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A Robust Standard Deviation Control Chart
Marit SCHOONHOVEN and Ronald J.M.M. DOES

Institute for Business and Industrial Statistics, University of Amsterdam
1018 TV Amsterdam, The Netherlands

(m.schoonhoven@uva.nl; r.j.m.m.does@uva.nl)

This article studies the robustness of Phase I estimators for the standard deviation control chart. A Phase
I estimator should be efficient in the absence of contaminations and resistant to disturbances. Most of the
robust estimators proposed in the literature are robust against either diffuse disturbances, that is, outliers
spread over the subgroups, or localized disturbances, which affect an entire subgroup. In this article, we
compare various robust standard deviation estimators and propose an algorithm that is robust against both
types of disturbances. The algorithm is intuitive and is the best estimator in terms of overall performance.
We also study the effect of using robust estimators from Phase I on Phase II control chart performance.
Additional results for this article are available online as Supplementary Material.
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1. INTRODUCTION

The performance of a process depends on the stability of
its location and dispersion parameters and any change in these
parameters should be detected as soon as possible. To monitor
these parameters, Shewhart (1931) introduced the idea of control
charts in the 1920s. The dispersion parameter is controlled first,
followed by the location parameter. The present article focuses
on control charts for monitoring the standard deviation.

We assume that in the design of such charts, the in-control
standard deviation (σ ) is unknown. Therefore, σ must be esti-
mated from subgroups taken when the process is assumed to be
in control. This stage in the control charting process is denoted
as Phase I (cf. Woodall and Montgomery 1999). Control limits
are calculated from the estimated σ to monitor the process
standard deviation in Phase II. The Phase I and Phase II data
are arranged in subgroups indexed by i. We denote by Xij ,
i = 1, 2, . . . , k and j = 1, 2, . . . , n, the Phase I data and by Yij ,
i = 1, 2, . . . and j = 1, 2, . . . , n, the Phase II data. The Xij ’s
are assumed to be independent and N (µ, σ 2) distributed and
the Yij ’s are assumed to be independent and N (µ, (λσ )2) dis-
tributed, where λ is a constant. When λ = 1, the standard
deviation is in control; otherwise it has changed. Let σ̂ be an un-
biased estimate of σ based on the Xij ’s, and let σ̂i be an unbiased
estimate of λσ based on the ith subgroup Yij , j = 1, 2, . . . , n.
The process standard deviation can be monitored in Phase II by
plotting σ̂i on a Shewhart-type control chart with limits

ÛCL = Unσ̂ , L̂CL = Lnσ̂ , (1)

where Un and Ln are chosen so that the desired control chart
behavior is achieved when the process is in control. When
σ̂i falls within the control limits, the process is deemed to be in
control. We define Fi as the event that σ̂i falls beyond the limits,
P (Fi) = p as the probability of that event and RL as the run
length, that is, the number of subgroups until the first σ̂i falls
beyond the limits. When the limits are known, Fs and Ft (s �= t)
are independent and therefore RL is geometrically distributed
with parameter p. Hence, the average run length (ARL) is given
by 1/p and the standard deviation of the run length (SDRL)

by
√

1 − p/p. It is common practice to use p = 0.0027 and so
ARL = 370.4 and SDRL = 369.9 when σ is known.

When the standard deviation is estimated, the conditional run
length—the run length given an estimate of σ—has a geometric
distribution. However, the unconditional RL distribution—the
run length distribution averaged over all possible values of the
estimated σ—is not geometric. Quesenberry (1993) showed that
for the X and X control charts, the unconditional ARL as well
as the unconditional p are higher than in the (µ,σ )-known case.
Chen (1998) studied the unconditional run length distribution of
the standard deviation control chart and showed that the situation
is somewhat better than for the X control chart. To achieve the
intended unconditional in-control performance when the limits
are estimated, one could derive Un and Ln by controlling either
the in-control p or ARL, or a percentile point of the in-control
RL distribution. An advantage of using the ARL is its intuitive
interpretation. A drawback, however, is that the ARL is strongly
determined by the occurrence of extremely long runs. Hillier
(1969) and Yang and Hillier (1970) derived correction factors
for the range (R) and standard deviation (S) control charts by
controlling p.

Jensen et al. (2006) conducted a literature survey of the ef-
fects of parameter estimation on control chart properties and
identified issues for future research. Their suggestion on page
360 is the subject of the present article. More specifically, we
will find robust estimators for Phase I data and we will study the
performance of these robust estimators during Phase II moni-
toring.

Rocke (1989) proposed standard deviation control charts
based on the mean or the trimmed mean of the subgroup ranges
or subgroup interquartile ranges. Moreover, he studied a two-
stage procedure whereby the initial chart is constructed first
and then groups that seem to be out of control are excluded.
The control limits are recomputed from the remaining sub-
groups. Rocke (1992) provided the practical details for the
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construction of these charts. Tatum (1997) explained the dif-
ference between diffuse and localized disturbances: diffuse dis-
turbances are equally likely to perturb any observation, whereas
localized disturbances affect all observations in a subgroup. He
proposed a method, constructed around a variant of the biweight
A estimator, that is resistant to both diffuse and localized distur-
bances. Finally, Davis and Adams (2005) proposed a diagnostic
technique for monitoring data that might be contaminated with
outliers to react to signals that indicate a true process shift only.

In this article, we investigate robust Phase I estimators for the
subgroup standard deviation control chart. The estimators con-
sidered are the pooled standard deviation, the robust biweight
A estimator of Tatum (1997), and several adaptive trimmers.
Additionally, we look at an adaptive trimmer based on the mean
deviation from the median, a statistic more resistant to diffuse
outliers (cf. Schoonhoven, Riaz, and Does 2011). For diffuse
outliers, we think that a control chart for individual observa-
tions would detect outliers more quickly. We therefore include
an estimator based on the individuals chart. To measure the
variability within and not between subgroups, we correct for
differences in the location between the subgroups. Finally, we
present an algorithm that combines the last two approaches. The
performance of the estimators is evaluated by assessing their
mean squared error (MSE) under normality and in the presence
of several types of contaminations. Moreover, we derive factors
for the Phase II limits of the standard deviation control chart
and assess the performance of the control charts by means of a
simulation study.

The article is structured as follows. The next section intro-
duces the standard deviation estimators, demonstrates the im-
plementation of the estimators by means of a real-world ex-
ample, and assesses their MSE. Next, we present the design
schemes for the standard deviation control chart and derive
the Phase II control limits. We then describe the simulation
procedure and simulation results. The article ends with some
concluding remarks.

2. PROPOSED PHASE I ESTIMATORS

In practice, the same statistic is generally used to estimate
both the in-control standard deviation σ in Phase I and the stan-
dard deviation λσ in Phase II. Since the requirements for the
estimators differ between the two phases, this is not always the
best choice. In Phase I, an estimator should be efficient in uncon-
taminated situations and robust against disturbances, whereas in
Phase II, the estimator should be sensitive to disturbances (cf.
Jensen et al. 2006). In this section, we present six Phase I es-
timators, demonstrate the implementation of the estimators by
means of a real data example, and assess the efficiency of the
estimators in terms of their MSE.

2.1 Estimators of the Standard Deviation

Recall that Xij , i = 1, 2, . . . , k and j = 1, 2, . . . , n, denotes
the Phase I data with n the subgroup size and k the number
of subgroups.

The first estimator of σ is based on the pooled subgroup
standard deviation

S̃ =
(

1

k

k∑
i=1

S2
i

)1/2

, (2)

where Si is the ith subgroup standard deviation defined by

Si =
(

1

n − 1

n∑
j=1

(Xij − X̄i)
2

)1/2

.

An unbiased estimator is given by S̃/c4(k(n − 1) + 1), where
c4(m) is defined by

c4(m) =
(

2

m − 1

)1/2
�(m/2)

�((m − 1)/2)
.

This estimator provides a basis for comparison under normality
when no contaminations are present. Mahmoud et al. (2010)
showed that this estimator is more efficient than the mean of
the subgroup standard deviations and the mean of the subgroup
ranges when the data are normally distributed.

We also evaluate a robust estimator proposed by Tatum
(1997). This approach is applicable for n ≥ 4. The method
begins by calculating the residuals in each subgroup, which
involves subtracting the subgroup median from each value:
resij = Xij − Mi . If n is odd, then in each subgroup, one of
the residuals will be zero and is dropped. As a result, the
total number of residuals is m′ = nk when n is even and
m′ = (n − 1)k when n is odd. Tatum’s estimator is given by

S∗
c = m′

(m′ − 1)1/2

(∑k
i=1

∑
j :|uij |<1 res2

ij

(
1 − u2

ij

)4)1/2∣∣ ∑k
i=1

∑
j :|uij |<1

(
1 − u2

ij

)(
1 − 5u2

ij

)∣∣ ,
(3)

where uij = hiresij /(cM∗), M∗ is the median of the absolute
values all residuals,

hi =
⎧⎨⎩

1 Ei ≤ 4.5,

Ei − 3.5 4.5 < Ei ≤ 7.5,

c Ei > 7.5,

and Ei = IQRi/M
∗. IQRi is the interquartile range of subgroup

i and is defined as the difference between the second-smallest
and the second-largest observation for 4 ≤ n ≤ 7, and as the
difference between the third-smallest and the third-largest ob-
servation for 8 ≤ n ≤ 11. The constant c is a tuning constant.
Each value of c leads to a different estimator. Tatum studied
the behavior of the estimator for c = 7 and c = 10 and showed
that c = 7 gives an estimator that loses some efficiency in the
absence of disturbances but gains efficiency in the presence of
disturbances. We apply this value of c in our simulation study.
Note that we have h(i) = Ei − 3.5 for 4.5 < Ei ≤ 7.5 instead
of h(i) = Ei − 4.5, as presented by Tatum (1997, p. 129). This
was a typographical error, resulting in too much weight on local-
ized disturbances and thus an overestimation of σ . An unbiased
estimator of σ is given by S∗

c /d∗(c, n, k), where d∗(c, n, k) is
a normalizing constant. During the implementation of the es-
timator, we discovered that for odd values of n, the values of
d∗(c, n, k) given by Table 1 in Tatum (1997) are incorrect. We
use the corrected values, which are presented in Table 1. The
resulting estimator is denoted by D7, as in Tatum (1997).

TECHNOMETRICS, FEBRUARY 2012, VOL. 54, NO. 1

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 1
2:

45
 1

3 
M

ar
ch

 2
01

2 



A ROBUST STANDARD DEVIATION CONTROL CHART 75

Table 1. Normalizing constants d∗(c, n, k) for Tatum’s estimator (S∗
c )

c = 7 c = 10

n k = 20 k = 30 k = 40 k = 20 k = 30 k = 40

5 1.070 1.069 1.068 1.054 1.053 1.053
7 1.057 1.056 1.056 1.041 1.040 1.040
9 1.052 1.051 1.050 1.034 1.034 1.033
11 1.047 1.046 1.046 1.029 1.029 1.028
13 1.044 1.044 1.043 1.026 1.025 1.025
15 1.041 1.041 1.041 1.023 1.023 1.023

We also include other procedures to obtain σ̂ . The first is a
variant of Rocke (1989). Rocke’s procedure first estimates σ by
the mean subgroup range

R̄ = 1

k

k∑
i=1

Ri, (4)

where Ri is the range of the ith subgroup. An unbiased es-
timator of σ under normality is R̄/d2(n), where d2(n) is the
expected range of a random N (0, 1) subgroup of size n. Val-
ues of d2(n) can be found in Duncan (1974, table M). Any
subgroup that exceeds the Phase I control limits is deleted and
R̄ is recomputed from the remaining subgroups. Our approach is
similar but continues until all subgroup ranges fall between the
Phase I control limits. These are set at ÛCL = UnR̄/d2(n) and
L̂CL = LnR̄/d2(n). We derive the factors Un and Ln from the
0.99865 and 0.00135 quantiles of the distribution of R̄/d2(n).
Table 2 shows the factors for n = 4, 5, 9 as well as the con-
stants added to obtain unbiased estimates from the screened
data. The factors as well as the constants are obtained by simu-
lation. Note that the factors and the constants are the same for
k = 20, 50, 100. The resulting estimator is denoted by R̄s .

In addition, we evaluate an adaptive trimmer where the esti-
mate of σ is obtained by the mean subgroup average deviation
from the median instead of R̄. The mean subgroup average de-
viation from the median is given by

MD = 1

k

k∑
i=1

MDi , (5)

where MDi is the average absolute deviation from the median
Mi of subgroup i defined by

MDi =
n∑

j=1

|Xij − Mi |/n.

An unbiased estimator of σ is MD/t2(n), where t2(n) equals
E(MD/σ ). Since it is difficult to obtain E(MD) analytically, it
is obtained by simulation. Extensive tables for t2(n) can be found
in Riaz and Saghir (2009). The advantage of this estimator is
that it is less sensitive to outliers than R (cf. Schoonhoven et al.
2011). The resulting estimator is denoted by MD

s
. The values

used for the Phase I control limits and the constants necessary
to obtain unbiased estimates from the screened data are given in
Table 2. Both are obtained by simulation.

For subgroup control charts, only adaptive trimming meth-
ods based on the subgroup averages or subgroup standard de-
viations have been proposed in the literature so far. For diffuse
outliers, however, an individuals chart should detect outliers
more quickly. We therefore propose a screening method based
on an individuals chart. The algorithm first calculates the resid-
uals by subtracting the subgroup median from each observation
in the corresponding subgroup. This ensures that the variabil-
ity is measured within and not between subgroups. Next, an
individuals chart of the residuals is constructed. The location
of the chart (µ) is estimated by the mean of the subgroup me-
dians, which is zero because the subgroup medians have been
subtracted from the observations, and σ is estimated by MD.
For simplicity, the factors for the individuals chart are 3 and –3
(see Table 2). The residuals that fall outside the control limits
are excluded from the dataset. Then the procedure is repeated:
the median values of the adjusted subgroups are determined, the
residuals are calculated, and the control limits of the individuals
chart are computed. The residuals that now exceed the limits
are removed. This continues until all residuals fall within the
control limits. Simulation revealed that the resulting estimates
of σ are slightly biased under normality. The constants neces-
sary to obtain an unbiased estimate can be found in Table 2. The
unbiased estimator is denoted by MD

i
.

The above procedure does not use the spread of the subgroups.
Therefore, we finally propose an algorithm that combines the
use of an individuals chart with subgroup screening. First, an
initial estimate of σ is obtained via MD (see (5)). This estimate is
then used to construct a standard deviation control chart so that
the subgroups can be screened. Adopting R as a charting statistic
will result in the exclusion of many subgroups, including many
uncontaminated observations, when diffuse disturbances are
present. For this reason, we employ IQR for screening pur-
poses. The constants required to obtain an unbiased estimate of
σ based on IQR are 0.594 for n = 4, 0.990 for n = 5, and 1.144
for n = 9. The values chosen for the Phase I control limits are
presented in Table 2. The subgroup screening is continued until
all IQRs fall within the limits. The resulting estimates of σ are

Table 2. Factors for Phase I control limits for k = 20, 50, 100

n = 4 n = 5 n = 9

Chart Un Ln Constant Un Ln Constant Un Ln Constant

R̄s 2.321 0.170 1 2.305 0.172 1 1.950 0.330 1
MD

s
2.321 0.170 0.998 2.305 0.172 1 1.950 0.330 1

MD
i

3 –3 0.990 3 –3 0.975 3 –3 0.986

MD
i,s

4.703 0.0018 1 3.225 0.035 1 2.485 0.142 1
3 –3 0.988 3 –3 0.975 3 –3 0.986
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76 MARIT SCHOONHOVEN AND RONALD J.M.M. DOES

Table 3. Melt index measurements

Sample Observations R/d2(4) S/c4(4) MD/t2(4) IQR/dIQR(4)

1 218 224 220 231 6.31 6.23 6.46 6.73
2 238 236 247 234 6.31 6.23 5.70 3.37
3 280 228 228 221 28.65 29.70 22.42 0
4 210 249 241 246 18.94 19.51 16.72 8.42
5 243 240 230 230 6.31 7.33 8.74 16.84
6 225 250 258 244 16.03 15.26 14.82 10.10
7 240 238 240 243 2.43 2.24 1.90 0
8 244 248 265 234 15.06 14.02 13.30 6.73
9 238 233 252 243 9.23 8.80 9.12 8.42
10 228 238 220 230 8.74 8.03 7.60 3.37
11 218 232 230 226 6.80 6.72 6.84 6.73
12 226 231 236 242 7.77 7.43 7.98 8.42
13 224 221 230 222 4.37 4.38 4.18 3.37
14 230 220 227 226 4.86 4.55 4.18 1.68
15 224 228 226 240 7.77 7.80 6.84 3.37
16 232 240 241 232 4.37 5.35 6.46 13.47
17 243 250 248 250 3.40 3.59 3.42 3.37
18 247 238 244 230 8.26 8.14 8.74 10.10
19 224 228 228 246 10.68 10.69 8.36 0
20 236 230 230 232 2.91 3.07 3.04 3.37

unbiased and are used to screen observations with an individuals
control chart (the procedure used to derive MD

i
). Simulation

revealed that the final estimates of σ are slightly biased. The
constants necessary to obtain an unbiased estimate can be
found in Table 2. The unbiased estimator is denoted by MD

i,s
.

2.2 Real Data Example

In this section, we demonstrate the estimation of σ in Phase I.
Our dataset was supplied by Wadsworth, Stephens, and Godfrey
(2001, pp. 235–237). The operation concerns the melt index of
a polyethylene compound. The data consist of 20 subgroups of
size 4 (Table 3).

The factors used for the n = 4, k = 20 case are presented in
Table 2. Note that d2(4) = 2.06, c4(4) = 0.92, t2(4) = 0.66, and
dIQR(4) = 0.59. The estimates of σ obtained by S̃ and D7 are
determined in one iteration and are 10.14 and 6.59, respec-
tively. The values obtained by R̄s and MD

s
incorporate subgroup

screening. The initial value of R̄s is 8.96 and the respective up-
per and lower control limits are 20.80 and 1.52. The unbiased
estimate of the range (i.e., R̄/d2(4)) of subgroup 3 falls above
the control limit and so this subgroup is deleted. The second
estimate of R̄s equals 7.92 and the corresponding Phase I upper
and lower control limits are 18.38 and 1.35. Now subgroup 4
does not meet the Phase I upper control limit and is removed.
The third estimate of R̄s is 7.31 and the control limits are 16.97
and 1.24. There are no further subgroups whose R/d2(4) ex-
ceeds the upper control limit. The resulting unbiased estimate
of σ is 7.31. The MD

s
procedure works in a similar way. In this

case, subgroups 3 and 4 are again deleted. The final unbiased
estimate is 7.03.

For the MD
i

chart, we use a procedure based on the individ-
uals control chart for the residuals. The residuals are calculated
by subtracting the subgroup median from each observation in
the corresponding subgroup (see Table 4). The initial value of
σ is 8.26 and the control limits of the individuals chart are

24.78 and –24.78. One residual in subgroup 3 and one residual
in subgroup 4 fall outside the control limits. The corresponding
observations are deleted from the dataset. The subgroup me-
dians are determined from the remaining observations and the
residuals are recalculated. The second estimate of σ is 6.82 and
the control limits are now 20.47 and –20.47. One residual in
subgroup 6 falls below the lower control limit and so one obser-
vation is removed. Again, the medians are determined from the
remaining observations and the residuals are recomputed. The
third estimate of σ is 6.49 and the control chart has limits at
19.47 and –19.47. There are now no residuals that fall outside
the control limits. The resulting unbiased estimate is 6.55.

Table 4. Residuals of melt index measurements

Sample Residuals

1 −4.0 2.0 −2.0 9.0
2 1.0 −1.0 10.0 −3.0
3 52.0 0.0 0.0 −7.0
4 −33.5 5.5 −2.5 2.5
5 8.0 5.0 −5.0 −5.0
6 −22.0 3.0 11.0 −3.0
7 0.0 −2.0 0.0 3.0
8 −2.0 2.0 19.0 −12.0
9 −2.5 −7.5 11.5 2.5
10 −1.0 9.0 −9.0 1.0
11 −10.0 4.0 2.0 −2.0
12 −7.5 −2.5 2.5 8.5
13 1.0 −2.0 7.0 −1.0
14 3.5 −6.5 0.5 −0.5
15 −3.0 1.0 −1.0 13.0
16 −4.0 4.0 5.0 −4.0
17 −6.0 1.0 −1.0 1.0
18 6.0 −3.0 3.0 −11.0
19 −4.0 0.0 0.0 18.0
20 5.0 −1.0 −1.0 1.0
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Table 5. Summary of estimates of σ and data deletions

Chart σ̂ Deleted subgroup Deleted observation

S̃ 10.14
D7 6.59
R̄s 7.31 3; 4
MD

s
7.03 3; 4

MD
i

6.55 3:1; 4:1; 6:1

MD
i,s

6.87 3; 7; 19 4:1; 6:1

For the MD
i,s

chart, the first part of the procedure screens the
subgroup IQR. The respective upper and lower control limits
of the IQR chart are 38.86 and 0.015. The IQR of subgroups
3, 7, and 19 are 0 and so these subgroups are deleted. It is
not necessary to delete any further subgroups. Next, individual
observations are screened. The estimate of σ is 7.81 and the
upper and lower control limits for the residuals are 23.45 and
–23.45. An outlier in subgroup 4 is deleted. The next estimate
of σ is 7.18 with corresponding control limits 21.55 and –21.55.
The outlier in subgroup 6 is removed from the dataset. Now σ is
set at 6.79 with corresponding control limits 20.37 and –20.37.
No further deletions are required. The unbiased estimate for the

MD
i,s

chart is 6.87.
The final estimates for σ as well as the data deletions are

presented in Table 5. The estimate based on S̃ is higher than the
other estimates. This is because S̃ is more sensitive to outliers
than the other estimators. Note, however, that the question of
which estimator has done the best job cannot be resolved from
such a limited dataset.

2.3 Efficiency of the Proposed Estimators

To evaluate Phase I performance, we now assess the MSE of
the proposed Phase I estimators. The MSE is estimated as

MSE = 1

N

N∑
i=1

(σ̂ i − σ )2, (6)

where σ̂ i is the value of the unbiased estimate in the ith simula-
tion run and N is the number of simulation runs. Comparisons are
made under normality and four types of disturbances (cf. Tatum
1997), but with an error rate of 6% in each case. In general, we
expect that a higher error rate would result in more pronounced
differences between the estimators. The four disturbances are
captured in:

1. A model for diffuse symmetric disturbances in which
each observation has a 94% probability of being drawn
from the N (0, 1) distribution and a 6% probability of
being drawn from the N (0, a) distribution, with a =
1.5, 2.0, . . . , 5.5, 6.0.

2. A model for diffuse asymmetric variance disturbances in
which each observation is drawn from the N (0, 1) dis-
tribution and has a 6% probability of having a multiple
of a χ2

1 variable added to it, with the multiplier equal to
0.5, 1.0, . . . , 4.5, 5.0.

3. A model for localized variance disturbances in which all
observations in three (when k = 50) or six (when k = 100)
subgroups are drawn from the N (0, a) distribution, with
a = 1.5, 2.0, . . . , 5.5, 6.0.

4. A model for diffuse mean disturbances in which each
observation has a 94% probability of being drawn
from the N (0, 1) distribution and a 6% probability of
being drawn from the N (b, 1) distribution, with b =
0.5, 1.0, . . . , 9.0, 9.5.

The MSE is obtained for n = 5, 9 and k = 50, 100. The num-
ber of simulation runs N is equal to 50,000. Note that Tatum
(1997) used 10,000 simulation runs. Below we only present
the results for k = 50 because the conclusions for k = 100 are
very similar. The figures comparing k = 50 and k = 100 are
available as Supplementary Material.

Figure 1 shows the MSE values when diffuse symmetric vari-
ance disturbances are present. The y-intercepts show that the
pooled standard deviation (S̃) has the lowest MSE when no dis-
turbances are present. However, when the size of the disturbance
(a) increases, the MSE increases quickly. The other estimators
are more robust against outliers of this type. Those that use an
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Figure 1. MSE of estimators when symmetric diffuse variance disturbances are present: (a) n = 5, k = 50 and (b) n = 9, k = 50.
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Figure 2. MSE of estimators when asymmetric diffuse variance disturbances are present: (a) n = 5, k = 50 and (b) n = 9, k = 50.

individuals control chart to identify individual outliers, that are,
MD

i
and MD

i,s
, coincide and perform best, followed by D7. The

estimators based on only subgroup screening, namely R̄s and
MD

s
, turn out to perform less well in this situation. The reason

is that they screen subgroup dispersion and ignore individual
outliers. Note that R̄s falls far short of MD

s
, because R̄s uses

R̄ (rather than MD) to estimate σ . As R̄ is more sensitive to out-
liers, the Phase I limits are broader, making it more difficult to
detect outliers. This effect is particularly significant for n = 9,
because a larger subgroup is more likely to be infected with
an outlier.

When asymmetric diffuse disturbances are present (Figure 2),
the results are comparable to the situation with diffuse symmet-
ric disturbances: MD

i
and MD

i,s
coincide and perform best,

followed by D7 and MD
s
. Note that in this situation, S̃ and, for

n = 9, R̄ perform badly.

Figure 3 shows the results in situations with localized dis-
turbances. The estimators incorporating subgroup screening
(R̄s and MD

s
) perform best. The estimator MD

i,s
performs bet-

ter than D7 in this situation. Finally, MD
i

does not perform as
well in this case because it does not take into account informa-
tion on the subgroup spread.

The results for the fourth type of disturbance are shown in
Figure 4. We can conclude that S̃ and R̄s coincide for n = 9 and
perform far worse than the other estimators. MD

s
performs

better but not as well as D7 and not as well as the estimators
using an individuals chart to identify individual outliers. The
reason is that MD

s
is less capable of detecting such outliers.

The estimators MD
i,s

and MD
i

coincide and perform best in
this situation.

Out main conclusion from the above results is that the esti-
mator MD

i,s
performs best overall.
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Figure 3. MSE of estimators when localized variance disturbances are present: (a) n = 5, k = 50 and (b) n = 9, k = 50.
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Figure 4. MSE of estimators when diffuse mean disturbances are present: (a) n = 5, k = 50 and (b) n = 9, k = 50.

3. DERIVATION OF THE PHASE II CONTROL LIMITS

Equation (1) gives control limits for the standard deviation
control chart with σ estimated in Phase I. We estimate λσ in
Phase II by S/c4(n) for all charts. One of the criteria used to
assess Phase II performance is the ARL. To allow comparison,
Un and Ln are chosen such that the unconditional ARL equals
370 and, for each chart, the ARLs for the upper and lower
control limits are similar. Un and Ln cannot be obtained easily
in analytic form and are obtained from 50,000 simulation runs.
Table 6 presents Un and Ln for n = 5, 9 and k = 50, 100.

4. CONTROL CHART PERFORMANCE

We now evaluate the effect of the proposed estimators on the
Phase II performance of the standard deviation control chart.
We consider the same Phase I estimators as those used to asses

Table 6. Factors Un and Ln to determine Phase II
control limits for n = 5 and n = 9

k = 50 k = 100

n σ̂ Un Ln Un Ln

5 S̃ 2.230 0.163 2.236 0.169
D7 2.225 0.162 2.236 0.167
R̄s 2.226 0.163 2.236 0.168
MD

s
2.226 0.162 2.237 0.167

MD
i

2.217 0.160 2.333 0.166

MD
i,s

2.217 0.160 2.333 0.166

9 S̃ 1.832 0.343 1.835 0.347
D7 1.830 0.341 1.834 0.346
R̄s 1.831 0.342 1.835 0.347
MD

s
1.830 0.342 1.835 0.346

MD
i

1.829 0.341 1.833 0.346

MD
i,s

1.829 0.341 1.833 0.346

the MSE with a, b and the multiplier equal to 4 to simulate the
contaminated cases (see Section 2.3).

The performance of the control charts is assessed in terms
of the unconditional ARL and SDRL. We compute these run
length characteristics in an in-control situation and several out-
of-control situations. We consider different shifts in the standard
deviation λσ , setting λ equal to 0.6, 1, 1.2, and 1.4. The per-
formance characteristics are obtained by simulation. The next
section describes the simulation method, followed by the re-
sults for the control charts constructed in the uncontaminated
situation and various contaminated situations.

4.1 Simulation Procedure

For each Phase I dataset of k subgroups of size n, we determine
σ̂ and the control limits ÛCL and L̂CL. Let σ̂i be an estimate
of λσ based on the ith subgroup Yij , j = 1, 2, . . . , n. Further,
let Fi denote the event that σ̂i is above ÛCL or below L̂CL. We
define P (Fi |σ̂ ) as the probability that subgroup i generates a
signal given σ̂ , that is,

P (Fi |σ̂ ) = P
(
σ̂i < L̂CL or σ̂i > ÛCL|σ̂ )

.

Given σ̂ , the distribution of the run length is geometric with
parameter P (Fi |σ̂ ). Consequently, the conditional ARL is
given by

E(RL|σ̂ ) = 1

P (Fi |σ̂ )
.

When we take the expectation over the Xij ’s we get the uncon-
ditional ARL

ARL = E
1

P (Fi |σ̂ )
.

This expectation is obtained by simulation: numerous datasets
are generated from the normal distribution or contami-
nated normal distribution, and for each dataset, E(RL|σ̂ ) is
computed. By averaging these values, we obtain the un-
conditional value. The unconditional standard deviation is

TECHNOMETRICS, FEBRUARY 2012, VOL. 54, NO. 1

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 1
2:

45
 1

3 
M

ar
ch

 2
01

2 



80 MARIT SCHOONHOVEN AND RONALD J.M.M. DOES

Table 7. ARL and SDRL under normality for k = 50

ARL SDRL

n Chart λ = 0.6 λ = 1.0 λ = 1.2 λ = 1.4 λ = 0.6 λ = 1.0 λ = 1.2 λ = 1.4

5 S̃ 131 378 69.5 17.5 136 412 87.0 19.6
D7 135 373 69.6 17.4 141 414 90.0 20.0
R̄s 132 369 68.9 17.3 137 407 88.4 19.7
MD

s
135 375 69.7 17.4 141 414 90.0 20.0

MD
i

143 371 70.0 17.3 151 421 94.6 20.6

MD
i,s

143 371 69.9 17.4 151 421 95.0 20.7

9 S̃ 28.4 371 43.6 9.02 29.3 392 51.6 9.30
D7 29.5 373 43.9 9.06 30.8 397 53.5 9.50
R̄s 29.2 392 43.9 9.05 30.5 392 53.9 9.52
MD

s
29.1 369 43.9 9.02 30.3 393 53.4 9.45

MD
i

29.8 368 44.7 9.11 31.4 395 56.0 9.71

MD
i,s

29.9 366 44.4 9.05 31.6 394 56.4 9.65

determined by:

SDRL =
√

var(RL) =
√

E(var(RL|σ̂ )) + var(E(RL|σ̂ ))

=
√

2E

(
1

p(Fi |σ̂ )

)2

−
(

E
1

p(Fi |σ̂ )

)2

− E
1

p(Fi |σ̂ )
.

Enough replications of the above procedure were per-
formed to obtain sufficiently small relative estimated stan-

dard errors for ARL. The relative standard error never
exceeds 0.76%.

4.2 Simulation Results

The ARL and SDRL are obtained in the in-control situa-
tion (λ = 1) and in the out-of-control situation (λ �= 1). When
the process is in control, we want the ARL and SDRL to be
close to their intended values, namely 370. In the out-of-control

Table 8. ARL and SDRL when contaminations are present in Phase I for k = 50

ARL SDRL

n Chart λ = 0.6 λ = 1.0 λ = 1.2 λ = 1.4 λ = 0.6 λ = 1.0 λ = 1.2 λ = 1.4

N (0, 1) 5 S̃ 43.9 297 425 303 50.8 337 452 391
& D7 102 484 159 34.7 108 498 215 47.2
N (0, 4) R̄s 92.2 464 206 50.1 99.9 479 286 87.2
(symm) MD

s
101 474 171 38.2 108 492 171 58.6

MD
i

123 443 114 25.3 131 479 164 34.2

MD
i,s

122 446 114 25.6 131 481 164 34.6

9 S̃ 5.47 114 317 286 5.92 148 354 351
D7 19.9 433 109 17.0 20.8 440 144 20.1
R̄s 14.3 336 238 47.5 16.2 368 311 94.5
MD

s
18.9 410 128 19.6 20.3 421 178 26.3

MD
i

23.8 420 75.2 12.9 25.3 433 102 15.0

MD
i,s

23.7 421 75.9 13.0 25.2 434 103 15.0

N (0, 1) 5 S̃ 23.2 149 231 266 38.4 243 325 355
& D7 112 461 121 26.9 118 483 164 34.2
N (0, 4) R̄s 108 450 133 29.9 115 472 191 43.6
(asymm) MD

s
115 449 119 26.6 121 475 168 35.7

MD
i

130 419 92.7 21.7 138 461 131 27.5

MD
i,s

130 422 95.0 21.9 138 463 135 27.9

9 S̃ 2.34 33.3 93.6 165 3.27 79.5 186 263
D7 22.7 435 80.0 13.5 23.7 443 104 15.2
R̄s 18.8 399 140 22.6 20.6 415 207 39.7
MD

s
22.5 418 83.3 14.0 23.9 429 116 16.7

MD
i

26.0 407 61.1 11.2 27.5 425 80.5 12.6

MD
i,s

25.7 409 61.7 11.3 27.3 426 81.4 12.7

TECHNOMETRICS, FEBRUARY 2012, VOL. 54, NO. 1

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 1
2:

45
 1

3 
M

ar
ch

 2
01

2 



A ROBUST STANDARD DEVIATION CONTROL CHART 81

Table 9. ARL and SDRL when contaminations are present in Phase I for k = 50

ARL SDRL

n Chart λ = 0.6 λ = 1.0 λ = 1.2 λ = 1.4 λ = 0.6 λ = 1.0 λ = 1.2 λ = 1.4

N (0, 1) 5 S̃ 42.8 293 436 308 48.3 330 459 390
& D7 118 442 103 23.5 124 469 139 28.7
N (0, 4) R̄s 129 384 77.1 18.7 134 422 103 22.2
(loc) MD

s
131 391 78.5 19.0 137 431 106 22.9

MD
i

127 428 100 22.9 136 468 143 29.5

MD
i,s

135 404 85.9 20.4 144 451 122 25.7

9 S̃ 5.34 110 324 295 5.55 136 357 254
D7 24.3 427 67.9 12.1 25.4 438 86.9 13.3
R̄s 28.8 372 46.0 9.31 30.2 396 57.8 9.93
MD

s
28.6 372 46.0 9.31 30.0 396 57.5 9.91

MD
i

23.9 420 74.4 12.8 25.5 433 100 14.7

MD
i,s

28.9 377 49.1 9.68 30.7 404 64.4 10.6

N (0, 1) 5 S̃ 40.2 280 470 335 42.8 300 480 395
& D7 80.3 471 286 72.8 86.7 483 359 117
N (4, 1) R̄s 54.1 358 431 207 61.1 384 466 292

MD
s

65.0 409 394 144 73.0 431 450 220

MD
i

115 447 152 64.4 127 481 237 64.4

MD
i,s

115 449 152 63.5 127 483 234 63.5

9 S̃ 5.04 101 325 321 4.87 114 348 363
D7 14.4 358 230 35.1 15.3 380 291 51.4
R̄s 5.59 117 341 292 5.84 144 367 353
MD

s
9.53 231 370 99.0 10.4 266 404 151

MD
i

22.8 409 93.6 15.2 25.0 425 142 20.9

MD
i,s

22.8 410 92.1 15.2 25.0 425 140 21.0

situation, we want to detect changes in the standard deviation
as soon as possible, so the ARL should be as low as possible.
The results are obtained for n = 5, 9 and k = 50, 100. How-
ever, as was done for the MSE comparison, we only present the
results for k = 50 because the conclusions for k = 100 are not
all that different. The tables comparing k = 50 and k = 100 are
available as Supplementary Material.

Table 7 shows the ARL and SDRL for the situation when
the Phase I data are uncontaminated and normally distributed.
The ARL is very similar across charts and the SDRL is slightly
higher for the MD

i
and MD

i,s
charts.

Tables 8 and 9 show that when there are disturbances in
the Phase I data, the ARL values increase (decrease) consider-
ably for λ > 1 (λ < 1) relative to the normal situation. Thus,
when the Phase I data are contaminated, changes in the pro-
cess standard deviation are less likely to be detected when
λ > 1, while there are more signals when λ < 1. With diffuse
disturbances (Table 8 and second half of Table 9), their im-
pact is smallest for the charts based on MD

i
, MD

i,s
, and D7.

When there are localized disturbances (first half of Table 9),
the charts based on R̄s , MD

s
, and MD

i,s
perform best, because

these charts trim extreme subgroups. Note that in a number
of cases, the S̃, R̄s , and MD

s
charts are ARL-biased: the in-

control ARL is lower than the out-of-control ARL (cf. Jensen
et al. 2006).

Overall, the MD
i,s

chart performs best. Under normality, this
chart almost matches the standard chart based on S̃, and in

the presence of any contamination, the chart outperforms the
alternatives.

5. CONCLUDING REMARKS

In this article, we consider several estimators of the stan-
dard deviation in Phase I of the control charting process. We
have found that the performance of certain robust estimators
is almost identical to the pooled subgroup standard deviation
under normality, while the benefit of using such robust estima-
tors can be substantial when there are disturbances. Following
Rocke (1989, 1992), we have considered estimators that include
a procedure for subgroup screening, but whereas Rocke used R̄,
we have used the average deviation from the median. This es-
timator performs better when there are localized disturbances
and is much more robust against diffuse disturbances. However,
when there are diffuse mean disturbances, the procedure loses
efficiency.

To address this problem, we have proposed other algorithms
based on a procedure that also screens for individual outliers.
The algorithms remove the variation between subgroups so that
only the variation within subgroups is measured. We have shown
that these algorithms are very effective when there are diffuse
disturbances. When there might also be localized disturbances,
the method can be combined with subgroup screening based on
the IQR. The latter procedure reveals a performance very similar
to the robust estimator for the standard deviation control chart
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proposed by Tatum (1997). We think that this is a noteworthy
outcome since the procedure is simple and intuitive. Moreover,
it can be used to estimate σ in other practical applications.

SUPPLEMENTARY MATERIAL

Figures S1– S4 and Tables S1– S3.
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