 1.987 1.552

Median 360.264 19.982 6.552 3.834 2.798 1.956 1.477

Mid-range 124.994 104.625 75.651 27.395 12.790 6.089 4.115

HL 367.158 15.936 5.460 3.345 2.465 1.784 1.215

TM 375.058 16.858 5.690 3.464 2.546 1.834 1.281
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TABLE 10 ARL Values for the CUSUM Chart Based on Different Estimators under Special Cause Normal Distribution with

u¼0.05, kĥh ¼ 0:5, and hĥh ¼ 4:774

Subgroup size Estimator

d

0 0.25 0.5 0.75 1 1.5 2

n¼ 5 Mean 132.301 80.360 32.039 13.488 7.879 4.404 3.095

Median 354.591 45.811 12.137 6.518 4.436 2.803 2.130

Mid-range 104.606 90.670 76.205 58.787 38.613 14.055 7.940

HL 292.820 45.662 11.647 6.180 4.230 2.680 2.056

TM 322.227 38.766 10.660 5.794 4.076 2.573 2.008

n¼ 10 Mean 148.795 52.119 14.593 7.137 4.698 2.896 2.118

Median 368.855 21.345 6.730 3.980 2.866 1.994 1.534

Mid-range 105.884 91.084 75.093 62.220 48.336 24.478 12.724

HL 345.449 18.332 6.031 3.625 2.645 1.878 1.357

TM 355.257 18.601 6.020 3.639 2.656 1.889 1.366

TABLE 11 ARL Values for the CUSUM Chart Based on Different Estimators under T4 Distribution with n¼10 and

kĥh ¼ 0:5 at ARL0ffi370

Estimator hĥh

d

0 0.25 0.5 0.75 1 1.5 2

Mean 4.99 371.243 30.619 8.690 4.933 3.511 2.309 1.877

Median 4.83 371.753 24.568 7.443 4.366 3.123 2.110 1.682

Mid-range 5.80 369.540 205.442 53.968 20.771 12.092 6.505 4.501

HL 4.846 371.437 22.654 7.019 4.138 2.986 2.043 1.607

TM 4.84 370.038 22.075 6.877 4.055 2.932 2.024 1.581

TABLE 12 ARL Values for the CUSUM Chart Based on Different Estimators under Standard Logistic Distribution

with n¼ 10 and kĥh ¼ 0:5 at ARL0ffi 370

Estimator hĥh

d

0 0.25 0.5 0.75 1 1.5 2

Mean 4.790 371.335 47.114 12.424 6.671 4.541 2.860 2.166

Median 4.817 369.302 52.499 13.795 7.246 4.944 3.075 2.304

Mid-range 4.970 370.869 126.070 35.936 15.877 9.760 5.415 3.808

HL 4.817 368.761 45.081 12.161 6.498 4.479 2.819 2.139

TM 4.813 371.226 45.926 12.258 6.630 4.493 2.817 2.150

TABLE 13 ARL Values for the CUSUM Chart Based on Different Estimators under Chi-square Distribution with n¼10

and kĥh ¼ 0:5 at ARL0ffi 370

Estimator hĥh

d

0 0.25 0.5 0.75 1 1.5 2

Mean 4.85 370.487 115.012 36.877 17.094 10.376 5.630 3.937

Median 4.90 369.970 127.209 44.319 20.670 12.017 6.527 4.454

Mid-range 5.19 369.765 196.527 96.916 49.213 28.913 13.261 8.395

HL 4.88 371.978 117.913 37.105 17.439 10.544 5.796 4.019

TM 4.87 370.087 115.104 37.648 17.085 10.494 5.760 4.000
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performing better than the other estimators under

Student’s t and logistic distributions. All of the esti-

mators (except the mid-range) perform equally well

in case of the chi-square parent environment.

Finally, we provide a comparison of our proposed

CUSUM charts with the nonparametric CUSUM mean

chart (NPCUSUM) by S. F. Yang and Cheng (2011)

under different environments discussed previously.

S. F. Yang and Cheng (2011) calculated the ARLs of

NPCUSUM using the shift parameter p1. For a valid

comparison of NPCUSUM with our proposed charts,

we evaluated the ARL values of NPCUSUM chart

FIGURE 1 ARL curves of the mean CUSUM with n¼5, kĥh ¼ 0:5,
and hĥh ¼ 4:774 under different parent environments.

FIGURE 2 ARL curves of the median CUSUM with n¼ 5,

kĥh ¼ 0:5, and hĥh ¼ 4:774 under different parent environments.

FIGURE 3 ARL curves of the midrange CUSUM with n¼ 5,

kĥh ¼ 0:5, and hĥh ¼ 4:774 under different parent environments.

FIGURE 4 ARL curves of the HL CUSUM with n¼5, kĥh ¼ 0:5,
and hĥh ¼ 4:774 under different parent environments.

FIGURE 5 ARL curves of the TM CUSUM with n¼ 5, kĥh ¼ 0:5,
and hĥh ¼ 4:774 under different parent environments.

FIGURE 6 ARL curves of different CUSUM charts under T4
distribution with n¼ 10, kĥh ¼ 0:5 and ARL0ffi370.
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FIGURE 8 ARL curves of different CUSUM charts under

chi-square distribution with n¼ 10, kĥh ¼ 0:5, and ARL0ffi 370.

FIGURE 7 ARL curves of different CUSUM charts under logistic

distribution with n¼ 10, kĥh ¼ 0:5, and ARL0ffi 370.

TABLE 14 ARL Comparison for the NPCUSUM (with n¼10, k¼0.5, and h¼10.65) and TM CUSUM (with n¼ 10 and kĥh ¼ 0:5) Charts
under Different Environments with Prefixed ARL0¼370

Environment Chart

d

0 0.25 0.5 0.75 1 1.5 2

Normal NPCUSUM 371.051 20.492 8.266 5.465 4.274 3.330 3.030

TM CUSUM 370.949 16.720 5.640 3.421 2.528 1.816 1.261

5% Variance contaminated NPCUSUM 370.868 21.764 8.626 5.618 4.422 3.444 3.082

TM CUSUM 361.461 18.050 6.040 3.606 2.652 1.886 1.350

10% Variance contaminated NPCUSUM 370.739 22.915 9.037 5.866 4.571 3.548 3.156

TM CUSUM 361.443 20.064 6.473 3.807 2.774 1.950 1.464

5% Location contaminated NPCUSUM 172.225 15.595 7.558 5.205 4.162 3.289 3.025

TM CUSUM 329.528 20.369 6.464 3.869 2.793 1.957 1.489

Special cause (u¼ 0.01) NPCUSUM 367.505 19.645 8.157 5.407 4.253 3.331 3.029

TM CUSUM 375.058 16.858 5.690 3.464 2.546 1.834 1.281

Special cause (u¼ 0.05) NPCUSUM 243.051 16.922 7.716 5.244 4.183 3.307 3.029

TM CUSUM 355.257 18.601 6.020 3.639 2.656 1.889 1.366

T4 NPCUSUM 370.492 22.744 9.075 5.940 4.685 3.682 3.263

TM CUSUM 370.038 22.075 6.877 4.055 2.932 2.024 1.581

Logis(0,1) NPCUSUM 371.779 43.808 15.060 8.956 6.624 4.604 3.814

TM CUSUM 371.226 45.926 12.258 6.630 4.493 2.817 2.150

FIGURE 9 For uncontaminated data: (a) patients’ waiting

times; (b) output of mean CUSUM; (c) output of median CUSUM;

(d) output of mid-range CUSUM; (e) output of HL CUSUM; and

(f) output of TM CUSUM.
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using the shift parameter as d, which is the difference

between l0 and l1. The ARLs are calculated through

Monte Carlo simulations by performing 10,000

replications of run lengths and are given in

Table 14. For v2ð5Þ, the conversion from p1 to d is

not possible due to skewness of the distribution.

In some of the scenarios (such as location and 5%

special cause contaminations), the NPCUSUMwill per-

form better for small values of d¼ 0.25, but, in general,

the TM (and HL) CUSUM have better performance

across all the scenarios and for most values of d.

A NUMERICAL EXAMPLE

In this section, we demonstrate the practical

application of our proposed robust CUSUM control

charting structures using a real data set about patients’

waiting times (in minutes) for a colonoscopy pro-

cedure in a regional medical center (cf. Jones-Farmer

et al. 2009). The data, consisting of 30 samples of size

5, are presented in Figure 9a. All of the proposed

charts are applied on these data and the outputs of

these charts are given in Figures 9b–9f. For the 10%

variance contamination environment, we chose 10%

observations randomly from the data and inflated their

variance nine times; that is, s¼ 9. For 10% variance-

contaminated data, the plot of data and the output

of five charts is provided in Figure 10. Along similar

lines, the location contamination and the outliers are

introduced into the data and the respective data plots

and chart outputs are given in Figures 11 and 12.

We can see that all of the proposed charts

show the stability for uncontaminated distribution

in Figure 9. For Figure 10, where the variance

contamination is introduced into the process, the

mid-range CUSUM detects a positive shift at sample

14, whereas the mean CUSUM detects the same shift

at sample 15. The other three charts—that is, median,

HL, and TM CUSUMs—were able to absorb the

variance contamination without giving a false alarm.

In case of location contamination, we can see that

the plotting statistic (Sþ) for all of the charts is inflated

a bit, but no out-of-control signal is received for any

chart (cf. Figure 11). Figure 12 is an interesting one

FIGURE 11 For 5% location-contaminated data: (a) patients’

waiting times; (b) output of mean CUSUM; (c) output of median

CUSUM; (d) output of mid-range CUSUM; (e) output of HL CUSUM;

and (f) output of TM CUSUM.

FIGURE 10 For 10% variance-contaminated data: (a) patients’

waiting times; (b) output of mean CUSUM; (c) output of median

CUSUM; (d) output of mid-range CUSUM; (e) output of HL CUSUM;

and (f) output of TM CUSUM.
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where we can see that there are three outliers

present in the data set (cf. Figure 12a) at samples 4,

27, and 28. Median, HL, and TM CUSUMs assimilated

these outliers, but the mean and mid-range CUSUM

charts both gave the out-of-control signals at sample

27. The findings of this example are exactly on the

same pattern as indicated by the ARL values for the

proposed charts in Tables 1–13.

SUMMARY AND CONCLUSIONS

Common cause variations are an inherent part of

any process, and with timely monitoring, evaluation,

and identification of sources of special cause varia-

tions, the quality of the output of the process can

be improved and waste (of time and cost) can be

reduced significantly. Control charts are widely used

to monitor a process. To monitor the location and

dispersion parameters of the process, two main types

of charts, Shewhart-type control charts and memory

control charts (CUSUM and EWMA), are used. In

practice, special cause variations and outliers may

occasionally be present. The charts, which have a

robust design structure, are used to cope with such

environments. This study presents different robust

design structures for CUSUM-type charts and evaluates

their performance in different environments. The find-

ings of the article are that the mean CUSUM control

chart performs efficiently in uncontaminated environ-

ments and the TM andHLCUSUM charts are good com-

pared to the mean CUSUM chart in this situation. The

median CUSUM chart outperforms the other charts in

the presence of special cause environment and outliers.

The TM CUSUM chart is an alternative to the median

chart and is highly efficient in the presence of outliers.

It is also a good option in non-normal parent environ-

ments. Finally, the study concludes that the TM CUSUM

chart is the best choice for controlling the location para-

meter of a process in normal, non-normal, special

cause, and outlier environments.

ACKNOWLEDGMENT

The author Muhammad Riaz is indebted to King

Fahd University of Petroleum and Minerals, Dhahran,

Saudi Arabia, for providing excellent research

facilities through project SB111008.

ABOUT THE AUTHORS

Hafiz Zafar Nazir obtained his M.Sc. in statistics

from the Department of Statistics, Quaid-i-Azam

University, Islamabad, Pakistan, in 2006, and M.Phil

in statistics from the Department of Statistics,

Quaid-i-Azam University, Islamabad, Pakistan, in

2008. Currently he is pursuing his Ph.D. in statistics

from the Institute for Business and Industrial

Statistics, University of Amsterdam, The Netherlands.

He has served as a lecturer in the Department of

Statistics, University of Sargodha, Sargodha, Pakistan,

from September 2009 to the present. His current

research interests include statistical process control

and nonparametric techniques. His e-mail address

is hafizzafarnazir@yahoo.com.

Muhammad Riaz obtained Ph.D. in statistics from

the Institute of Business and Industrial Statistics,

University of Amsterdam, The Netherlands, in 2008.

He holds the position of assistant professor in the

Department of Statistics, Quaid-i-Azam University,

Islamabad, Pakistan, and the Department of

Mathematics and Statistics, King Fahad University of

FIGURE 12 For special cause environment with u¼0.05: (a)

patients’ waiting times; (b) output of mean CUSUM; (c) output

of median CUSUM; (d) output of mid-range CUSUM; (e) output

of HL CUSUM; and (f) output of TM CUSUM.

223 CUSUM Control Charting

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
6:

41
 0

6 
Ju

ne
 2

01
3 



Petroleum and Minerals, Dhahran, Saudi Arabia. His

current research interests include statistical process

control, nonparametric techniques, and experimental

design.

Ronald J. M. M. Does is professor of industrial

statistics at the University of Amsterdam. He is also

managing director of the Institute for Business and

Industrial Statistics, which operates as an inde-

pendent consultancy firm within the University of

Amsterdam. Furthermore, he is director of the

Graduate School of Executive Programmes at the

Amsterdam Business School. His current research

activities lie in the design of control charts for

nonstandard situations, health care engineering,

and Lean Six Sigma methods.

Nasir Abbas is serving as Assistant Professor at

Department of Statistics, University of Sargodha

Pakistan. He got his M.Sc. in Statistics from the

Department of Statistics Quaid-i-Azam University

Islamabad Pakistan in 2009; M.Phil. in Statistics from

the Department of statistics Quaid-i-Azam University

Islamabad Pakistan in 2011 and Ph.D. in Industrial

Statistics from the Institute for Business and

Industrial Statistics University of Amsterdam The

Netherlands in 2012. He served as Assistant Census

Commissioner in Pakistan Bureau of Statistics during

July 2011 – January 2013. His current research inter-

ests include Quality Control particularly control

charting methodologies under parametric and non-

parametric environments.

REFERENCES

Amin, R. W., Searcy, A. J. (1991). A nonparametric exponentially
weighted moving average control scheme. Communications in
Statistics - Simulation and Computation, 20(4):1049–1072.

Dixon, W. J., Massey, F. J. (1969). Introduction to Statistical Analysis, 3rd
ed. New York: McGraw-Hill.

Ferrell, E. B. (1953). Control charts using midranges and medians.
Industrial Quality Control, 9:30–34.

Graham, M. A., Mukherjee, A., Chakraborti, S. (2012). Distribution-free
exponentially weighted moving average control charts for monitoring
unknown location. Computational Statistics and Data Analysis,
56:2539–2561.

Hawkins, D. (1993). Robustification of cumulative sum charts by
Winsorization. Journal of Quality Technology, 25(4):248–261.

Hettmansperger, T. P., McKean, J. W. (1998). Robust Nonparametric
Statistical Methods New York: Wiley.

Janacek, G. J., Miekle, S. C. (1997). Control charts based on medians. The
Statistician, 46(1):19–31.

Jones-Farmer, L. A., Jordan, V., Champ, C. W. (2009). Distribution-free
phase I charts for subgroup location. Journal of Quality Technology,
41(3):304–316.

Langenberg, P., Iglewicz, B. (1986). Trimmed mean and R charts. Journal
of Quality Technology, 18(3):152–161.

Lee, M. H. (2011). Economic design of cumulative sum control chart for
non-normally correlated data. Matematika, 27(1):79–96.

Lehmann, E. L. (1983). Theory of Point Estimation New York: Wiley.
Li, S. Y., Tang, L. C., Ng, S. H. (2010). Non-parametric CUSUM and

EWMA control charts for detecting mean shifts. Journal of Quality
Technology, 42(2):209–226.

Lucas, J. M., Crosier, R. B. (1982). Fast initial response for CUSUM
quality-control scheme. Technometrics, 24:199–205.

MacEachern, S. N., Rao, Y., Wu, C. (2007). A robust-likelihood cumulat-
ive sum chart. Journal of the American Statistical Association,
102(480):1440–1447.

McDonald, D. (1990). A CUSUM procedure based on sequential ranks.
Naval Research Logistics, 37:627–646.

Midi, H., Shabbak, A. (2011). Robust multivariate control charts to detect
small shifts in mean. Mathematical Problems in Engineering, 2011,
DOI:10.1155=2011=923463.

Montgomery, D. C. (2009). Introduction to Statistical Quality Control,
6th ed. New York: Wiley.

Moustafa, A. (2009). A control chart based on robust estimators for
monitoring the process mean of a quality characteristic. International
Journal of Quality and Reliability Management, 26(5):480–496.

Moustafa, A., Mokhtar, B. A. (1999). New robust statistical process
control chart for location. Quality Engineering, 12(2):149–159.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41:100–115.
Reynolds, M. R., Jr., Stoumbos, Z. G. (2010). Robust CUSUM charts for

monitoring the process mean and variance. Quality and Reliability
Engineering International, 26:453–473.

Riaz, M. (2008). A dispersion control chart. Communications in Statistics -
Simulation and Computation, 37:1239–1261.

Roberts, S. W. (1959). Control chart tests based on geometric moving
averages. Technometrics, 1:239–250.

Rocke, D. M. (1992). XQ and RQ charts: Robust control charts.
The Statistician, 41:97–104.

Rousseeuw, P. J. (1991). Tutorial to robust statistics. Journal of
Chemometrics, 5:1–20.

Schoonhoven, M., Nazir, H. Z., Riaz, M., Does, R. J. M. M. (2011a).
Robust location estimators for the X control chart. Journal of Quality
Technology, 43(4):363–379.

Schoonhoven, M., Riaz, M., Does, R. J. M. M. (2011b). Design and
analysis of control charts for standard deviation with estimated
parameters. Journal of Quality Technology, 43(4):307–333.

Tatum, L. G. (1997). Robust estimation of the process standard deviation
for control charts. Technometrics, 39:127–141.

Tukey, J. W. (1977). Exploratory Data Analysis Reading, MA: Addison
Wesley.

Vining, G. (2009). Technical advice: Phase I and phase II control charts.
Quality Engineering, 21:478–479.

Wang, T., Li, Y., Cui, H. (2007). On weighted randomly trimmed means.
Journal of Systems Science and Complexity, 20:47–65.

Weisberg, H. F. (1992). Central Tendency and Variability Sage University
Paper Series on Quantitative Application in Social Sciences, Series
no. 07–038. A. Virding, Ed. Newbury Park, CA: Sage.

Woodall, W. H., Montgomery, D. C. (1999). Research issues and ideas
in statistical process control. Journal of Quality Technology, 31:
376–386.

Wu, C., Zhao, Y., Wang, Z. (2002). The median absolute deviation and
their applications to Shewhart Xbar control charts. Communications
in Statistics - Simulation and Computation, 31(3):425–442.

Yang, L., Pai, S., Wang, Y. R. (2010). A novel CUSUM median control
chart. Paper presented at the International Multiconference of
Engineers and Computer Scientists, March 17–19, 2010, Hong Kong.

Yang, S. F., Cheng, S. W. (2011). A new non-parametric CUSUM mean
chart. Quality and Reliability Engineering International, 27:867–875.

Yang, S. F., Lin, J. S., Cheng, S. W. (2011). A new nonparametric
EWMA sign control chart. Expert Systems with Applications,
38:6239–6243.

H. Z. Nazir et al. 224

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
6:

41
 0

6 
Ju

ne
 2

01
3 


