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This article studies estimation methods for the location parameter. We consider several robust location
estimators as well as several estimation methods based on a phase I analysis, i.e., the use of a control
chart to study a historical dataset retrospectively to identify disturbances. In addition, we propose a new
type of phase I analysis. The estimation methods are evaluated in terms of their mean-squared errors and
their e↵ect on the X control charts used for real-time process monitoring (phase II). It turns out that the
phase I control chart based on the trimmed trimean far outperforms the existing estimation methods. This
method has therefore proven to be very suitable for determining X phase II control chart limits.
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Introduction

THE PERFORMANCE of a process depends on the
stability of its location and dispersion parame-
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ters, and an optimal performance requires that any
change in these parameters should be detected as
soon as possible. To monitor a process with respect
to these parameters, Shewhart introduced the idea
of control charts in the 1920s. The present paper
focuses on phase I location-estimation methods for
constructing the location control chart.

Let Yij , i = 1, 2, 3, . . . and j = 1, 2, . . . , n, de-
note phase II samples of size n taken in sequence
of the process variable to be monitored. We assume
the Yij ’s to be independent and N(µ + ��,�2) dis-
tributed, where � is a constant. When � = 0, the
mean of the process is in control; otherwise, the pro-
cess mean has changed. Let Y i= (1/n)

Pn
j=1 Yij be

an estimate of µ + �� based on the ith sample Yij ,
j = 1, 2, . . . , n. When the in-control µ and � are
known, the process mean can be monitored by plot-
ting Ȳi on a control chart with respective upper and
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lower control limits

UCL = µ + Cn�/
p

n,

LCL = µ� Cn�/
p

n, (1)

where Cn is the factor such that, for a chosen type I
error probability p, we have

P (LCL  Ȳi  UCL) = 1� p.

When Ȳi falls within the control limits, the process
is deemed to be in control. We define Ei as the event
that Ȳi falls beyond the limits, P (Ei) as the probabil-
ity that sample i falls beyond the limits and RL as the
run length, i.e., the number of samples until the first
Ȳi falls beyond the limits. When µ and � are known,
the events Ei are independent, and therefore RL is
geometrically distributed with parameter p = P (Ei).
It follows that the average run length (ARL) is given
by 1/p and that the standard deviation of the run
length (SDRL) is given by

p
1� p/p.

In practice, the process parameters µ and � are
usually unknown. Therefore, they must be estimated
from samples taken when the process is assumed to
be largely in control. This stage in the control chart-
ing process is denoted as phase I (cf., Woodall and
Montgomery (1999), Vining (2009)). The resulting
estimates determine the control limits that are used
to monitor the location of the process in phase II. De-
fine µ̂ and �̂ as unbiased estimates of µ and �, respec-
tively, based on k phase I samples of size n, which are
denoted by Xij , i = 1, 2, . . . , k and j = 1, 2, . . . , n.
The control limits can be estimated by

dUCL = µ̂ + Cn�̂/
p

n,

dLCL = µ̂� Cn�̂/
p

n. (2)

Let Fi denote the event that Ȳi is above dUCL or
below dLCL. We define P (Fi | µ̂, �̂) as the probability
that sample i generates a signal given µ̂ and �̂, i.e.,

P (Fi | µ̂, �̂) = P (Ȳi < dLCL or Ȳi > dUCL | µ̂, �̂).
(3)

Given µ̂ and �̂, the distribution of the run length
is geometric with parameter P (Fi | µ̂, �̂). Conse-
quently, the conditional ARL is given by

E(RL | µ̂, �̂) =
1

P (Fi | µ̂, �̂)
. (4)

In contrast with the conditional RL distribution,
the unconditional RL distribution takes into account
the random variability introduced into the charting
procedure through parameter estimation. It can be

obtained by averaging the conditional RL distribu-
tion over all possible values of the parameter esti-
mates. The unconditional p is

p = E(P (Fi | µ̂, �̂)), (5)

and the unconditional average run length is

ARL = E

✓
1

P (Fi | µ̂, �̂)

◆
. (6)

Quesenberry (1993) showed, for the X control chart,
that the unconditional in-control and out-of-control
ARL values are higher than in the case where the
process parameters are known. Furthermore, a higher
in-control ARL is not necessarily better because the
RL distribution will reflect an increased number of
short RLs as well as an increased number of long RLs.
He concluded that, if limits are to behave like known
limits, the number of samples in phase I should be
at least 400/(n� 1).

Jensen et al. (2006) conducted a literature survey
of the e↵ects of parameter estimation on control-
chart properties and identified some issues for fu-
ture research. One of their main recommendations
is to study robust or alternative estimators for µ and
� (e.g., Rocke (1989, 1992), Tatum (1997), Vargas
(2003), Davis and Adams (2005)). The e↵ect of us-
ing these robust estimators on phase II should also
be assessed (Jensen et al. (2006, p. 360)). These rec-
ommendations are the subject of the present paper,
i.e., we will examine alternative location-estimation
methods as well as the impact of these estimators on
the phase II performance of the X control chart.

So far the literature has proposed several alter-
native robust location estimators. Rocke (1989) pro-
posed the 25% trimmed mean of the sample means,
the median of the sample means, and the mean of
the sample medians. Rocke (1992) gave the practical
details for the construction of the charts based on
these estimators. Alloway and Raghavachari (1991)
constructed a control chart based on the Hodges–
Lehmann estimator. Tukey (1997) and Wang et al.
(2007) developed the trimean estimator, which is de-
fined as the weighted average of the median and
the two other quartiles. Finally, Jones-Farmer et al.
(2009) proposed a rank-based phase I control chart.
Based on this phase I control chart, they define the
in-control state of a process and identify an in-control
reference sample. The resultant reference sample can
be used to estimate the location parameter.

In this article, we compare existing and new meth-
ods for estimating the in-control µ. The collection of
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methods includes robust sample statistics for loca-
tion and estimation methods based on phase I control
charts (cf., Jones-Farmer et al. (2009)). The methods
are evaluated in terms of their mean-squared errors
(MSE) and their e↵ect on the X phase II control-
chart performance. We consider situations where the
phase I data are uncontaminated and normally dis-
tributed, as well as various types of contaminated
phase I situations.

The remainder of the paper is structured as fol-
lows. First, we present several phase I sample statis-
tics for the process location and assess the MSE
of the estimators. Then we describe some existing
phase I control charts and present a new algorithm
for phase I analysis. Following that, we present the
design schemes for the X phase II control chart and
derive the control limits. Next, we describe the sim-
ulation procedure and present the e↵ect of the pro-
posed methods on the phase II performance. The fi-
nal section o↵ers some recommendations.

Proposed Location Estimators

To understand the behavior of the estimators it
is useful to distinguish two groups of disturbances,
namely, di↵use and localized (cf., Tatum (1997)). Dif-
fuse disturbances are outliers that are spread over all
of the samples whereas localized disturbances a↵ect
all observations in one sample. We include various
types of estimators (both robust estimators and sev-
eral estimation methods based on the principle of
control charting) and compare them under various
types of disturbances. The first subsection introduces
the estimators, while the second subsection presents
the MSE of the estimators.

Location Estimators

Recall that Xij , i = 1, 2, . . . , k and j = 1, 2, . . . , n,
denote the phase I data. The Xij ’s are assumed to
be independent and largely N(µ,�2) distributed. We
denote by Xi,(v), v = 1, 2, . . . , n, the vth order statis-
tic in sample i.

The first estimator that we consider is the mean
of the sample means,

X =
1
k

kX
i=1

Xi=
1
k

kX
i=1

0
@ 1

n

nX
j=1

Xij

1
A . (7)

This estimator is included to provide a basis for com-
parison, as it is the most e�cient estimator for nor-
mally distributed data. However, it is well known
that this estimator is not robust against outliers.

We also consider three robust estimators proposed
earlier by Rocke (1989): the median of the sample
means,

M(X) = median(X1,X2, . . . ,Xk); (8)

the mean of the sample medians,

M=
1
k

kX
i=1

Mi, (9)

with Mi the median of sample i; and the trimmed
mean of the sample means,

X↵ =
1

k � 2dk↵e ⇥

2
4 k�dk↵eX

v=dk↵e+1

X(v)

3
5 , (10)

where ↵ denotes the percentage of samples to be
trimmed, dze denotes the ceiling function, i.e., the
smallest integer not less than z, and X(v) denotes the
vth ordered value of the sample means. In our study,
we consider the 20% trimmed mean, which trims the
six smallest and the six largest sample means when
k = 30. Of course, other trimming percentages could
have been used. In fact, we have also used 10% and
25%, but the results with 20% are representative for
this estimator.

Furthermore, our analysis includes the Hodges–
Lehmann estimator (Hodges and Lehmann (1963)),
an estimator based on the so-called Walsh averages.
The h (= n(n+1)/2) Walsh averages of sample i are

Wi,k,l = (Xi,k + Xi,l)/2,

for k = 1, 2, . . . , n, l = 1, 2, . . . , n, and k  l. The
Hodges–Lehmann estimate for sample i, denoted by
HLi, is defined as the median of the Walsh aver-
ages. Alloway and Raghavachari (1991) conducted
a Monte Carlo simulation to determine whether the
mean or the median of the sample Hodges–Lehmann
estimates should be used to determine the final loca-
tion estimate. They concluded that the mean of the
sample values should be used,

HL =
1
k

kX
i=1

HLi, (11)

and that the resulting estimate is unbiased.

In this study, we also include the trimean statistic.
The trimean of sample i is the weighted average of
the sample median and the two other quartiles,

TMi = (Qi,1 + 2Qi,2 + Qi,3)/4,

where Qi,q is the qth quartile of sample i, q =
1, 2, 3 (cf., Tukey (1997), Wang et al. (2007)). It also

Vol. 43, No. 4, October 2011 www.asq.org



mss # 1500.tex; art. # 06; 43(4)

366 MARIT SCHOONHOVEN ET AL.

equals the average of the median and the midhinge
(1/2)[Qi,2 + (Qi,1 + Qi,3)/2] (cf., Weisberg (1992)).
We use the following definitions for the quartiles:
Qi,1 = Xi,(a) and Qi,3 = Xi,(b) with a = dn/4e
and b = n � a + 1. This means that Qi,1 and Qi,3

are defined as the second smallest and the second
largest observations, respectively, for 4  n  7, and
as the third smallest and the third largest values, re-
spectively, for 8  n  11. Like the median and the
midhinge, but unlike the sample mean, the trimean
is a statistically resistant L-estimator (a linear com-
bination of order statistics), with a breakdown point
of 25% (see Wang et al. (2007)). According to Tukey
(1977), using the trimean instead of the median gives
a more useful assessment of location or centering.
According to Weisberg (1992), the “statistical resis-
tance” benefit of the trimean as a measure of the
center of a distribution is that it combines the me-
dian’s emphasis on center values with the midhinge’s
attention to the extremes. The trimean is almost as
resistant to extreme scores as the median and is less
subject to sampling fluctuations than the arithmetic
mean in extremely skewed distributions. Asymptotic
distributional results of the trimean can be found in
Wang et al. (2007). The location estimate analyzed
below is the mean of the sample trimeans, i.e.,

TM =
1
k

kX
i=1

TMi. (12)

Finally, we consider a statistic that is expected
to be robust against both di↵use and localized dis-
turbances, namely, the trimmed mean of the sample
trimeans, defined by

TM↵ =
1

k � 2dk↵e ⇥

2
4 k�dk↵eX

v=dk↵e+1

TM(v)

3
5 , (13)

where TM(v) denotes the vth ordered value of the

TABLE 1. Proposed Location Estimators

Estimator Notation

Mean of sample means X

Median of sample means M(X)
Mean of sample medians M

20% trimmed mean of sample means X20

Mean of sample Hodges-Lehmann HL
Mean of sample trimeans TM
20% trimmed mean of sample trimeans TM20

sample trimeans. We consider the 20% trimmed
trimean, which trims the six smallest and the six
largest sample trimeans when k = 30.

The estimators outlined above are summarized in
Table 1.

E�ciency of the Proposed Estimators

The e�ciency of control-charting procedures is of-
ten evaluated by comparing the variance of the re-
spective location estimators. We use a procedure sim-
ilar to what was adopted by Tatum (1997) and con-
sider the MSE of the estimators. The MSE will be
estimated as

MSE =
1
N

NX
i=1

✓
µ̂i � µ

�

◆2

,

where µ̂i is the value of the unbiased estimate in the
ith simulation run and N is the number of simula-
tion runs. We include the uncontaminated case, i.e.,
the situation where all Xij are from the N(0, 1) dis-
tribution, as well as five types of disturbances (cf.,
Tatum (1997)):

1. A model for di↵use symmetric variance distur-
bances in which each observation has a 95%
probability of being drawn from the N(0, 1)
distribution and a 5% probability of being
drawn from the N(0, a) distribution, with a =
1.5, 2.0, . . . , 5.5, 6.0.

2. A model for di↵use asymmetric variance dis-
turbances in which each observation is drawn
from the N(0, 1) distribution and has a 5%
probability of having a multiple of a �2

1 vari-
able added to it, with the multiplier equal to
0.5, 1.0, . . . , 4.5, 5.0.

3. A model for localized variance disturbances in
which observations in 3 out of 30 samples are
drawn from the N(0, a) distribution, with a =
1.5, 2.0, . . . , 5.5, 6.0.

4. A model for di↵use mean disturbances in which
each observation has a 95% probability of be-
ing drawn from the N(0, 1) distribution and a
5% probability of being drawn from the N(b, 1)
distribution, with b = 0.5, 1.0, . . . , 9.0, 9.5.

5. A model for localized mean disturbances in
which observations in 3 out of 30 samples are
drawn from the N(a, 1) distribution, with a =
0.5, 1.0, . . . , 5.5, 6.0.

The y-axis intercept in Figures 1–5 represents the
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FIGURE 1. MSE of Estimators when Symmetric Di↵use Variance Disturbances Are Present for k = 30. (a) n = 5, (b) n
= 9.

situation where no contaminations are present. The
figures show that, in this situation, the most e�cient
estimator is X, as was to be expected. The estimators
HL, X20, and TM are slightly less e�cient, followed
by TM20, M , and M(X), the reason being that they
use less information.

When di↵use symmetric variance disturbances are
present (Figure 1), the best performing estimators
are HL and TM. The reason why TM performs well
in this situation is that it filters out the extreme high
and low values in each sample. HL also performs well
because it obtains the sample statistic using the me-
dian of the Walsh averages, which is not sensitive

to outliers. M and TM20 are as e�cient in the con-
taminated situation as in the uncontaminated situa-
tion, but they are outperformed by HL and TM be-
cause the latter estimators use more information. It is
worth noting that the traditional estimator X shows
relatively bad results despite the symmetric charac-
ter of the outliers. M(X) and X20 do not perform
very well because these estimators focus on extreme
samples whereas, in the present situation, the out-
liers are spread over all of the samples so that the
nontrimmed samples are also infected.

When asymmetric variance disturbances are pres-
ent (Figure 2), the most e�cient estimators are TM,

FIGURE 2. MSE of Estimators when Asymmetric Di↵use Variance Disturbances Are Present for k = 30. (a) n = 5, (b) n
= 9.
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FIGURE 3. MSE of Estimators when Localized Variance Disturbances Are Present for k = 30. (a) n = 5, (b) n = 9.

TM20, HL, and M , performing particularly well rel-
ative to the other estimators for larger sample sizes.
As for the symmetric di↵use case, the estimators that
include a method to trim observations within a sam-
ple perform better than the methods that focus on
sample trimming.

In the case of localized variance disturbances
(Figure 3), the estimators based on the princi-
ple of trimming sample means rather than within-
sample observations—X20, TM20, and M(X)—have
the lowest MSE . The estimators X, HL, TM and, in
particular, M are less successful because these statis-
tics only perform well if no more than a few observa-
tions in a sample are infected rather than all obser-
vations, as is the case here.

When di↵use mean disturbances are present (Fig-
ure 4), the results are comparable with the situation
where there are di↵use asymmetric variance distur-
bances: M , TM20, and TM perform best, followed by
HL. Note that, in this situation, X, M(X), and X20

perform badly.

When localized mean disturbances are present
(Figure 5), the results are comparable with the situa-
tion where there are localized variance disturbances:
the estimators based on the principle of trimming
sample means, namely X20, M(X), and TM20, per-
form best.

To summarize, M , TM, and TM20 have the lowest
MSE when there are di↵use disturbances. M and TM

FIGURE 4. MSE of Estimators when Di↵use Mean Disturbances Are Present for k = 30. (a) n = 5, (b) n = 9.
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FIGURE 5. MSE of Estimators when Localized Mean Disturbances Are Present for k = 30. (a) n = 5, (b) n = 9.

lose their e�ciency advantage when contaminations
take the form of localized mean or variance distur-
bances. In such situations, M(X), X20, and TM20,
which involve trimming the sample means, perform
relatively well. It is worth noting that TM20 has the
best performance overall because it is reasonably ro-
bust against all types of contaminations.

Proposed Phase I Control Chart
Location Estimators

In-control process parameters can be obtained not
only via robust statistics but also via phase I con-
trol charting. In the latter case, control charts are
used retrospectively to study a historical dataset and
determine samples that are deemed out of control.
Estimates of the process parameters are then based
on the in-control samples. In this section, we con-
sider several phase I analyses based on the principle
of control charting in order to generate robust es-
timates of process location. We study the phase I
control chart based on the commonly used estimator
X and a phase I control chart based on the mean
rank proposed by Jones-Farmer et al. (2009). More-
over, we propose two new types of phase I analyses.
The next section presents the various phase I control
charts and the following section shows the MSE of
the proposed estimation methods.

Phase I Control Charts

The standard procedure in practice is to use the
estimator X for constructing the X phase I control-
chart limits. The respective upper and lower control
limits of the phase I chart are given by dUCL

X
=

X + 3�̂/
p

n and dLCL
X

= X � 3�̂/
p

n, where we
estimate � by the robust standard-deviation estima-
tor proposed by Tatum (1997), using the corrected
normalizing constants presented in Schoonhoven et
al. (2011). The samples for which Xi falls abovedUCLX̄ or below dLCLX̄ are eliminated from the phase
I dataset. The final location estimate is the mean of
the sample means of the remaining samples:

X
0
=

1
k0

X
i✏K

Xi ⇥IdLCL
X
X̄idUCL

X

(Xi), (14)

with K the set of samples that are not excluded,
k0 the number of nonexcluded samples, and I the
indicator function. In the following, this adaptive
trimmed mean estimator is denoted by ATM

X
.

We also consider a phase I analysis that is based
on the mean rank proposed by Jones-Farmer et al.
(2009). It is a nonparametric estimation method, in
which the observations from the k mutually exclu-
sive samples of size n are treated as a single sample
of N = n ⇥ k observations. Let Rij = 1, 2, . . . , N
denote the integer rank of observation Xij in the
pooled sample of size N . Let R̄i = (

Pn
j=1 Rij)/n

be the mean of the ranks in sample i. If the process
is in control, the ranks should be distributed evenly
throughout the samples. For an in-control process,
the mean and variance of R̄i are

E(R̄i) =
N + 1

2

and

Var(R̄i) =
(N � n)(N + 1)

12n
.
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According to the central limit theorem, the random
variable

Zi =
R̄i �E(R̄i)p

var(R̄i)
follows approximately a standard normal distribu-
tion for large values of n. A control chart for these
Zi’s can be constructed with center line equal to 0,
upper control limit 3, and lower control limit�3. The
samples with Zi outside the phase I control limits
are considered to be out of control and are excluded
from the dataset. The location estimate is based on
the mean of the remaining sample means,

X
⇤

=
1
k⇤

X
i✏K⇤

Xi ⇥I�3Zi3(Zi), (15)

with K⇤ the set of samples that are not excluded and
k⇤ the number of nonexcluded samples. This estima-
tion method is denoted by ATMMR.

We now present two new phase I analyses based
on the principle of control charting. For the first
method, we build a phase I control chart using a ro-
bust estimator. The advantage of a robust estimator
over a sensitive estimator like X is that the phase I
control limits are not a↵ected by any disturbances
so that the correct out-of-control observations are
filtered out in phase I. An estimator shown to be
very robust by the MSE study in the previous sec-
tion is TM20. A disadvantage is that the estimator
is not very e�cient under normality. To address this,
we use TM20 to construct the phase I limits with
which we screen Xi for disturbances, but then use
the e�cient estimator X to obtain the location esti-
mate from the remaining samples. The phase I con-
trol limits are given by dUCLTM20

= TM20 + 3�̂/
p

n

and dLCLTM20
= TM20 � 3�̂/

p
n, where we estimate

� by Tatum’s estimator. We then plot the Xi’s on
the phase I control chart. The samples for which Xi

falls outside the limits are regarded as out of control
and removed from the dataset. The remaining sam-
ples are used to determine the grand sample mean,

X
#

=
1

k#

X
i✏K#

Xi ⇥IdLCLTM20
X̄idUCLTM20

(Xi),

(16)
with K# the set of samples that are not excluded
and k# the number of nonexcluded samples. The re-
sulting estimator is denoted by ATMTM20

.

The fourth type of phase I control chart resembles

the chart presented above but employs a di↵erent
method to screen for disturbances. The procedure
consists of two steps.

In the first step, we construct the control chart
with limits as we did just before. Note that, for the
sake of practical applicability, we use the same factor,
namely 3, to derive the X and TM charts. We then
plot the TMi’s of the phase I samples on the control
chart. Charting the TMi’s instead of the Xi’s ensures
that localized disturbances are identified and sam-
ples that contain only one single outlier are retained.
A location estimate that is expected to be robust
against localized mean disturbances is the mean of
the sample trimeans of the samples that fall between
the control limits

TM0 =
1
k^

X
i✏K^

TMi⇥IdLCLTM20
TMidUCLTM20

(TMi),

with K^ the set of samples that are not excluded
and k^ the number of nonexcluded samples.

Although the remaining phase I samples are ex-
pected to be free from localized mean disturbances,
they could still contain di↵use disturbances. To elim-
inate such disturbances, the second step is to screen
the individual observations using a phase I individ-
ual control chart with respective upper and lower
control limits given by dUCLTM

0 = TM0 + 3�̂ anddLCLTM
0 = TM0 � 3�̂, where � is estimated by

Tatum’s estimator. The observations Xij that fall
above dUCLTM

0 or below dLCLTM
0 are considered out

of control and removed from the phase I dataset. The
final estimate is the mean of the sample means and
is calculated from the observations deemed to be in
control,

X
00
=

1
k00

X
i✏K00

1
n0i

X
j✏N 0

i

Xij⇥IdLCL
TM0XijdUCL

TM0
(Xij),

(17)
with K00 the set of samples that are not excluded,
k00 the number of nonexcluded samples, N 0

i the set of
observations that are not excluded in sample i, and
n0i the number of nonexcluded observations in sample
i. Note that we could also have used the double sum,
divided by the sum of the n0i. The advantage of the
applied procedure is that, when a sample is infected
by a localized disturbance, the disturbance will have
a lower impact on the final location estimate when it
is not detected. This estimation method is denoted
by ATMTM

0 .
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TABLE 2. Proposed Phase I Analyses

Phase I analyses Notation

X control chart with screening ATM
X

Mean rank control chart with screening ATMMR

TM20 control chart with screening ATMTM20

TM0 control chart with screening ATMTM
0

The proposed phase I analyses are summarized in
Table 2.

E�ciency of the Proposed Phase I Control
Charts

To determine the e�ciency of the proposed phase I
control charts, we consider the five types of contam-
inations defined in our MSE study of the statistics
presented in the previous section. The MSE results
for the phase I control charts are given in Figures 6–
10. To facilitate comparison, we have also included
the MSE of the estimators X and TM20.

The figures show that the standard phase I anal-
ysis method, ATM

X
, performs almost as well as X

under normality when no contaminations are present
and seems to be robust against localized variance dis-
turbances. However, the method loses e�ciency in
the other situations. Because X, the initial estimate
of µ, is highly sensitive to disturbances, the phase I
limits are biased and fail to identify the correct out-
of-control samples.

The mean rank method, denoted by ATMMR, per-
forms well under normality and when there are lo-
calized mean disturbances. The reason is that this
estimator screens for samples with a mean rank sig-
nificantly higher than that of the other samples. On
the other hand, ATMMR performs badly when dif-
fuse outliers are present. The mean rank is not influ-
enced by extreme occasional outliers so that samples
containing only one outlier are not filtered out and
hence are included in the calculation of the grand
sample mean.

The third method, ATMTM20
, which uses the ro-

bust estimator TM20 to construct a phase I control
chart, seems to be more e�cient under normality
than TM20 itself. The gain in e�ciency can be ex-
plained by the use of an e�cient estimator to obtain
the final location estimate once screening is com-
plete. Thus, an e�cient phase I analysis does not
require the use of an e�cient estimator to construct
the phase I control chart.

The final method, ATMTM
0 , which first screens for

localized disturbances and then for occasional out-
liers, far outperforms all estimation methods. The
method is particularly powerful in the presence of
di↵use disturbances because its use of an individual
control chart in phase I to identify single outliers in-
creases the probability that such disturbances will be
detected. For example, Figure 9 represents the situ-
ation where di↵use mean disturbances are present.
The e�ciency of the estimator improves for high b
values because the disturbances are more likely to

FIGURE 6. MSE of Estimators when Symmetric Di↵use Variance Disturbances Are Present for k = 30. (a) n = 5, (b) n
= 9.
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FIGURE 7. MSE of Estimators when Asymmetric Di↵use Variance Disturbances Are Present for k = 30. (a) n = 5, (b) n
= 9.

fall outside the control limits and are therefore more
likely to be detected.

Derivation of the Phase II
Control Limits

We now turn to the e↵ect of the proposed loca-
tion estimators on the X control-chart performance
in phase II. The formulas for the X control limits
with estimated limits are given by Equation (2). For
the phase II control limits, we only estimate the in-
control mean µ; we treat the in-control standard de-
viation � as known because we want to isolate the
e↵ect of estimating the location parameter. The fac-

tor Cn that is used to obtain accurate control lim-
its when the process parameters are estimated is de-
rived such that the probability of a false signal equals
the desired probability of a false signal. Except for
the estimator X, Cn cannot be obtained easily in
analytic form and is therefore obtained by means
of simulation. The factors are chosen such that p
from Equation (5) is equal to 0.0027 under normality.
Fifty thousand simulation runs are used. For k = 30,
n = 5, and n = 9, the resulting factors are equal to
3.05 for X, ATM

X
, ATMTM20

, and ATMTM
0 ; 3.06

for X20 and TM and 3.07 for M(X), M , HL, TM20

and ATMMR.

FIGURE 8. MSE of Estimators when Localized Variance Disturbances Are Present for k = 30. (a) n = 5, (b) n = 9.
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FIGURE 9. MSE of Estimators when Di↵use Mean Disturbances Are Present for k = 30. (a) n = 5, (b) n = 9.

Control-Chart Performance

In this section we evaluate the e↵ect on X phase II
performance of the proposed location statistics and
estimation methods based on phase I control chart-
ing. We consider the same phase I situations as those
used to assess the MSE with a, b and the multiplier
equal to 4 to simulate the contaminated case (cf. the
section entitled E�ciency of Proposed Estimators).

Following Jensen et al. (2006), we use the un-
conditional run- length distribution to assess per-
formance. Specifically, we look at several character-
istics of that distribution, namely the average run
length (ARL) and the standard deviation of the run
length (SDRL). In addition, we also give the proba-
bility that one sample gives a signal (p). We compute

these characteristics in an in-control and several out-
of-control situations. We consider di↵erent shifts of
size �� in the mean, setting � equal to 0, 0.5, 1, and
2. The performance characteristics are obtained by
simulation. The next section describes the simula-
tion method, followed by the results for the control
charts constructed in the uncontaminated situation
and various contaminated situations.

Simulation Procedure

The performance characteristics p and ARL for
estimated control limits are determined by averag-
ing the conditional characteristics, i.e., the charac-
teristics for a given set of estimated control limits,
over all possible values of the control limits. Recall
the definitions of P (Fi | µ̂, �̂) from Equation (3),

FIGURE 10. MSE of Estimators when Localized Mean Disturbances Are Present for k = 30. (a) n = 5, (b) n = 9.
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TABLE 3. p, ARL, and (in Parentheses) SDRL of Corrected Limits Under Normality and when
Symmetric Variance Disturbances Are Present for k = 30

p ARL and SDRL

n µ̂ � = 0 � = 0.5 � = 1 � = 2 � = 0 � = 0.5 � = 1 � = 2

N(0, 1) 5 X 0.0027 0.029 0.21 0.92 384 (392) 41.7 (49.4) 5.03 (4.90) 1.09 (0.32)
M(X) 0.0027 0.028 0.21 0.91 390 (406) 46.2 (59.9) 5.31 (5.43) 1.10 (0.33)
M 0.0027 0.028 0.21 0.91 392 (407) 45.9 (59.0) 5.29 (5.37) 1.10 (0.33)
X20 0.0027 0.028 0.21 0.92 391 (401) 43.3 (52.4) 5.14 (5.08) 1.09 (0.32)
HL 0.0027 0.029 0.21 0.92 380 (389) 42.0 (50.4) 5.05 (4.94) 1.09 (0.32)
TM 0.0027 0.028 0.21 0.92 390 (400) 43.4 (53.0) 5.14 (5.09) 1.09 (0.32)
TM20 0.0027 0.028 0.21 0.92 396 (410) 45.3 (56.9) 5.26 (5.29) 1.09 (0.33)
ATM

X
0.0027 0.029 0.21 0.92 383 (392) 41.8 (49.6) 5.04 (4.92) 1.09 (0.32)

ATMMR 0.0027 0.029 0.21 0.92 383 (391) 41.5 (49.1) 5.04 (4.89) 1.09 (0.32)
ATMTM20

0.0027 0.029 0.21 0.92 382 (391) 41.8 (49.9) 5.04 (4.92) 1.09 (0.32)
ATMTM

0 0.0027 0.029 0.21 0.92 381 (390) 42.0 (50.3) 5.06 (4.96) 1.09 (0.32)

9 X 0.0027 0.064 0.48 1.00 384 (393) 17.9 (20.0) 2.13 (1.62) 1.00 (0.043)
M(X) 0.0027 0.063 0.47 1.00 390 (405) 19.5 (23.5) 2.19 (1.74) 1.00 (0.046)
M 0.0027 0.063 0.47 1.00 390 (405) 19.5 (23.6) 2.19 (1.74) 1.00 (0.046)
X20 0.0027 0.063 0.48 1.00 391 (401) 18.5 (21.1) 2.15 (1.66) 1.00 (0.044)
HL 0.0027 0.064 0.48 1.00 380 (389) 18.0 (20.4) 2.13 (1.63) 1.00 (0.043)
TM 0.0027 0.063 0.48 1.00 390 (400) 18.6 (21.4) 2.16 (1.67) 1.00 (0.045)
TM20 0.0027 0.062 0.47 1.00 395 (409) 19.3 (22.7) 2.18 (1.71) 1.00 (0.046)
ATM

X
0.0027 0.064 0.48 1.00 382 (391) 17.9 (20.1) 2.13 (1.63) 1.00 (0.043)

ATMMR 0.0027 0.064 0.48 1.00 382 (391) 17.9 (20.1) 2.13 (1.63) 1.00 (0.043)
ATMTM20

0.0027 0.064 0.48 1.00 382 (391) 18.0 (20.2) 2.13 (1.63) 1.00 (0.043)
ATMTM

0 0.0027 0.064 0.48 1.00 380 (390) 18.0 (20.5) 2.13 (1.64) 1.00 (0.043)

N(0, 1) 5 X 0.0030 0.030 0.21 0.92 358 (375) 45.0 (60.9) 5.21 (5.44) 1.09 (0.33)
& M(X) 0.0029 0.029 0.21 0.91 375 (395) 48.4 (67.7) 5.41 (5.77) 1.10 (0.34)
N(0, 4) M 0.0028 0.029 0.21 0.91 387 (403) 46.5 (61.5) 5.34 (5.52) 1.10 (0.33)
(symm occ) X20 0.0028 0.029 0.21 0.92 376 (392) 45.1 (58.8) 5.23 (5.35) 1.09 (0.33)

HL 0.0029 0.029 0.21 0.92 370 (383) 43.2 (54.5) 5.13 (5.15) 1.09 (0.32)
TM 0.0027 0.029 0.21 0.92 384 (396) 44.2 (55.6) 5.19 (5.21) 1.09 (0.32)
TM20 0.0027 0.028 0.21 0.91 390 (405) 46.0 (59.2) 5.29 (5.38) 1.10 (0.33)
ATM

X
0.0030 0.030 0.21 0.92 362 (378) 44.4 (58.8) 5.18 (5.33) 1.09 (0.32)

ATMMR 0.0030 0.030 0.21 0.92 357 (374) 45.1 (61.6) 5.21 (5.44) 1.09 (0.33)
ATMTM20

0.0029 0.030 0.21 0.92 364 (379) 44.3 (58.3) 5.18 (5.31) 1.09 (0.32)
ATMTM

0 0.0028 0.029 0.21 0.92 375 (386) 42.7 (52.8) 5.09 (5.06) 1.09 (0.32)
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TABLE 3. Continued

p ARL and SDRL

n µ̂ � = 0 � = 0.5 � = 1 � = 2 � = 0 � = 0.5 � = 1 � = 2

N(0, 1) 9 X 0.0030 0.066 0.48 1.00 358 (375) 19.1 (24.0) 2.17 (1.73) 1.00 (0.045)
& M(X) 0.0030 0.065 0.47 1.00 371 (393) 20.6 (27.5) 2.23 (1.83) 1.00 (0.048)
N(0, 4) M 0.0028 0.063 0.47 1.00 386 (403) 19.8 (24.5) 2.20 (1.75) 1.00 (0.047)
(symm occ) X20 0.0029 0.064 0.48 1.00 373 (389) 19.4 (24.1) 2.18 (1.74) 1.00 (0.046)

HL 0.0028 0.064 0.48 1.00 373 (385) 18.4 (21.5) 2.14 (1.66) 1.00 (0.044)
TM 0.0027 0.063 0.48 1.00 384 (397) 18.8 (22.1) 2.16 (1.69) 1.00 (0.045)
TM20 0.0027 0.063 0.47 1.00 391 (406) 19.4 (23.3) 2.19 (1.74) 1.00 (0.046)
ATM

X
0.0030 0.066 0.48 1.00 358 (375) 19.2 (24.0) 2.17 (1.73) 1.00 (0.046)

ATMMR 0.0031 0.066 0.48 1.00 356 (374) 19.1 (24.1) 2.17 (1.73) 1.00 (0.046)
ATMTM20

0.0030 0.066 0.48 1.00 360 (376) 19.0 (23.5) 2.16 (1.71) 1.00 (0.046)
ATMTM

0 0.0028 0.064 0.48 1.00 375 (386) 18.3 (21.3) 2.14 (1.65) 1.00 (0.044)

E(RL | µ̂, �̂) from (4), p = E(P (Fi | µ̂, �̂)) from
Equation (5), and ARL = E((1/P (Fi | µ̂, �̂))) from
Equation (6). These expectations will be obtained
by simulation: numerous datasets are generated and,
for each dataset, P (Fi | µ̂) and E(RL | µ̂) are com-
puted. Note that we take �̂ = �. By averaging these
values, we obtain the unconditional values. The un-
conditional standard deviation is determined by

SDRL
=
p

Var(RL)

=
p

E(Var(RL | µ̂)) + Var(E(RL | µ̂))

=

 
2E
✓

1
P (Fi | µ̂)

◆2

�
✓

E
1

P (Fi | µ̂)

◆2

�E
1

P (Fi | µ̂)

!1/2

.

Enough replications of the above procedure were
performed to obtain su�ciently small relative esti-
mated standard errors for p and ARL. The relative
estimated standard error is the estimated standard
error of the estimate relative to the estimate. The rel-
ative standard error of the estimates is never higher
than 0.60%.

Results

First, we consider the situation where the process
follows a normal distribution and the phase I data
are not contaminated. We investigate the impact of

the estimator used to estimate µ in phase I. Table
3 presents the probability of one sample showing a
signal (p) and the average run length (ARL) when
the process mean equals µ + ��. When � = 0, the
process is in control, so we want p to be as low as
possible and ARL to be as high as possible. When
� 6= 0, i.e., in the out-of-control situation, we want
to achieve the opposite. We can see that, in the ab-
sence of any contamination (first part of Table 3),
the e�ciency of the estimators is very similar. We
can therefore conclude that using a more robust lo-
cation estimator does not have a substantial impact
on the control-chart performance in the uncontami-
nated situation.

The phase II control charts based on the esti-
mation methods M(X), X20, TM20, ATM

X
, and

ATMMR perform relatively well when localized dis-
turbances are present, while the charts based on M ,
HL, TM, and TM20 perform relatively well when dif-
fuse disturbances are present (cf., Tables 3–5).

The phase II chart based on ATMTM
0 performs

best: this chart is as e�cient as X in the uncontami-
nated normal situation and its performance does not
change much when contaminations come into play.
Moreover, the chart outperforms the other methods
in all situations because it successfully filters out
both di↵use and localized disturbances. In the pres-
ence of asymmetric disturbances, in particular, the
added value of this estimation method is substantial.
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TABLE 4. p, ARL and (in Parentheses) SDRL of Corrected Limits when
Asymmetric Variance or Localized Variance Disturbances Are Present for k = 30

p ARL and SDRL

n µ̂ � = 0 � = 0.5 � = 1 � = 2 � = 0 � = 0.5 � = 1 � = 2

N(0, 1) 5 X 0.0076 0.012 0.12 0.82 233 (295) 143 (210) 12.8 (24.0) 1.23 (0.60)
& M(X) 0.0034 0.019 0.16 0.88 347 (378) 77.0 (110) 7.34 (8.26) 1.14 (0.41)
N(0, 4) M 0.0029 0.022 0.18 0.90 374 (395) 61.6 (82.4) 6.32 (6.73) 1.12 (0.37)
(asymm occ) X20 0.0034 0.018 0.16 0.88 337 (366) 75.9 (103) 7.22 (7.91) 1.14 (0.41)

HL 0.0033 0.020 0.17 0.89 340 (363) 67.3 (90.4) 6.73 (7.36) 1.13 (0.39)
TM 0.0030 0.021 0.17 0.89 365 (384) 61.2 (69.2) 6.33 (6.61) 1.12 (0.37)
TM20 0.0029 0.022 0.18 0.90 379 (398) 60.4 (78.7) 6.26 (6.56) 1.12 (0.37)
ATM

X
0.0034 0.020 0.17 0.89 334 (359) 70.0 (95.0) 6.86 (7.51) 1.13 (0.39)

ATMMR 0.0076 0.012 0.12 0.82 232 (294) 143 (209) 13.0 (26.7) 1.24 (0.61)
ATMTM20

0.0032 0.021 0.17 0.89 347 (367) 62.9 (82.9) 6.46 (6.84) 1.12 (0.38)
ATMTM

0 0.0028 0.025 0.20 0.91 373 (385) 48.9 (60.2) 5.53 (5.55) 1.10 (0.34)

9 X 0.011 0.020 0.27 0.99 175 (239) 89.5 (148) 4.58 (6.42) 1.01 (0.12)
M(X) 0.0044 0.035 0.36 0.99 299 (346) 42.1 (63.4) 3.04 (2.89) 1.01 (0.077)
M 0.0031 0.048 0.42 1.00 366 (389) 26.8 (34.1) 2.51 (2.12) 1.00 (0.058)
X20 0.0047 0.033 0.35 0.99 280 (324) 42.7 (61.0) 3.09 (2.89) 1.01 (0.078)
HL 0.0033 0.044 0.41 1.00 336 (358) 27.9 (33.9) 2.57 (2.15) 1.00 (0.059)
TM 0.0031 0.046 0.42 1.00 356 (378) 26.4 (31.9) 2.51 (2.08) 1.00 (0.057)
TM20 0.0030 0.047 0.42 1.00 368 (391) 26.8 (33.2) 2.52 (2.11) 1.00 (0.058)
ATM

X
0.0046 0.035 0.36 0.99 282 (322) 39.6 (57.4) 2.98 (2.76) 1.01 (0.074)

ATMMR 0.011 0.021 0.27 0.99 175 (240) 89.3 (148) 4.58 (6.41) 1.01 (0.12)
ATMTM20

0.0039 0.039 0.38 1.00 307 (339) 33.3 (44.1) 2.77 (2.44) 1.00 (0.066)
ATMTM

0 0.0028 0.055 0.45 1.00 370 (383) 21.4 (24.9) 2.30 (1.83) 1.00 (0.050)

N(0, 1) 5 X 0.0034 0.032 0.22 0.91 337 (361) 48.7 (73.0) 5.42 (6.09) 1.10 (0.34)
& M(X) 0.0028 0.029 0.21 0.91 382 (400) 47.4 (64.2) 5.40 (5.66) 1.10 (0.33)
N(0, 4) M 0.0037 0.033 0.22 0.91 335 (372) 57.2 (98.5) 5.90 (7.45) 1.11 (0.36)
(localized) X20 0.0028 0.029 0.21 0.92 382 (395) 44.3 (55.8) 5.21 (5.25) 1.09 (0.32)

HL 0.0035 0.032 0.22 0.91 332 (358) 50.0 (76.8) 5.46 (6.22) 1.10 (0.34)
TM 0.0035 0.032 0.22 0.91 338 (368) 52.3 (83.4) 5.62 (6.63) 1.10 (0.35)
TM20 0.0028 0.029 0.21 0.91 387 (403) 46.6 (61.7) 5.36 (5.55) 1.10 (0.33)
ATM

X
0.0028 0.029 0.21 0.92 371 (382) 43.1 (53.7) 5.12 (5.13) 1.09 (0.32)

ATMMR 0.0033 0.031 0.22 0.92 342 (364) 47.7 (69.5) 5.34 (5.83) 1.10 (0.33)
ATMTM20

0.0028 0.029 0.21 0.92 371 (384) 42.9 (53.8) 5.12 (5.13) 1.09 (0.32)
ATMTM

0 0.0028 0.029 0.21 0.92 372 (384) 43.0 (53.7) 5.11 (5.10) 1.09 (0.32)
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TABLE 4. Continued

p ARL and SDRL

n µ̂ � = 0 � = 0.5 � = 1 � = 2 � = 0 � = 0.5 � = 1 � = 2

N(0, 1) 9 X 0.0034 0.068 0.48 1.00 337 (362) 20.4 (28.6) 2.21 (1.84) 1.00 (0.048)
& M(X) 0.0028 0.064 0.47 1.00 381 (400) 19.9 (25.0) 2.21 (1.78) 1.00 (0.047)
N(0, 4) M 0.0038 0.069 0.47 1.00 332 (370) 24.0 (40.4) 2.32 (2.12) 1.00 (0.054)
(localized) X20 0.0028 0.064 0.48 1.00 382 (395) 18.9 (22.3) 2.17 (1.69) 1.00 (0.045)

HL 0.0035 0.069 0.48 1.00 333 (359) 20.8 (30.1) 2.22 (1.88) 1.00 (0.049)
TM 0.0035 0.068 0.48 1.00 338 (368) 21.8 (32.7) 2.25 (1.94) 1.00 (0.051)
TM20 0.0028 0.063 0.47 1.00 385 (402) 19.7 (24.2) 2.20 (1.76) 1.00 (0.047)
ATM

X
0.0028 0.065 0.48 1.00 372 (384) 18.4 (21.6) 2.15 (1.67) 1.00 (0.044)

ATMMR 0.0033 0.068 0.48 1.00 342 (364) 20.0 (27.2) 2.20 (1.81) 1.00 (0.048)
ATMTM20

0.0028 0.065 0.48 1.00 372 (384) 18.4 (21.7) 2.15 (1.67) 1.00 (0.044)
ATMTM

0 0.0029 0.065 0.48 1.00 368 (381) 18.6 (22.2) 2.15 (1.68) 1.00 (0.045)

When localized mean disturbances are present, we
see a strange phenomenon for the X, M , HL, and
TM charts: the in-control ARL is lower than the out-
of-control ARL for � = 0.5. In other words, these
charts are more likely to give a signal in the in-control
situation than in the out-of-control situation for � =
0.5 and hence, in the presence of disturbances, are
highly ARL-biased (cf., Jensen et al. (2006)).

Concluding Remarks

In this article, we have considered several phase
I estimators of the location parameter for use in es-
tablishing phase II control limits of X charts. The
collection includes robust estimators proposed in the
existing literature as well as several phase I anal-
yses, which apply a control chart retrospectively
to study a historical dataset. The MSE of the es-
timators has been assessed under various circum-
stances: the uncontaminated situation and various
situations contaminated with di↵use symmetric and
asymmetric variance disturbances, localized variance
disturbances, di↵use mean disturbances, and local-
ized mean disturbances. Moreover, we have investi-
gated the e↵ect of the location estimator on the X
phase II control-chart performance when the meth-
ods are used to determine the phase II limits.

The standard methods su↵er from a number of
problems. Estimators that are based on the princi-
ple of trimming individual observations (e.g., M and
TM) perform reasonably well when there are di↵use

disturbances but not when localized disturbances are
present. In the latter situation, estimators that are
based on the principle of trimming samples (e.g.,
M(X) and X20) are e�cient. All of these methods
are biased when there are asymmetric disturbances,
as the trimming principle does not take into account
the asymmetry of the disturbance.

A phase I analysis, using a control chart to study
a historical dataset retrospectively and trim the data
adaptively, does take into account the distribution of
the disturbance and is therefore very suitable for use
during the estimation of µ. However, the standard
method based on the X phase I control chart has
certain limitations. First, the initial estimate, X, is
very sensitive to outliers so that the phase I limits are
biased. As a consequence, the wrong data samples are
often filtered out. Second, the sample mean is usually
plotted on the phase I control chart, which makes it
di�cult to detect outliers in individual observations.
Moreover, deleting the entire sample instead of the
single outlier reduces e�ciency.

In this article, we have proposed a new type of
phase I analysis that addresses the problems encoun-
tered in the standard phase I analysis. The initial
estimate of µ for the phase I control chart is based
on a trimmed version of the trimean, namely, TM20,
and a subsequent procedure for both sample screen-
ing and outlier screening (resulting in ATMTM

0). The
proposed method is e�cient under normality and far
outperforms the existing methods when disturbances
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TABLE 5. p, ARL and (in Parentheses) SDRL of Corrected Limits when Di↵use Mean or
Localized Mean Disturbances Are Present for k = 30

p ARL and SDRL

n µ̂ � = 0 � = 0.5 � = 1 � = 2 � = 0 � = 0.5 � = 1 � = 2

N(0, 1) 5 X 0.0061 0.011 0.11 0.83 224 (271) 137 (182) 10.9 (12.9) 1.22 (0.53)
& M(X) 0.0048 0.014 0.13 0.85 289 (340) 115 (168) 9.57 (12.2) 1.19 (0.49)
N(4, 1) M 0.0033 0.019 0.16 0.88 351 (380) 74.6 (103) 7.12 (7.89) 1.14 (0.41)
(asymm occ) X20 0.0049 0.013 0.13 0.85 271 (316) 115 (158) 9.52 (11.2) 1.19 (0.49)

HL 0.0042 0.015 0.14 0.86 290 (326) 93.0 (126) 8.22 (9.18) 1.16 (0.45)
TM 0.0035 0.017 0.15 0.88 333 (361) 77.8 (103) 7.33 (7.95) 1.14 (0.41)
TM20 0.0032 0.019 0.16 0.88 356 (383) 72.5 (97.0) 7.00 (7.57) 1.13 (0.40)
ATM

X
0.0055 0.012 0.12 0.84 245 (392) 123 (167) 10.0 (12.0) 1.20 (0.51)

ATMMR 0.0061 0.011 0.11 0.83 224 (272) 136 (182) 10.9 (12.9) 1.21 (0.53)
ATMTM20

0.0052 0.013 0.12 0.85 257 (302) 116 (159) 9.58 (11.2) 1.19 (0.49)
ATMTM

0 0.0031 0.024 0.19 0.90 356 (374) 57.0 (78.1) 6.01 (6.39) 1.11 (0.36)

9 X 0.0089 0.018 0.26 0.99 161 (208) 77.3 (107) 4.17 (4.16) 1.01 (0.11)
M(X) 0.0074 0.023 0.29 0.99 212 (274) 71.7 (111) 3.96 (4.17) 1.01 (0.10)
M 0.0035 0.041 0.39 1.00 339 (371) 32.4 (42.7) 2.72 (2.39) 1.00 (0.065)
X20 0.0075 0.021 0.28 0.99 193 (246) 68.9 (98.5) 3.91 (3.90) 1.01 (0.10)
HL 0.0046 0.033 0.35 0.99 272 (310) 39.6 (51.4) 3.00 (2.69) 1.01 (0.074)
TM 0.0037 0.038 0.38 1.00 317 (349) 33.6 (42.7) 2.79 (2.43) 1.00 (0.067)
TM20 0.0035 0.039 0.38 1.00 336 (368) 32.9 (42.0) 2.75 (2.40) 1.00 (0.066)
ATM

X
0.0081 0.020 0.28 0.99 177 (227) 71.0 (99.9) 3.98 (3.96) 1.01 (0.10)

ATMMR 0.0089 0.019 0.26 0.99 162 (209) 77.8 (108) 4.16 (4.15) 1.01 (0.11)
ATMTM20

0.0074 0.022 0.29 0.99 193 (242) 64.9 (91.2) 3.80 (3.73) 1.00 (0.098)
ATMTM

0 0.0031 0.051 0.43 1.00 352 (371) 24.5 (30.7) 2.42 (2.00) 1.00 (0.054)

N(0, 1) 5 X 0.017 0.0034 0.046 0.70 72.3 (87.5) 329 (351) 25.0 (28.8) 1.45 (0.83)
& M(X) 0.0031 0.021 0.17 0.89 366 (389) 66.0 (89.3) 6.62 (7.15) 1.13 (0.38)
N(4, 1) M 0.017 0.0033 0.045 0.69 80.1 (105) 343 (372) 27.3 (33.6) 1.47 (0.86)
(localized) X20 0.0030 0.020 0.17 0.89 360 (379) 64.8 (81.8) 6.57 (6.81) 1.13 (0.38)

HL 0.017 0.0034 0.047 0.70 72.8 (89.3) 327 (350) 25.2 (29.2) 1.45 (0.83)
TM 0.017 0.0033 0.046 0.69 75.6 (94.4) 337 (362) 26.0 (30.7) 1.46 (0.84)
TM20 0.0031 0.019 0.16 0.89 360 (385) 70.4 (92.0) 6.89 (7.32) 1.13 (0.40)
ATM

X
0.0028 0.026 0.20 0.91 373 (385) 47.5 (49.1) 5.44 (5.47) 1.10 (0.33)

ATMMR 0.0028 0.029 0.21 0.92 378 (388) 42.1 (50.9) 5.08 (4.99) 1.09 (0.32)
ATMTM20

0.0028 0.029 0.21 0.92 378 (388) 42.8 (52.1) 5.12 (5.07) 1.09 (0.32)
ATMTM

0 0.0028 0.029 0.21 0.92 375 (386) 43.4 (53.4) 5.14 (5.11) 1.09 (0.32)
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TABLE 5. Continued

p ARL and SDRL

n µ̂ � = 0 � = 0.5 � = 1 � = 2 � = 0 � = 0.5 � = 1 � = 2

N(0, 1) 9 X 0.035 0.0039 0.11 0.96 34.3 (30.7) 293 (321) 10.1 (10.7) 1.04 (0.22)
& M(X) 0.0031 0.048 0.42 1.00 366 (389) 26.8 (34.3) 2.51 (2.12) 1.00 (0.058)
N(4, 1) M 0.034 0.0039 0.11 0.95 37.9 (48.5) 308 (346) 10.8 (12.3) 1.05 (0.23)
(localized) X20 0.0030 0.046 0.41 1.00 359 (379) 26.3 (31.5) 2.51 (2.07) 1.00 (0.057)

HL 0.035 0.0039 0.11 0.96 34.5 (40.8) 293 (322) 10.1 (10.9) 1.05 (0.22)
TM 0.034 0.0039 0.11 0.96 35.7 (43.1) 301 (333) 10.4 (11.4) 1.05 (0.22)
TM20 0.0031 0.044 0.41 1.00 361 (385) 28.4 (35.4) 2.58 (2.18) 1.00 (0.060)
ATM

X
0.0029 0.055 0.45 1.00 366 (380) 21.7 (25.9) 2.30 (1.85) 1.00 (0.050)

ATMMR 0.0028 0.064 0.48 1.00 377 (387) 18.2 (20.9) 2.14 (1.64) 1.00 (0.044)
ATMTM20

0.0028 0.063 0.48 1.00 378 (388) 18.4 (21.1) 2.15 (1.66) 1.00 (0.044)
ATMTM

0 0.0028 0.063 0.48 1.00 376 (386) 18.6 (21.5) 2.16 (1.67) 1.00 (0.044)

are present. Consequently, ATMTM
0 is a very e↵ec-

tive method for estimating µ for the X phase II chart
limits.
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