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Control charts are the most important statistical process control tool for monitoring variations in a process.
A number of articles are available in the literature for the X̄ control chart based on simple random sampling,
ranked set sampling, median-ranked set sampling (MRSS), extreme-ranked set sampling, double-ranked
set sampling, double median-ranked set sampling and median double-ranked set sampling. In this study, we
highlight some limitations of the existing ranked set charting structures. Besides, we propose different runs
rules-based control charting structures under a variety of sampling strategies. We evaluate the performance
of the control charting structures using power curves as a performance criterion. We observe that the
proposed merger of varying runs rules schemes with different sampling strategies improve significantly
the detection ability of location control charting structures. More specifically, the MRSS performs the best
under both single- and double-ranked set strategies with varying runs rules schemes. We also include a
real-life example to explain the proposal and highlight its significance for practical data sets.

Keywords: control charts; power; runs rules; sampling strategies; statistical process control

1. Introduction

In 1920s, Shewhart (cf. [28]) introduced the idea of control charts to monitor variations in the
process parameters, including location and spread. Following the pioneering work of Shewhart,
different Shewhart-type control charts were developed for the process mean and dispersion using
the simple random sampling (SRS) approach. McIntyre [16] suggested ranked set sampling (RSS)
to estimate the population mean, and Takahasi and Wakimoto [30] derived the necessary mathe-
matical theory in this regard. RSS has wide application in different areas, including agriculture,
medicine, sociology and ecology for different purposes, cf. [1,14,19,21,23,24,27] and the refer-
ences therein. Dell and Clutter [8] started the discussion in which the ranking may not be perfect,
that is, there are errors in ranking the units with respect to the variable of interest.
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484 R. Mehmood et al.

Shewhart-type control charts with different sampling strategies generally perform well for large
shifts in the process parameters. In case of SRS, a number of authors have defined sensitizing rules
and runs rules schemes for different control charts to improve the detecting ability for small and
moderate shifts. These rules are described and evaluated in the Western Electric Statistical Quality
Control Handbook [31], and in the articles of Khoo [11], Khoo and Ariffin [12], Acosta-Mejia
[3], Koutras et al. [13], Antzoulakos and Rakitzis [6], Acosta-Mejia and Pignatiello [4] and Riaz
et al. [25], among others.

Although the implementation of these runs rules improves the performance of control charts,
it creates problems such as inflated false alarm rates, biasedness and non-monotonicity (cf. [25]).
Several authors have addressed these issues in different ways such as simultaneous application
of more rules or adjusting the structure of the control limits. Riaz et al. [25] redefined the rules
for the sake of providing each rule an independent identity and at the same time handling the
aforementioned issues.

In this article, we implement different runs rules schemes to the design structure of control charts
for location based on different sampling strategies. It includes SRS, RSS, median-ranked set sam-
pling (MRSS), extreme-ranked set sampling (ERSS), percentile-ranked set sampling (PRSS),
double-ranked set sampling (DRSS), double median-ranked set sampling (DMRSS), median
double-ranked set sampling (MDRSS), double percentile-ranked set sampling (DPRSS) and per-
centile double-ranked set sampling (PDRSS). Furthermore, we carry out extensive comparisons
among these strategies under the runs rules schemes.

The organization of this article is as follows: In Section 2, we provide the conceptual framework
of the different sampling strategies. In Section 3, we work out the design structures of the proposed
runs rules-based control charts under different sampling strategies for monitoring the location.
Then, in Section 4, we evaluate and compare the proposed control charts using power curves as
performance measure. In Section 5, we provide a numerical example for illustrative purposes.
Finally, Section 6 provides the summary, and the main findings, and gives a direction for future
research.

2. Different sampling strategies

In practical situations, we may have some extra information about the study variable readily
available or it can easily be gathered. To make sampling mechanisms more effective, McIntyre
[16] proposed the idea of RSS, which uses extra information by ranking the units, and several
authors suggested to use control charts based on different ranked set strategies, such as RSS,
MRSS and ERSS (see, for example, [21] and the references therein). The ranked set methods are
mainly classified into two categories, namely single- and double-ranked set sampling strategies.
Later, we discuss both categories (along with their different variants).

The RSS procedure can be summarized as (cf. [21]):

Select n random sample sets, each of size n units from the population, and rank the units with respect to variable of
interest. Then an actual measurement is taken from the unit with the smallest rank from the first set. From the second
set, an actual measurement is taken from the unit with the second smallest rank, and the procedure is continued until
the unit with the largest rank is chosen for actual measurement from the nth set. This way we obtain a sample of n
measured units, one from each set. The cycle may be repeated until nr units have been measured.

This results in simple RSS.

If the median-order statistics is chosen from each set in the above procedure, we get the MRSS.
Another strategy is the PRSS where any particular percentile (e.g. the 30th percentile) is selected
from each set. Also, ERSS is a strategy in which the smallest observation is picked from the
first half and the largest observation is picked from the next half. A double application of these
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strategies results in DRSS strategies such as DRSS, DMRSS and DPRSS. Moreover, we get
MDRSS if we choose RSS at the first stage and then choose the median-ordered observations at
the second stage. Similarly, after choosing an RSS in the first stage and if we pick any particular
percentile at the second stage, it results in PDRSS. For more details, the interested reader may
study Muttlak and Saleh [22], Muttlak [20], [1,2,5,21] and the references therein.

Sometimes, the variable of interest X is difficult to rank (cf. [8]), in which case we rank this
variable with respect to another variable, the so-called concomitant variable (Y ). The procedure
is described as: select n bivariate random samples each of size n. Rank the variable of interest
(X) with respect to the concomitant variable (Y ). For an actual measurement from the first set,
the unit with the smallest Y is associated, from the second set select the unit corresponding with
the second smallest Y , continue this procedure until we obtain the unit corresponding with the
largest Y . This results in the so-called imperfect ranked set sampling (IRSS). The idea of IRSS
may also be worked out for the other single- and double-ranked set strategies on similar lines.

Let X(i:n)j be ith order statistic of the quality characteristic of interest X for the ith SRS set of
size n in the jth cycle. Then, an unbiased estimator of the population mean (cf. [30]) using ranked
set sample data based on the jth cycle is defined by: X̄R,j = 1/n

∑n
i=1 X(i:n)j; j = 1, 2, . . . , r and

the standard deviation is given by σR,j =
√

1/n2
∑n

i=1 σ 2
(i,n), where σ 2

(i:n) = E((X(i:n) − E(X(i:n)))
2

represents the variance of the ith order statistic from a sample of size n.
Assuming that X and Y have a bivariate normal distribution then the regression of X on Y

is defined as [29] X = μX + ρ(σX/σY )(Y − μY ) + ε, where ε is the random error component
having mean zero and variance σ 2

X(1 − ρ2), where ρ is the correlation between X and Y and
μX , μY , σX , σY are the means and standard deviations of the variables X and Y , respectively, and
Y and ε are independently distributed. Let (X[i,n],j, Y(i:n),j) denote the pair of ith smallest value
of Y associated with the corresponding value of X obtained from the ith set in the jth cycle,
respectively. Hence, we have: X[i,n],j = μX + ρ(σX/σY )(Y(i,n),j − μY ) + εij. Then, the unbiased
estimator of the population mean for the variable of interest X with concomitant variable Y
can be written as: X̄IR,j = 1/n

∑n
i=1 X[i:n],j j = 1, 2, . . . , r and the standard deviation is given by:

σX̄IR,j
=

√
σ 2

X/n [(1 − ρ2) + ρ2/n
∑n

i=1 σ 2
z(i:n)], where σ 2

z(i:n) represents the variance of the ith order

statistic from a sample of size n from the standard normal distribution.
The unbiased estimators of the population mean for the other single- and double-ranked set

strategies (both for the perfect and imperfect ranking strategies) may be defined on the similar
lines by using the respective ranked data of each sampling strategy accordingly, as discussed
above for RSS and IRSS. For more relevant details, the interested readers may see Garcia and
Cebrian [10], Salazar and Sinha [26], Muttlak and Saleh [22], Muttlak [20], [1,7,21,28,29] and
the references therein.

3. Proposed control charting schemes

To monitor the location parameter of the variable under study, the general structure of the location
control chart is given as: μ̂ ± Kσμ̂, whereμ̂ is a location estimator such as the usual X̄ based
on SRS or any of the RSS estimators μ̂ as given in Section 2, σμ̂ is the corresponding standard
deviation of the respective estimator (e.g. σX/

√
n for the usual X̄) as provided in Section 2. K is

the control limit coefficient, which fixes the false alarm rate. The first RSS location control chart

structure was given by μ ± 3
√

σ 2
X/n [(1 − ρ2) + ρ2/n

∑n
i=1 σ 2

z(i:n)]. This form was extensively

studied by Muttlak and Al-Sabah [21]. They used the factor 3 as control limit coefficient and
implemented only one out-of-control rule, that is, if one sample X̄R falls outside the control limits,
then we have an out-of-control signal (we call this a 1 out of 1 rule which will symbolically be
written as 1/1). In fact, the coefficient 3 is meant for the usual SRS-based X̄ control chart, so using
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the same coefficient with the design structure of the RSS-based X̄R control chart results in three
limitations:

(1) The false alarm rate cannot be fixed at the desired level;
(2) The design structure cannot be used for varying choices of n and ρ purposefully (as alarm

rates are disturbed);
(3) The decision rule is restricted to only 1/1.

The same approach is followed in the literature for the other sample schemes described in Section 2,
and hence these results have the same limitations.

We propose in this article extended design structures for the location control chart based on
the different ranked set strategies from Section 2, namely RSS, MRSS, ERSS, PRSS, DRSS,
DMRSS, DPRSS, MDRSS, PDRSS and we will use different runs rules schemes. The resulting
control charts will take care of the above-mentioned three limitations as well. For convenience,
we will use the notation T to refer to different sampling strategies such as RSS, MRSS and ERSS.
Before providing the mentioned design structures, we list down the set of runs rules schemes,
which will be implemented with the design structure of the suggested control charts. These runs
rules are given as in Riaz et al. [25], who applied these rules with the SRS-based control charts:

• An out-of-control signal is received if at least k–m points of k consecutive points (where
0 ≤ m ≤ k − 1) fall outside the control (signalling) limits (hL, hU) of the sampling distribution
of the control charting statistic X̄T . Symbolically, we write these rules as: k − m/k.

Here,

hL = μX + A(T ,n,ρ,m,k,p/2)σX , hU = μX + A(T ,n,ρ,m,k,1−p/2)σX , (1)

where the control limits constant A(T ,n,ρ,m,k,p/2) depends on the sampling strategy T (which may
be any of the strategies as listed in Section 2), the sample size n, and the correlation ρ between X
and Y ; k are the total consecutive points to be considered, k–m are the decision observations used
in a given rule and p is the probability of a single point falling outside the respective signalling
limits depending on k–m and k. The value of p for a given runs rule depends on m, k and α (the
pre-specified false alarm rate) and may be obtained by solving the following equation:

α =
∑

k−m≤k

k!
(k − m)!m!p(k−m)(1 − p)m, where 0 ≤ m ≤ k − 1. (2)

The values of p for different rules investigated in this study are listed in Table 1 for α = 0.0027.
Similar values may be obtained for any choice of α by solving Equation (2).

The control structure given in Equation (1) represents different control charting structures,
namely the X̄R, X̄M , X̄E , X̄P X̄DR, X̄DM, X̄DP, X̄MD and X̄PD control charts based on their respective

Table 1. Values of p for different sensitizing rules.

Rule 1/1 2/2 1/2 3/3 2/3 1/3 4/4 3/4

p 0.0027 0.0014 0.1392 0.1392 0.0303 0.0009 0.008 0.0898

Rule 2/4 5/5 4/5 3/5 6/6 5/6 4/6 7/7

p 0.0215 0.1577 0.0669 0.0669 0.3732 0.2231 0.1219 0.4296

Rule 6/7 5/7 8/8 7/8 6/8 9/9 8/9 7/9

p 0.2826 0.4774 0.3554 0.3554 0.2304 0.5183 0.3821 0.2788
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Table 2. Unbiasing constants for different ranked set-based charts.

ρ 0.25 0.50 0.75 1

n 3 5 7 3 5 7 3 5 7 3 5 7

RSS 1.699 2.33 2.717 1.747 2.377 2.754 1.815 2.447 2.816 1.939 2.564 2.956
MRSS 1.675 2.261 2.637 1.57 2.114 2.412 1.406 1.8 2.007 1.144 1.296 1.368
ERSS 1.725 2.4 2.326 1.812 2.546 2.343 1.95 2.802 2.335 1.939 3.082 3.769
DRSS 1.704 2.327 2.73 1.76 2.368 2.76 1.864 2.466 2.848 2.026 2.671 3.03
DMRSS 1.646 2.272 2.624 1.515 2.043 2.368 1.263 1.624 1.834 0.757 0.665 0.568
MDRSS 1.656 2.259 2.616 1.537 2.052 2.367 1.303 1.655 1.879 0.89 0.86 0.786
PRSS 1.675 2.267 2.637 1.57 2.115 2.455 1.406 1.824 2.064 1.144 1.296 1.368
DPRSS 1.646 2.245 2.638 1.515 2.051 2.37 1.263 1.626 1.87 0.758 0.736 0.721
PDRSS 1.659 2.253 2.645 1.527 2.062 2.385 1.306 1.689 1.929 0.894 0.932 0.953

sampling strategies RSS, MRSS, ERSS, PRSS, DRSS, DMRSS, DPRSS, MDRSS, PDRSS, for
monitoring the location parameter μX . These structures are capable of addressing the limitations
(i)–(iii) mentioned above and also take care of the issues of biasedness and non-monotonicity
as studied by Riaz et al. [25]. Moreover, these control structures help implementing each rule
independently and hence avoiding simultaneous application (cf. [9]) of many rules, which results
in a simpler design structure.

For the case of unknown parameters, Equation (1) may be written as

hL = ¯̄XT + A(T ,n,ρ,m,k,p/2)

R̄T

d2(T)

, hU = ¯̄XT + A(T ,n,ρ,m,k,(1−p/2))

R̄T

d2(T)

,

where ¯̄XT represents the mean of the corresponding sample means, R̄T represents mean of the
sample ranges and d2(T) represents the unbiasing constant for a given strategy T . For some selective
choices, the values of d2(T) are provided in Table 2.

The control limit coefficient A(T ,n,ρ,m,k,p/2) for the X̄T control charts, for a pre-specified α, may be
obtained for given design parameters n, ρ, m and k. For some selective choices of these quantities,
we have obtained the values of A(n,ρ,m,k,1−p/2) for different preferences of T as given in Section 2.
The results are tabulated in the form of Table 3 for RSS by fixing α = 0.0027. Similar tables
may be constructed for other sampling strategies at different choices of the design parameters.
We have also generated more tables for MRSS, ERSS, PRSS, DRSS, DMRSS, DPRSS, MDRSS,
PDRSS; and for the sake of brevity, these results are reported in Tables 4–11 at the weblink
http://www.ibisuva.nl/en/Research in the form of “Additional material”. The results of Tables
2–11 are obtained through extensive Monte Carlo simulations (105–106 runs depending on the
stability of estimate and the reduction of error in a given situation). To conduct a Monte Carlo
experiment, we have generated random samples using a specific sampling strategy T , for a given
size, from the standard bivariate normal distribution (without loss of generality) with varying
values of ρ. Bivariate normality may be seen in different industrial applications (cf. [15]). The
choices of ρ result in different ranking mechanisms, such as ρ = 0 leads to SRS, ρ = 1 leads to
perfect ranking, and ρ between 0 and 1 results in imperfect ranking (cf. [1]).

For a given sample, we have computed the values of the random variable X̄T for each combi-
nation of ρ and n and for a given sample scheme T . By repeating these steps 105–106 times using
different combinations of ρ and n, we obtain values for A(n,ρ,m,k,p/2) according to the pre-specified
false alarm rate α. Note that for a desired α, the value of p is obtained by solving Equation (2).
The choices of runs rules provided in Tables 3–11 are motivated by Riaz et al. [25]. The results
for other choices may easily be derived on similar lines.
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Table 3. Control limits of RSS for different run rules at α = 0.0027.

Rule

ρ n Control limits 1/1 2/3 2/4 9/9 8/9 7/9

0 3 A(n,ρ,m,k,p/2) −1.73277 −1.25056 −1.3269 −0.37328 −0.50423 −0.6246
A(n,ρ,m,k,1−p/2) 1.73407 1.249735 1.326254 0.372247 0.504329 0.624287

5 A(n,ρ,m,k,p/2) −1.3411 −0.96894 −1.02879 −0.28976 −0.39162 −0.48504
A(n,ρ,m,k,1−p/2) 1.343263 0.969543 1.027768 0.288665 0.390497 0.484182

7 A(n,ρ,m,k,p/2) −1.13494 −0.81872 −0.86916 −0.24428 −0.33017 −0.40931
A(n,ρ,m,k,1−p/2) 1.136441 0.819057 0.869706 0.244302 0.330421 0.409436

0.25 3 A(n,ρ,m,k,p/2) −1.69895 −1.23277 −1.30686 −0.3668 −0.49687 −0.61471
A(n,ρ,m,k,1−p/2) 1.705628 1.232535 1.30811 0.368274 0.497586 0.616615

5 A(n,ρ,m,k,p/2) −1.31354 −0.94859 −1.00689 −0.28389 −0.38394 −0.47511
A(n,ρ,m,k,1−p/2) 1.314215 0.948729 1.007537 0.283188 0.38267 0.473988

7 A(n,ρ,m,k,p/2) −1.10681 −0.79944 −0.84791 −0.2386 −0.32293 −0.39996
A(n,ρ,m,k,1−p/2) 1.104576 0.79944 0.848399 0.238572 0.322971 0.400112

0.5 3 A(n,ρ,m,k,p/2) −1.6293 −1.17502 −1.24719 −0.34958 −0.47318 −0.58731
A(n,ρ,m,k,1−p/2) −1.6293 −1.17502 −1.24719 −0.34958 −0.47318 −0.58731

5 A(n,ρ,m,k,p/2) −1.22811 −0.88804 −0.94243 −0.26528 −0.35892 −0.4444
A(n,ρ,m,k,1−p/2) 1.230368 0.888501 0.942625 0.264525 0.357863 0.443675

7 A(n,ρ,m,k,p/2) −1.02776 −0.73976 −0.78576 −0.22074 −0.29881 −0.37019
A(n,ρ,m,k,1−p/2) 1.024953 0.741068 0.786638 0.221262 0.299232 0.370535

0.75 3 A(n,ρ,m,k,p/2) −1.48647 −1.07045 −1.13683 −0.31964 −0.43198 −0.53534
A(n,ρ,m,k,1−p/2) 1.480112 1.071179 1.135862 0.31865 0.43137 0.534283

5 A(n,ρ,m,k,p/2) −1.07211 −0.77578 −0.82294 −0.23124 −0.31293 −0.38754
A(n,ρ,m,k,1−p/2) 1.071079 0.774892 0.821796 0.231132 0.31294 0.387268

7 A(n,ρ,m,k,p/2) −0.87244 −0.63144 −0.66984 −0.18825 −0.25462 −0.31519
A(n,ρ,m,k,1−p/2) 0.878487 0.63145 0.670181 0.188902 0.25559 0.316106

1.00 3 A(n,ρ,m,k,p/2) −1.26359 −0.9057 −0.96181 −0.26877 −0.36405 −0.45115
A(n,ρ,m,k,1−p/2) 1.261075 0.905653 0.960996 0.268683 0.36392 0.451047

5 A(n,ρ,m,k,p/2) −0.81238 −0.58488 −0.62095 −0.17333 −0.23457 −0.29076
A(n,ρ,m,k,1−p/2) 0.813623 0.583784 0.620062 0.172694 0.23381 0.289998

7 A(n,ρ,m,k,p/2) −0.60286 −0.43275 −0.45924 −0.12837 −0.174 −0.21554
A(n,ρ,m,k,1−p/2) 0.601519 0.431769 0.45881 0.128687 0.173935 0.215439

4. Performance evaluation and comparisons

This section evaluates and compares the performance of our different sampling strategies-based
proposals in the form of X̄R, X̄M , X̄E , X̄P, X̄DR, X̄DM, X̄DP, X̄MD and X̄PD control charts (depending
on the choice of T) by implementing different runs rules schemes particularly those studied by
Riaz et al. [25]. Power curves are used as performance criterion following Montgomery [18] and
Riaz et al. [25]. For power computations in this article, we have considered shifts in terms of δσ ,
which means that the shifted location parameter say μ′ is defined as: μ′ = μ + δσ ) and limits
are set using the two-sided probability limits given in Equation (1), for specified α,n, ρ, m and k
using a particular choice of T . Here, δ = 0 means no shift in μ and δ �= 0 means that the process
μ has been changed. The power evaluations for different values of n, ρ and different choices of
α are obtained for all X̄T control charts with varying options of T , m and k. Particularly, we have
considered the schemes with k = 1, 2, . . . , 9 and m = 0, 1, 2 such that the set of rules “at least k–m
points of k consecutive points (where 0 ≤ m ≤ k − 1)” may be classified into three categories as
those where k–m = 0, 1, 2. To be more specific, k–m = 2 includes 1/3, 2/4, 3/5, 4/6, 5/7, 6/8, 7/9;
k–m = 1 includes 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8, 8/9 and k–m = 0 includes 1/1, 2/2, 3/3, 4/4, 5/5,
6/6, 7/7, 8/8, 9/9. Of course, other choices of k and m may be opted but those considered here are
able to cover the most practical and commonly used situations.
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Assuming bivariate normality of (Xi, Yi) the power evaluations are carried out in the following
way: for fixed values of α, we have chosen the value of the control limit coefficient A(T ,n,ρ,m,k,p/2)

of the control structure for the X̄T control chart for different choices of the design parameters n,
ρ, m and k with some appropriately worked out value of p. Then, proportions of cases falling
outside (hL, hU) are calculated using their corresponding control charting statistics X̄T (or X̄ which
is in fact a special case of X̄R when ρ = 0) for varying values of δ. We have accomplished this
power study by designing a code in R language and by running extensive Monte Carlo simulations
(105–106 depending on stability of the output).

For some selective values of the design parameters n, ρ, m and k at α = 0.0027 and for
varying values of δ, power curves are provided in Figures 1–5 for different choices of T . We have
also produced some more figures for MRSS, ERSS, PRSS, DRSS, DMRSS, DPRSS, MDRSS,
PDRSS, but for limiting the number of pages, the extended figures can be found at the weblink
http://www.ibisuva.nl/en/Research in the form of “Additional material”. Note that for PRSS, we
have considered 30th and 40th percentiles in our study. We have presented extreme choices of
m and k for runs rules schemes in these figures and tables because the performance of the other
rules may easily be covered as in between cases, as was already noted by Riaz et al. [25].

For the proposed run rules-based charting structures under varying rank set strategies, we have
observed that: these are flexible to accommodate any value of the design parameters n, ρ, m and
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Figure 1. Power curves of different control charts with varying ρ, n, r, and m at α = 0.0027.
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Figure 2. Power curves of different control charts using varying n with different rules at α = 0.0027.
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Figure 3. Power curves of different control charts with varying runs rules at α = 0.0027.
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Figure 4. Power curves of double- versus single-ranked set strategies at α = 0.0027.
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Figure 5. Power curves of different control charts with varying ranked set strategies using different ρ, n, m
and k at α = 0.0027, n = 5, rule 2/3 and ρ = 1.

k at any desired pre-specified value of α (cf. Tables 2–11), which is not the case with simple
RSS/DRSS and the usual X̄ charts. They avoid inflation of false alarm rates for any choice of n
and ρ, and also for any runs rule choice (cf. Tables 3–11), which is a serious issue in runs rules
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application with any control charting structures such as RSS/DRSS/SRS-based location charts.
Their performances remain superior as compared with those of the simple RSS/DRSS/SRS-based
design structures, the usual X̄ chart and the runs rules-based design structure of the X̄ chart given
by Riaz et al. [25], for varying choices of the design parameters n, ρ, m and k at any value
of α (cf. Figures 1–5). Their performances keep improving with an increase in the values of ρ

(cf. Figure 1), n(cf. Figure 2), k(cf. Figure 3) and k − m (cf. Figure 3). They avoid complicated
design structures of the control chart, which occur due to simultaneous application of different
runs rules. As all our implemented runs rules have independent identities (cf. [25]), there is no
need to apply more rules simultaneously. Hence, the control charting structure remains simple
and their power ability keep improving with an increase in the values of δ and α, so there is no
issue of biasedness and non-monotonicity as already indicated by Riaz et al. [25].

Moreover, the design structures of the simple RSS-based charts (cf. [21]) and the simple DRSS-
based charts (cf. [1]) become special cases of the proposed structures given in Equation (1) when
m = k = 1 and the choice of the control limit coefficient A = 3. The design structure of the usual
X̄ control chart also becomes a special case of the proposed structure given in Equation (1) when
m = k = 1 and ρ = 0 and the design structure of the runs rules-based X̄ chart given by Riaz et al.
[25] becomes a special case of the proposed structure (1) when ρ = 0.

We have also examined that the double-ranked set strategies are better as compared with single-
ranked set strategies in general (cf. Figure 4). In the class of single-ranked set strategies, the
superiority order is MRSS, PRSS, ERSS and RSS, while in double-ranked set group, the domi-
nance order is DMRSS, DPRSS, MDRSS, PDRSS and DRSS with varying runs rules schemes.
It advocates that the runs rules implementation with different variants of RSS and DRSS really
boost the performance of these control charting structures in general (cf. Figure 3).

In short, the design structure of the proposed X̄T charts are generalized versions of the usual
Shewhart X̄ chart (cf. [28]), the RSS-based design structure of the X̄ chart (cf. [21]), the DRSS-
based design structure of the X̄ chart (cf. [1]) and the runs rules-based design structure of the X̄
chart (cf. [25]) .

5. A real life example

To illustrate the application of ranked set control charts and to highlight their importance by
implementing a variety of runs rules schemes, we provide here a numerical example. In this study,
we consider an agricultural scenario where the yield depends on many factors such as soil, water,
environment and treatment. Among these, soil is an important factor which provides different
nutrients, such as nitrogen, phosphorous, potassium, zinc, boron, iron, copper, which constitute
the total soluble salt in soil. An optimum level of soluble salt is essential for good production. The
presence/absence of soluble salt in soil can be assessed easily by visual inspection (concomitant
variable). To monitor the soluble salt of different plots through a control chart, random samples
are collected using MRSS because of its good performance as shown in Section 4.

The procedure of collecting the median ranked set sample is as follows: For 30 villages select
25 plots from each village using SRS and then divide them randomly into 5 sets of size 5 each. By
visual inspection, assign the rank to each set with respect to their total soluble salt. For an actual
measurement of total soluble salt, select the plot with rank 3 and measure its electric conductivity
(EC) using a portable device (EC meter in ms/cm). Repeat this process 30 times (cycle). Hence,
30 median ranked set samples of size 5 each are gathered.

The objective of the study is to check whether the plots are suitable for cultivation and if in
case of an effected plot (out-of-control) a chemist can recommend a remedy. In the example, the
variable of interest is EC in soil and the ranking variable is the visual inspection of soluble salt
in soil.
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Figure 6. MRSS control chart with runs rules on EC data.

It is to be mentioned that the said data set was giving a closer fit to a lognormal distribution. As
in our study, we assume normality of the process so for that purpose we performed a log trans-
formation. We tested this data set using the MRSS-based control chart with the implementation
of 1/1 and 2/3 runs rule schemes as an illustration. We have set two-sided control limits, namely
hL and hU at α = 0.0027 and two runs rules as:

A(n,ρ,m,k,p/2) = −0.7182 and A(n,ρ,m,k,1−p/2) = 0.7150 for the 1/1 rule;

A(n,ρ,m,k,p/2) = −0.5189 and A(n,ρ,m,k,1−p/2) = 0.5187 for the 2/3 rule.

The values of the control charting statistic X̄M are calculated for all the 30 ranked set samples
and are plotted against their respective limits hL and hU depending on the runs rule to be used. The
resulting control chart for MRSS is presented in Figure 6, in which the symbols LCL and UCL are
used to indicate lower and upper control limits, respectively. The transformed data set is plotted
in the form of a figure (cf. Figure 7), provided on the weblink http://www.ibisuva.nl/en/Research
as “Additional material” to save some space in the article. The original data set is also provided
in the form of Table 12, on the weblink http://www.ibisuva.nl/en/Research.

The out-of-control signals on this chart are indicated by rectangular boxes for the 1/1 rule and
oval shapes for the 2/3 rule. It is evident from Figure 6 that there are three out-of-control signals
given using 1/1 rule and five signals using 2/3 rule. This indicates the significance of runs rules-
based structures for these charts. It is to be noted that the 2/3 rule gives more signals as compared
with the 1/1 rule, which is in accordance with the findings of Section 4.

6. Summary and conclusions

Control charts are important statistical tools to monitor process characteristics for stability, where
the charting statistics are displayed on graphs by plotting these statistics versus the sampling order.
A number of control charts have been introduced based on different sampling technique such as
SRS and RSS, but their design structures partially cover the choices of different design parameters
such as n, ρ, m, k and any desired value of α. The proposals of this study serve as a generalized
version, which can accommodate a variety of choices for the said design parameters. Indeed, the
design structure of the proposed charts are more saturated versions, which cover the features of
the usual SRS along with single- and double-ranked set strategies (e.g. the usual Shewhart X̄
chart [28], single RSS-based design structures [21], double RSS-based design structures [1] and
runs rules-based design structure of X̄ chart [25]. In general, double-ranked set strategies perform
better as compared with single ranked set strategies and within single-ranked set strategies MRSS
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is the best choice followed by PRSS, ERSS and RSS, whereas in double-ranked set class DMRSS
outperform all the others followed by DPRSS, MDRSS, PDRSS and DRSS.

The proposed control structures take care of different issues (such as inflated false alarm
rate, biasedness, non-monotonicity and complicated design structure) and provide an improved
efficiency for every type of shifts as compared with the existing counterparts.

A detailed investigation on dispersion charts with varying RSS schemes supported by different
runs rules is a natural follow-up of this article. It is hard to find literature on dispersion charts
with ranked set strategies, so the idea of location control charting with ranked set strategies
implemented with runs rules schemes needs to be studied in detail with dispersion charts as well
(cf. [17]).
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