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Robust CUSUM Control Charting for Process
Dispersion
Hafiz Zafar Nazir,a*† Muhammad Riazb,c and Ronald J. M. M. Doesd
Process monitoring through control charts is a quite popular practice in statistical process control. From a statistical point of
view, a superior control chart is one that has an efficient design structure, but having resistance against unusual situations is
of more practical importance. To have a compromise between the statistical and practical purposes, a natural desire is to
have a control chart that can serve both purposes simultaneously in a good capacity. This study is planned for the same
objective focusing on monitoring the dispersion parameter by using a Cumulative Sum (CUSUM) control chart scheme. We
investigate the properties of the design structure of different control charts based on some already existing estimators as
well as some new robust dispersion estimators. By evaluating the performance of these estimators-based CUSUM control
charts in terms of average run length, we identify those charts that are more capable to make a good compromise between
the aforementioned purposes in terms of statistical and practical needs. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

E
xisting control charts are usually designed under the assumptions of normality and outlier-free environments in the quality
characteristic of concern. Normality seems more of a theoretical value, and it is generally hard to find practical situations where
the normality assumption is easily fulfilled. Indeed, there are many practical situations where non-normality is more common.1

On the basis of experience, it is common that processes have occasionally outliers in their outputs.2 In case of violation of the
normality assumption and the presence of outliers, these commonly used charts lose their efficiency and performance ability and
hence are of less practical use. In general, robust control charts are preferred and are of more practical use when the design structure
is not affected by the violation of aforementioned ideal assumptions.

The choice of the control charts to be used depends on the characteristics to be measured in the process and what type of amount
of change/shift has to be determined. Control charts are classified into two categories, namely memoryless control charts and
memory control charts. Shewhart-type control charts are termed as memoryless control charts, and their main deficiency is that they
are less sensitive to small and moderate shifts in the parameters (location and dispersion). The commonly used memory control charts
in the literature include Cumulative Sum (CUSUM) control charts3 and Exponentially Weighted Moving Average (EWMA) control
charts.4 These memory control charts are designed such that they use the past information along with the current information, which
makes them very sensitive to small and moderate shifts in the process parameters.

The control charting system is normally practiced in two distinct stages: Phase I (the retrospective phase) and Phase II
(the prospective phase). In Phase I, the key concern is to understand the process and to access process stability, making sure that
the process is operating at the intended target under some natural causes of variation. Phase I also involves the estimation of the
parameters as well as setting up or estimating the control limits. In Phase II, the control chart is used to monitor the process on line
to detect shifts occurring in the process so that any corrective actions can be taken quickly. Phase II focuses on the performance of the
control, that is, how efficient the chart is to detect changes. Jensen et al.5 suggested that more data in Phase I are needed than
typically is recommended to achieve a performance comparable with the known parameters cases. In particular, for the CUSUM chart,
the number of preliminary samples should be in the hundred scales rather than the dozen scales as used by the Shewhart chart.6 For
example, Quesenberry7 recommended that at least 100 samples of size five should be used in Phase I for the CUSUM chart. That is
because the CUSUM chart is sensitive to small shifts and any random error in the estimated parameter will tend to cause deviated
in-control and out-of-control performance.
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In this paper, we concentrate on robust control charts for the process dispersion parameter in Phase II. For the related
problem for the location parameter, the reader is referred to Schoonhoven et al.8 for Shewhart-type charts, Nazir et al.9 for the
CUSUM charts, and Zwetsloot et al.10 for the EWMA charts. For the dispersion parameter, the reader is referred to Schoonhoven
et al.11 for Shewhart-type charts.

Different authors have made contributions to apply robust estimators for monitoring the process dispersion parameter. The
trimmed mean of subgroup ranges was proposed by Langenberg and Iglewicz12 to estimate the process dispersion. The interquartile
range (IQR) was proposed by Rocke13 as an estimator. The modified bi-square A-estimator was recommended by Tatum.14 De Mast
and Roes15 also used an A-estimator to construct the control limits for an individual control chart. Use of the mean of the subgroups
medians absolute deviations (MAD) was suggested by Omar.16 Abbasi and Miller17 proposed a Phase II robust EWMA chart based on
the mean absolute deviation from the median and showed that their proposed chart is efficient and robust against violation of the
normality assumption under the restriction that a large clean data set is available in Phase I. They did not consider the presence of
contaminations in Phase II. Schoonhoven et al.11 studied the effectiveness and robustness of different dispersion estimators on
Shewhart-type dispersion control charts in Phase I and Phase II under normality and cases where special causes are present.

The CUSUM control chart has received a great deal of attention in the quality control literature because of its simplicity and
efficiency. It has been primarily used as a tool for monitoring process mean levels. The theoretical properties of the CUSUM chart
for monitoring the process mean have been thoroughly investigated.3,18,19 In contrast, the CUSUM chart as a tool for monitoring
process variability has received less attention and investigation. Some published properties are found in Page,20 Chang and Gan,21

Hawkins and Olwell,6 Acosta-Mejia,22 Acosta-Mejia et al.,23 and Acosta-Mejia and Pignatiello.24 Note that the corresponding EWMA
control chart is the subject of a PhD project at the University of Amsterdam.

In this paper, we compare a number of estimators that have been presented in the literature. Some of them are not common in the
control charts literature. We derive the charts factors that determine the control limits. The performance of the charts based on these
estimators is evaluated by assessing the average run length (ARL) under normality and in the presence of various types of
contaminations by means of simulation.

Thus, the present paper focuses on robust CUSUM control charts for monitoring the process dispersion parameter. Particularly,
their design structures and performances are studied under different parent environments and in the presence of special causes
in the dispersion parameter of the process. The motivation and inspiration of this study is taken from Schoonhoven et al.11 and
Abbasi and Miller.17 Before moving on towards the basic structure of the CUSUM chart, we provide a description of the robust
estimators in the next section. Then we evaluate the performance of the different CUSUM charts by means of the ARL. Finally, we
describe our main conclusions.
2. Description of estimators of process dispersion

Let θ be the process dispersion parameter, which needs to be monitored through control charting, and θ̂ be its estimator based on a

sample of size n. There are many choices for θ̂ . David25 provided a brief history of standard deviation estimators. The traditional
estimators are the pooled sample standard deviation, the mean of the sample standard deviations, and the mean of the sample
ranges. Mahmoud et al.26 studied the relative efficiencies of these estimators for different sample sizes n and number of samples
k. Schoonhoven et al.11 considered different estimators of the population standard deviation and provided a comprehensive analysis
on their efficiency and use in control charts for different phases.

In deriving the estimates of the population dispersion parameter, we will look at some of the estimators discussed in Schoonhoven
et al.11 as well as some other robust estimators that are not common in the control charts literature. In the following, we give a short
description of the estimators used in this study.

The first estimator of the population dispersion θ (which will also be used as a reference estimator throughout the rest of article) is
the sample standard deviation S, which is defined by

S ¼ 1

n� 1
∑n

i¼1 Xi � X
� �2� �1=2

where Xi denotes the ith observation in a sample of size n and X denotes the corresponding mean of the sample. The sample standard
deviation S is the most efficient estimator in normally distributed environments, but studies have shown that it is highly affected by
the presence of outliers and special causes. The breakdown point (proportion of the outlying observations that an estimator can cope)
of the sample standard deviation is zero.

The next estimator is based on sample IQR and is defined as IQR ¼ Q3�Q1
1:34898, where Q3 and Q1 are the third and the first quartiles of

the sample, respectively. Different properties of the sample IQR related to efficiency can be seen from Riaz.27 The sample IQR is more
robust to departures from normality and outliers than the sample standard deviation.27 The breakdown point of IQR is 25%.

We also take into account an estimator proposed by Gini,28 which is known as Gini’s mean differences G and can be written as

G ¼ 4

n� 1
∑
n

i¼1

2i � n� 1

2n

� �
X ið Þ
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where X(i) is the ith order statistic of the sample. Gini’s estimator is highly efficient and is more robust to outliers than the
estimators based on the range and standard deviation.29,30 Two similar estimators named as Downton’s estimator

D ¼ 2
ffiffi
π

p
n n�1ð Þ∑

n
i¼1 i � nþ 1

2

� �
X ið Þ

� �
and the probability-weighted moments-based estimator Spw ¼

ffiffi
π

p
n2 ∑

n
i¼1 2i � n� 1ð ÞX ið Þ

� �
are used

by Khoo31 and Muhammad and Riaz,32 respectively, with the control structure of Shewhart’s charts. The properties of those estimators
are found to be similar to Gini’s estimator because the three estimators are proportional to each other.

We also consider a robust estimator proposed by Hampel.33 His robust estimator is based on the median of the absolute deviations
from the median defined as

MADM ¼ 1:4826*median Xi � eX			 			
where eX is the sample median. This estimator is very robust against outliers, but its efficiency under normality is very low (i.e.,
only 37%). There are some more estimators based on the absolute deviations, that is, the mean of the absolute deviations from

the mean MD ¼ ∑n
i¼1 Xi � X

		 		=n
1:2533

� �
; the median of the absolute deviations from the mean MAD ¼ median Xi � X

		 		� �
, and the mean

of the absolute deviations from the median AADM ¼ ∑n
i¼1 Xi � eX			 			=n� �

. Wu et al.34 showed that the MADM estimator performs the

best, as compared with the other three estimators on the basis of absolute deviations, in case of contaminated environments.
The breakdown point of MADM estimator is 50%. The gross error sensitivity (which measures the worst influence on the value
of the estimator that a small amount of contamination of fixed size can have) of MADM is equal to 1.167, which is the smallest
value that one can obtain for any scale estimator in the case of the normal distribution.

Rousseeuw and Croux35 proposed different robust estimators of the population dispersion parameter θ, which are highly robust
against outliers and their efficiencies under normality is higher compared with the estimator proposed by Hampel.33 One of the
estimators of Rousseeuw and Croux35 is defined as

Tn ¼ 1:38*
1

h
∑
h

k¼1
median Xi � Xlj j; i≠lf g kð Þ

This reads as follows: for each i, we compute the median of |Xi� Xl |, l=1, 2,…, n. This yields n values, the average of first h-order
statistics gives the final estimate Tn, where h= [n/2] + 1, which is roughly half the number of observations (the symbol [·] represents
the integer part of a fraction). Rousseeuw and Croux35 also proposed two other robust estimators (similar to Tn), that is, Sn= 1.1926 *
mediani {medianl |Xi� Xl|; i≠ l } and Qn=2.2219 * { |Xi� Xl |; i< l } (p) with p ¼ h!

2! h�2ð Þ!. The breakdown point of the Tn estimator is 50%. Tn
is very robust against outliers, and its efficiency under normality is 52%. The gross error sensitivity of Tn is 1.4688. The reason of
choosing Tn is its low gross error sensitivity as compared with Sn and Qn.

We also evaluate an estimator of the population dispersion parameter mentioned by Shamos36 and Bickel and Lehmann.37 This
estimator is obtained by replacing pairwise averages by pairwise distances, and is defined as

Bn ¼ 1:0483*median Xi � Xlj j; i < lf g

This robust estimator has an efficiency of 86% under normality, but is less robust compared with the estimators proposed by
Rousseeuw and Croux35 and its breakdown point is only 29%.

The last estimator we use in this study is based on order statistics of certain subranges proposed by Croux and Rousseeuw38 having
a breakdown point of 50% and is defined as

Sr ¼ 1:4826* X iþ 0:25n½ �þ1ð Þ � X ið Þ
		 		

n
2½ �� 0:25n½ �ð Þ

Sr is a very robust estimator in the presence of outliers, and its different features can be found in Croux and Rousseeuw.38 Its
efficiency under normality is only 37%; however, it is more efficient than MADM for small samples.

Further description and different properties (e.g., efficiency and robustness) of these estimators can be seen from Rousseeuw and
Croux,35 David,25 Mahmoud et al.,26 Schoonhoven et al.,11 and Abbasi and Miller.17

It is anticipated that some robust estimators will perform well in an uncontaminated environment as well as in the presence of
outliers and under special cause environments as the aim of these robust estimators is to estimate the population dispersion
parameter efficiently and provide resistance against outliers and special cause environments.

Efficiency of the Estimators: For comparison purposes and to evaluate the accuracy of the dispersion estimators used in this
study, we compute the standardized variances (SV) of the estimators as suggested by Rousseeuw and Croux35 and relative
efficiencies of the estimators as used by Abbasi and Miller.17 The SV of a dispersion estimator θ̂ is calculated as

SV θ̂ ¼
nVAR θ̂

� �
E θ̂
� �h i2
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The denominator of SV θ̂ is needed to obtain a natural measure of the accuracy of a scale estimator.39 The relative efficiency (RE) of
the estimator is computed as

RE θ̂ ¼ min SV θ̂

� �
SV θ̂

SV and RE are computed by generating 105 samples of sizes n= 4, 5, and 9 under the following environments: uncontaminated
normal, contaminated normal, gamma, Student’s t, and logistic environments. The description of these environments is given in
Section 4. SV and RE are given in Tables I and II, which read for example under uncontaminated normal environment as the dispersion
estimator S as was expected has the lowest SV and the MADM has the largest SV. The efficiency of the other estimators falls
within these two (S and MADM) estimators. Under 5% and 10% symmetric variance contaminated normal models, Bn has the
lowest SV and for small 1% contamination, G obtains the lowest SV. For most of the non-normal environments, G and IQR are
efficient estimators as compared with all other estimators. The dispersion estimator S is extremely affected by contaminations
and non-normal environments.
3. The proposed CUSUM charts scheme for process dispersion

For the CUSUM procedures, we assume that we want to detect an increase in the process dispersion parameter θ. Let θ̂ be any
estimator from Section 2 of the process dispersion parameter θ from a random sample of size n, which are taken from a continuous

production process at regular intervals. The rule for the CUSUM-θ̂ charts is as follows:

Zt ¼ max 0; θ̂ � K θ̂

� �
þ Zt�1

h i
; t ¼ 1; 2; 3;…

where Z0 = 0 according to Tuprah and Ncube40 andK θ̂ is the reference value for the scheme. Zt is plotted against the sample number t.
IfZt > Hθ̂ (whereHθ̂ determines the decision interval) for any value of t, the process is deemed to be out of control and it is concluded
that the process dispersion has increased. The sample number at which Zt > Hθ̂ is the run length of the process, and the expected
value of the random variable run length is the ARL of the scheme. The values of K θ̂ are chosen in such a way that a shift in the process
dispersion parameter is detected quickly. The values ofHθ̂ are chosen for a fixed value of ARL along with value ofK θ̂, when the process
is in control under all environments considered in this study, and it is expected that the ARL will be small, when the process is out of
control. The reference value K θ̂ will be based on Ewan and Kemp,41 Page,20 and Tuprah and Ncube,40 so the value K θ̂ is taken to be
half of expected values of θ̂ given θ0 = 1 and expected values of θ̂ given θ1 = 1.4, where θ0 is the target value and θ1 is the value of
Table I. Standardized variance of dispersion estimators under different environments

Environments Sample size

Estimators

G IQR S MADM Bn Tn Sr

N(0,1) 4 0.7250 0.7250 0.7171 1.3092 0.7724 1.2804 1.3092
5 0.6702 0.7028 0.6598 1.7131 0.8956 1.0250 1.6461
9 0.5902 0.9259 0.5799 1.5378 0.7408 1.0647 1.3332

1%CNormal 4 0.8257 0.8257 0.8372 1.3358 0.8640 1.3077 1.3358
5 0.7771 0.7857 0.8007 1.7377 0.9407 1.0575 1.6749
9 0.6902 0.9308 0.7521 1.5468 0.7681 1.0791 1.3491

5%CNormal 4 1.1174 1.1174 1.1784 1.4268 1.1292 1.3998 1.4268
5 1.0659 1.0154 1.1651 1.8343 1.0834 1.1510 1.7882
9 0.9958 1.0024 1.2246 1.5910 0.8961 1.1503 1.4190

10%CNormal 4 1.3096 1.3096 1.3876 1.5758 1.3099 1.5500 1.5758
5 1.2622 1.1855 1.3872 1.9584 1.2583 1.2867 1.9254
9 1.1986 1.1338 1.4710 1.6683 1.0544 1.2391 1.5196

G(1,1) 4 1.5654 1.5654 1.6818 2.2602 1.6045 2.3068 2.2602
5 1.5031 1.4771 1.6719 2.6164 1.8703 1.8482 2.5363
9 1.4142 1.7224 1.7064 2.3855 1.6212 1.9844 2.2373

T4 4 1.3564 1.3564 1.4559 1.6076 1.3670 1.5731 1.6076
5 1.2898 1.2133 1.4401 2.0256 1.2645 1.3157 1.9658
9 1.2494 1.2102 1.6207 1.7941 1.1040 1.3254 1.6316

Logis(0,1) 4 0.8972 0.8972 0.9018 1.4320 0.9178 1.3880 1.4320
5 0.8604 0.8636 0.8735 1.8761 1.0491 1.1583 1.8221
9 0.7786 1.0588 0.8129 1.6788 0.9028 1.1995 1.4934
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Table II. Relative efficiencies of dispersion estimators under different environments

Environments Sample size

Estimators

G IQR S MADM Bn Tn Sr

N(0,1) 4 98.9165 98.9165 100.0000 54.7773 92.8511 56.0095 54.7773
5 98.4566 93.8921 100.0000 38.5162 73.6775 64.3705 40.0835
9 98.2451 62.6240 100.0000 37.7069 78.2786 54.4628 43.4951

1%CNormal 4 100.0000 100.0000 98.6331 61.8148 95.5718 63.1449 61.8148
5 100.0000 98.9111 97.0528 44.7188 82.6053 73.4821 46.3963
9 100.0000 74.1547 91.7771 44.6220 89.8658 63.9606 51.1607

5%CNormal 4 100.0000 100.0000 94.8265 78.3189 98.9554 79.8274 78.3189
5 95.2590 100.0000 87.1455 55.3539 93.7169 88.2139 56.7802
9 89.9808 89.3916 73.1731 56.3196 100.0000 77.8978 63.1453

10%CNormal 4 100.0000 100.0000 94.3793 83.1068 99.9806 84.4896 83.1068
5 93.9279 100.0000 85.4598 60.5369 94.2173 92.1382 61.5738
9 87.9711 92.9959 71.6800 63.2022 100.0000 85.0965 69.3864

G(1,1) 4 100.0000 100.0000 93.0762 69.2590 97.5629 67.8590 69.2590
5 98.2688 100.0000 88.3484 56.4567 78.9771 79.9242 58.2383
9 100.0000 82.1044 82.8764 59.2821 87.2285 71.2664 63.2101

T4 4 100.0000 100.0000 93.1645 84.3743 99.2279 86.2255 84.3743
5 94.0692 100.0000 84.2510 59.8976 95.9523 92.2180 61.7203
9 88.3615 91.2249 68.1185 61.5369 100.0000 83.2988 67.6655

Logis(0,1) 4 100.0000 100.0000 99.4937 62.6551 97.7565 64.6437 62.6551
5 100.0000 99.6309 98.5057 45.8615 82.0180 74.2831 47.2222
9 100.0000 73.5346 95.7754 46.3757 86.2379 64.9107 52.1343
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process dispersion that needs to be detected quickly. Page20 provided in his Table I, the reference values to notice a shift (that

is θ1 = 1.40 to θ1 = 2.23) quickly in the process dispersion by using the sample range. Accordingly, K θ̂ ¼ E θ̂jθ0
� �

þ E θ̂jθ1
� �h i

=2.

As it is hard to find the analytical values of E θ̂j:
� �

, simulation is used for this purpose, and 50,000 random samples are

generated from a normal distribution with mean (θ0 = 1 respectively θ1 = 1.40) and variance equal to 1, and the said expected
value is evaluated. Table III gives the values of K θ̂ for samples of sizes n = 5 and n= 9 to detect a shift of size θ1 = 1.4.

For the values ofHθ̂ under the different environments (normal and non-normal), we have searched out the values ofHθ̂ by drawing
random samples from the mentioned environments separately, and we have used an iterative method until the value of Hθ̂ in each

case is obtained that fixes an intended ARL along with reference value K θ̂ . Values of Hθ̂ with ARL0 = 500 are given in Table IV.

Alternative values of Hθ̂ can be found in the same way for other choices of ARL0.

The values of K θ̂ and Hθ̂ have to be chosen carefully because the ARL performance of the CUSUM chart is sensitive to these values.
4. Performance evaluation of CUSUM-θ̂ charts

To assess the performance of the proposed CUSUM-θ̂ charts, the ARL is used as a performance measure. Monte Carlo simulation is
used to determine the ARL of in-control and out-of-control processes. The simulation details are as follows: we have generated 105

random samples of size n from the parent environments (i.e., normal, contaminated normal or non-normal), and the concerned
dispersion statistic (i.e., S, IQR,G MADM, Bn Tn, or Sr) is calculated. The corresponding control limits of the chart are developed using
Tables III and IV. Then, the sample number at which the plotting statistic Zt falls outside the control limits is noted. This noted sample
number is called the run length, and it is a random variable. The same procedure is repeated 104 times to obtain the distribution of
the run lengths. The mean of the run length distribution is represented by ARL and the standard deviation of run length distribution is
represented by SDRL.
Table III. Values of K θ̂ for CUSUM-θ̂ charts under normal distribution

n

Estimator

S IQR G MADM Bn Tn Sr

5 1.13 1.47 1.35 0.98 1.32 1.35 1.15
9 1.16 1.34 1.35 1.09 1.26 1.25 1.20

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Table IV. Values of Hθ̂ for CUSUM-θ̂ charts for different environments with ARL0 = 500

Estimator

N(0,1) G(1,1) T4 Logis(0,1)

n= 5 n=9 n= 5 n= 5 n= 5

S 1.531 0.816 2.954 3.120 1.971
IQR 2.203 1.478 2.900 3.060 2.412
G 1.910 0.973 2.812 3.195 2.294
MADM 3.310 1.951 1.959 2.240 2.888
Bn 2.460 1.161 2.623 2.312 2.433
Tn 2.877 1.570 2.250 2.220 2.620
Sr 3.641 1.860 2.000 2.596 3.309
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Inspired by Tatum14 and Schoonhoven et al,11 the performance of the CUSUM-θ̂ charts is evaluated under the following parent
environments:

1. A model (say uncontaminated case) in which all observation are from N(0,1).
2. A model for symmetric variance disturbances in which each observation has 99% probability of being drawn from N(0,1)

distribution and a 1% probability of being drawn from N(0,9).
3. A model for asymmetric variance disturbances in which each observation is drawn from a N(0,1) and has a 1% probability of

having a multiple of a χ21 variable added to it, with the multiplier equal to 4.
4. A model for mean disturbances in which each observation has a 99% probability of being drawn from N(0,1) distribution and a

1% probability of being drawn from the N(4,1) distribution.
5. To investigate the effect of using non-normal distributions, we consider two cases: one by disturbing the kurtosis and the other

by disturbing the symmetry of the distribution. For the case of disturbing the kurtosis, we use Student’s t distribution with four
degrees of freedom (T4) and the logistic distribution (logis (0,1)), and for the disturbance in symmetry, we use the gamma
distribution (G(1,1)).
4.1. Discussion of results

The aforementioned environments are used, and in each case, the ARL values of the CUSUM- θ̂ charts are determined. We have
considered shifts in terms of θ (i.e., δθ), which means that the shifted dispersion parameter say θ′ is defined as θ′ ¼ δθ. Here, δ= 1
means no shift in θ, and the process dispersion is stable, and δ> 1 means that the process θ has increased.
4.1.1. Uncontaminated case This environment is the basic assumption of the design structure of each chart. This provides a basis for

comparisons for different control charts structures and hence for the proposed CUSUM- θ̂ charts. The following results can be
observed from Table V.
Table V. ARL values of CUSUM-θ̂ charts under uncontaminated (N(0,1)) environment when ARL0 = 500

n Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

5 S 501.95 74.11 40.19 25.07 17.93 7.16 4.80 3.84 2.57
IQR 499.29 78.63 42.79 26.81 18.85 7.60 5.11 4.04 2.67
G 500.26 75.62 40.72 25.11 18.27 7.30 4.88 3.92 2.61
MADM 498.80 117.58 69.97 47.43 34.31 14.25 9.04 6.94 4.15
Bn 498.34 90.86 49.86 32.39 22.43 8.97 5.95 4.67 2.97
Tn 502.76 92.92 53.11 34.72 24.70 9.98 6.51 5.05 3.16
Sr 498.13 111.97 69.05 45.60 33.42 13.52 8.81 6.67 3.97

9 S 500.54 54.86 26.61 16.04 11.13 4.58 3.26 2.71 2.10
IQR 498.78 75.21 39.65 24.68 17.01 6.66 4.50 3.61 2.45
G 499.58 56.07 27.43 16.30 11.36 4.66 3.30 2.75 2.11
MADM 504.81 89.09 48.58 31.23 22.23 8.81 5.87 4.54 2.91
Bn 503.25 62.87 32.31 19.37 13.32 5.42 3.75 3.07 2.22
Tn 498.83 73.99 39.29 24.58 17.21 6.76 4.59 3.66 2.50
Sr 503.40 79.68 43.75 27.74 19.34 7.81 5.20 4.14 2.72

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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When no contaminations are present, the CUSUM-θ̂ chart based on the sample standard deviation S performs the best as was to be
expected, followed by the chart based on G. The IQR-based CUSUM chart works well as compared with charts based on Bn and Tn. The

other CUSUM-θ̂ charts based on the remaining estimators (MADM and Sr) are somewhat less efficient. Increasing the sample size from
n= 5 to n=9 results that the Bn and Tn based charts perform better as compared with IQR for δ< 1.25, but for δ< 1.25, the IQR chart
works well (Table V).

To further explain the run length distribution under uncontaminated environment, we also report the SDRL of the CUSUM-θ̂ charts
to quantify the behavior of run length distribution as suggested by Antzoulakos and Rakitzis.42 These are given in Table VI. When the
process is in control, we want SDRL to be close to its intended value, namely 500. Table VI reads that SDRL is slightly lower to its

intended value for some CUSUM-θ̂ charts and SDRL decreases as δ increases for all charts.

Symmetric Variance Case: When symmetric disturbances are present, the best performing CUSUM charts are based on theMADM,
Sr Tn followed by Bn. These estimators are very robust to outliers as these deviate less from the in-control ARL. The other CUSUM
charts are very poor in the in-control situation as their ARLs deviate very much from the intended ARL (Table VII). The performance
of the CUSUM charts based on S, G, and Bn become even worse when the sample size increases. However, the CUSUM chart based
on IQR performs better than the one based on Tn for n= 9.
Asymmetric Variance Case: When asymmetric variance disturbances are present, the CUSUM charts based on the estimators
MADM, Sr, Tn, and Bn show good resistance against such disturbances and perform efficiently in detecting small shifts in the
process dispersion parameters. The other charts perform very badly in maintaining the in-control ARL. The CUSUM chart based
on IQR recovers quite substantially as the sample size becomes larger, but the performance of S and G is even worse (Table VIII).
Table VI. SDRL values of CUSUM-θ̂ charts under uncontaminated (N(0,1)) environment when ARL0 = 500

n Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

5 S 489.16 70.57 35.38 20.73 13.32 3.69 1.98 1.38 0.69
IQR 498.66 72.48 36.65 21.67 13.90 3.89 2.12 1.48 0.74
G 483.77 69.34 35.19 20.21 13.49 3.73 2.03 1.41 0.71
MADM 484.19 108.42 61.49 38.89 26.35 8.47 4.52 3.17 1.57
Bn 488.85 84.24 43.78 26.34 16.83 4.88 2.61 1.81 0.90
Tn 491.10 86.20 46.83 28.31 18.86 5.39 3.00 2.04 1.01
Sr 489.99 102.42 60.96 37.09 25.50 8.01 4.49 3.08 1.49
S 486.06 51.89 22.69 12.50 7.73 2.00 1.11 0.77 0.31
IQR 495.56 65.46 32.31 18.19 11.44 3.12 1.66 1.14 0.55
G 492.33 51.72 23.96 12.52 7.99 2.08 1.12 0.79 0.32
MADM 495.82 82.93 42.48 25.65 16.82 4.78 2.61 1.77 0.88
Bn 499.08 58.66 27.94 15.14 9.33 2.52 1.33 0.95 0.44
Tn 494.86 68.97 34.22 19.75 12.45 3.40 1.85 1.25 0.64
Sr 494.06 73.88 37.86 22.67 14.34 4.07 2.22 1.54 0.77

Table VII. ARL values of CUSUM-θ̂ charts under symmetric variance contaminated environment when ARL0 = 500

n Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

5 S 123.33 43.29 28.40 19.98 14.82 6.76 4.67 3.77 2.55
IQR 177.72 49.83 31.64 21.80 16.14 7.19 4.90 3.93 2.64
G 145.58 45.37 29.23 20.42 15.28 6.86 4.72 3.83 2.59
MADM 388.63 95.40 61.11 42.50 31.28 13.65 8.89 6.75 4.08
Bn 291.45 67.63 40.72 27.95 20.55 8.65 5.72 4.57 2.93
Tn 343.45 75.44 45.33 30.49 22.44 9.46 6.33 4.96 3.13
Sr 362.72 93.62 58.73 40.65 29.99 12.97 8.47 6.55 3.92
S 74.89 27.21 17.66 12.06 9.31 4.33 3.16 2.65 2.10
IQR 355.39 58.00 31.95 20.41 14.78 6.01 4.16 3.36 2.35
G 106.70 30.84 18.61 12.76 9.64 4.42 3.20 2.68 2.11
MADM 392.09 76.71 43.75 28.73 20.62 8.52 5.65 4.48 2.89
Bn 266.37 46.75 25.17 16.54 11.86 5.24 3.67 3.03 2.21
Tn 342.77 59.86 33.90 21.96 16.11 6.59 4.51 3.62 2.48
Sr 357.75 66.48 37.39 25.33 17.81 7.53 5.11 4.06 2.69
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Table VIII. ARL values of CUSUM-θ̂ charts under asymmetric variance environment when ARL0 = 500

n Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

5 S 65.00 37.27 26.11 19.57 14.86 6.80 4.70 3.77 2.58
IQR 78.47 40.41 28.21 20.41 15.75 7.25 4.99 3.98 2.65
G 70.16 38.21 26.66 19.85 15.13 6.91 4.80 3.86 2.59
MADM 376.45 97.42 61.68 42.95 31.99 13.71 9.04 6.88 4.11
Bn 251.93 65.73 40.43 27.31 20.29 8.70 5.82 4.58 2.97
Tn 318.11 75.17 46.13 31.12 22.73 9.64 6.41 5.02 3.15
Sr 359.13 95.05 60.27 41.39 30.77 13.22 8.60 6.68 3.94
S 37.94 23.06 16.54 11.94 9.09 4.36 3.21 2.69 2.10
IQR 328.43 57.56 32.12 20.86 14.80 6.10 4.21 3.40 2.37
G 44.47 24.61 17.01 12.34 9.45 4.47 3.23 2.72 2.11
MADM 390.99 78.62 44.70 29.54 21.35 8.61 5.74 4.52 2.90
Bn 237.47 45.36 26.17 17.03 12.14 5.25 3.74 3.04 2.22
Tn 337.68 61.14 34.64 22.36 16.18 6.63 4.54 3.63 2.49
Sr 360.59 66.87 38.89 25.29 18.27 7.58 5.14 4.12 2.71
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Location Contaminated Case: When disturbances are present in form of introducing outliers in the location of the process, then
the CUSUM chart based on MADM performs well as it maintains more or less the in-control intended ARL, followed by charts based
on Sr and Tn. All other charts perform very poor as they are unable to maintain the in-control properties to the target ARL (Table IX).
Increasing the sample size results in an even better performance of the CUSUM chart based on MADM. The CUSUM chart based on
IQR performs much better for a larger sample size, but the CUSUM charts based on S, G, and Bn deviate even more from their
intended ARL in these circumstances.
Breakdown Points and Robustness of the Charts: Under an uncontaminated environment as was expected, no other CUSUM
chart can perform better than the one based on S. It can be seen from Table VI that this chart outperforms all, followed by the
CUSUM charts based on G and IQR for small samples and the CUSUM charts based on Bn and Tn work well for large samples.
MADM-based CUSUM chart performs the worst from all as its efficiency under normality is very low (i.e., only 37%). But when
there is contamination in the data, one can read from Tables VII and VIII that the MADM-based CUSUM chart (with 50%
breakdown point and with low gross error sensitivity) maintains its in control properties well followed by the other robust
estimators based charts Sr and Tn (both estimators have 50% breakdown points). With an increase in the sample sizes, the
same output is observed but the in-control performance of IQR-based CUSUM chart (having 25% breakdown point) improves
substantially. Under contaminations, the CUSUM charts based on S and G work poorly as both are based on non-robust
estimators (e.g., S has a zero breakdown point).
Non-normal Cases: Without loss of generality, the drawn samples are transformed in such a way that the resulting sample has a
mean equal to zero and a variance equal to one. For this purpose, the mean of concerned environment is subtracted from every
drawn sample and then divided by the standard deviation of the concerned environment, so that valid and comparable results are
evaluated. Under the gamma distribution, the CUSUM-θ̂ chart based on IQR performs best followed by the charts based on S and G.
ble IX. ARL values of CUSUM-v charts under location contaminated environment when ARL0 = 500

Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

S 64.86 31.68 23.03 17.24 13.61 6.56 4.65 3.75 2.56
IQR 102.66 38.58 26.13 19.20 14.88 7.01 4.93 3.95 2.65
G 80.54 34.50 23.79 17.60 14.06 6.61 4.73 3.80 2.60
MADM 285.24 84.42 55.24 39.23 30.04 13.29 8.85 6.82 4.07
Bn 177.21 53.92 34.92 24.65 18.74 8.26 5.68 4.55 2.93
Tn 234.58 63.94 39.65 27.93 20.82 9.18 6.29 4.96 3.14
Sr 267.55 79.41 52.26 36.86 28.22 12.73 8.47 6.53 3.94
S 36.91 19.34 13.92 10.44 8.27 4.22 3.15 2.65 2.10
IQR 234.50 49.35 28.35 18.56 13.72 5.90 4.12 3.34 2.36
G 56.12 22.65 15.05 11.18 8.67 4.30 3.17 2.70 2.10
MADM 325.30 68.19 40.11 26.75 19.68 8.44 5.61 4.46 2.89
Bn 152.15 36.07 21.83 14.77 10.96 5.10 3.64 3.01 2.21
Tn 252.78 52.25 30.34 20.34 14.79 6.43 4.45 3.59 2.48
S 273.73 56.56 33.75 23.19 16.91 7.36 5.07 4.03 2.71
Ta

n
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r
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Table X. ARL values of CUSUM-θ̂ charts under G(1,1) environment when ARL0 = 500

n Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

5 S 502.91 158.82 102.39 67.93 48.92 16.55 9.77 7.05 3.97
IQR 501.02 157.33 97.27 64.05 46.22 14.96 8.54 6.30 3.58
G 503.32 159.14 100.77 66.16 46.57 15.35 8.89 6.45 3.60
MADM 504.29 219.76 152.19 110.23 81.42 27.41 14.49 9.54 4.69
Bn 498.86 201.46 135.60 95.30 68.38 21.41 11.42 7.84 4.04
Tn 504.79 196.02 127.77 90.87 64.85 21.05 11.10 7.51 3.84
Sr 504.78 222.30 151.62 110.93 81.52 28.29 14.62 9.56 4.55

Table XI. ARL values of CUSUM- θ̂ charts under T4 environment when ARL0 = 500

n Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

5 S 499.31 209.97 135.56 87.64 60.88 17.61 9.95 7.18 3.94
IQR 503.76 189.22 118.32 77.49 51.75 15.06 8.42 6.12 3.48
G 505.82 194.44 122.35 80.49 54.45 15.9 8.91 6.49 3.65
MADM 503.52 175.9 114.06 76.57 56.27 18.6 10.4 7.49 4.07
Bn 500.6 172.75 111.75 72.34 49.35 14.52 8.12 5.89 3.35
Tn 498.75 166.88 102.52 69.47 47.9 14.47 8.17 5.82 3.33
Sr 500.47 169.8 109.51 74.32 53.85 17.73 10.31 7.32 4

Table XII. ARL values of CUSUM-θ̂ charts under Logist(0,1) environment when ARL0 = 500

n Estimator

δ

1 1.1 1.15 1.2 1.25 1.5 1.75 2 3

5 S 501.32 103.18 58.28 36.67 25.63 9.32 5.99 4.63 2.93
IQR 500.76 100.59 56.41 35.88 25.02 9.12 5.85 4.54 2.87
G 499.43 100.33 56.25 35.47 25.02 9.13 5.86 4.60 2.89
MADM 506.61 137.01 83.99 56.96 41.17 15.38 9.47 7.07 4.09
Bn 498.67 113.42 64.18 42.11 28.92 10.51 6.56 5.02 3.08
Tn 498.65 117.24 66.95 43.99 30.27 11.04 6.90 5.22 3.21
Sr 504.4 135.15 83.04 55.21 38.58 14.97 9.28 6.91 4.02
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The charts based on the other estimators detect somewhat less efficiently shifts in the process (Table X). It can be observed from
Table XI that the CUSUM-θ̂ charts based on Tn outperforms all other charts under the T4 distribution followed by the chart based on
Sr, Bn, and MADM. The CUSUM charts based on the G estimator performs efficiently followed by the charts based on IQR under the
logistic distribution (Table XII). Other charts relatively work well under this environment.
5. Conclusion

In this article, we have considered several estimators of the dispersion parameter for the use in establishing phase II control limits. These
estimators comprise some commonly used as well as robust estimators, which are not common in the control charts literature. A CUSUM
chart scheme has been used to monitor the dispersion parameter using these estimators. The performance of these estimators has been
assessed under various situations: the uncontaminated situation and various situations contaminated with symmetric and asymmetric
variance disturbances, location disturbances, and non-normal environments. Under uncontaminated situation, all charts perform well,
but the CUSUM chart based on the sample standard deviation S outperforms all, as was expected under normality. When there are
symmetric and asymmetric variance disturbances, the CUSUM charts based on Tn, MADM, and Sr perform satisfactory and the
performance of the other charts is (very) poor. The CUSUM chart based on the IQR estimator performs well for the gamma distribution,
the G estimator performs well under the logistic distribution, and the Tn estimator performs well under the t-distribution. However,
the differences between the estimators are not very substantial. In short, the dispersion CUSUM charts based on robust estimators
(Tn, MADM, and Sr) behave well in all types of environments (uncontaminated, contaminated, and non-normal).
pyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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