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This paper concerns the design and analysis of the standard deviation control chart with estimated
limits. We consider an extensive range of statistics to estimate the in-control standard deviation (Phase
I) and design the control chart for real-time process monitoring (Phase II) by determining the factors for
the control limits. The Phase II performance of the design schemes is assessed when the Phase I data
are uncontaminated and normally distributed as well as when the Phase I data are contaminated. We
propose a robust estimation method based on the mean absolute deviation from the median supplemented
with a simple screening method. It turns out that this approach is e�cient under normality and performs
substantially better than the traditional estimators and several robust proposals when contaminations are
present.
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Introduction

THE PERFORMANCE of a process depends on the
stability of its location and dispersion parame-
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ters, and an optimal performance requires any
change in these parameters to be detected as early as
possible. To monitor a process with respect to these
parameters, Shewhart introduced the idea of control
charts in the 1920s. The dispersion parameter of the
process is controlled first, followed by the location pa-
rameter. The present paper focuses on control charts
for monitoring the process standard deviation.

Let Yij , i = 1, 2, 3, . . . and j = 1, 2, . . . , n, denote
samples of size n taken in sequence on the process
variable to be monitored. We assume the Yij ’s to be
independent and N(µ, ��) distributed, where � is a
constant. When � = 1, the standard deviation of the
process is in control; otherwise, the standard devia-
tion has changed. Let �̂i be an estimate of �� based
on the ith sample Yij , j = 1, 2, . . . , n. When the in-
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control � is known, the process standard deviation
can be monitored by plotting �̂i on a Shewhart-type
control chart with respective upper and lower control
limits

UCL = Un�, LCL = Ln�, (1)

where Un and Ln are factors such that, for a chosen
type I error probability ↵, we have

P (Ln�  �̂i  Un�) = 1� ↵.

When �̂i falls within the control limits, the process
is deemed to be in control. We define Ei as the event
that �̂i falls beyond the limits, P (Ei) as the proba-
bility that sample i falls beyond the limits, and RL
as the run length, i.e., the number of samples un-
til the first �̂i falls beyond the limits. When � is
known, the events Ei are independent, and there-
fore RL is geometrically distributed with parameter
p = P (Ei) = ↵. It follows that the average run length
(ARL) is given by 1/p and that the standard devia-
tion of the run length (SDRL) is given by

p
1� p/p.

In practice, the in-control process parameters are
usually unknown. Therefore, they must be estimated
from samples taken when the process is assumed to
be in control. This stage in the control-charting pro-
cess is called Phase I (cf., Woodall and Montgomery
(1999), Vining (2009)). The monitoring stage is de-
noted by Phase II. Define �̂ as an unbiased estimate
of � based on k samples of size n, which are denoted
by Xij , i = 1, 2, . . . , k. The control limits can be es-
timated by

dUCL = Un�̂, dLCL = Ln�̂. (2)

These Un and Ln are not necessarily the same as
in Equation (1) and will be di↵erent if the marginal
probability of signalling is the same. Let Fi denote
the event that �̂i is above dUCL or below dLCL. We
define P (Fi | �̂) as the probability that sample i
generates a signal given �̂, i.e.,

P (Fi | �̂) = P (�̂i < dLCL or �̂i > dUCL | �̂).

Given �̂, the distribution of the run length is geo-
metric with parameter P (Fi | �̂). Consequently, the
conditional ARL is given by

E(RL | �̂) =
1

P (Fi | �̂)
.

In contrast with the conditional RL distribution,
the marginal RL distribution takes into account the
random variability introduced into the charting pro-
cedure through parameter estimation. It can be ob-
tained by averaging the conditional RL distribution

over all possible values of the parameter estimates.
The unconditional p is

p = E(P (Fi | �̂)),

the unconditional average run length is

ARL = E

✓
1

P (Fi | �̂)

◆
.

Quesenberry (1993) showed that, for the X and X
control charts, the marginal ARL is higher than in
the �-known case. Furthermore, a higher in-control
ARL is not necessarily better because the RL distri-
bution will reflect an increased number of short RLs
as well as an increased number of long RLs. He con-
cluded that, if limits are to behave like known limits,
the number of samples (k) in Phase I should be at
least 400/(n� 1) for X control charts and 300 for X
control charts. Chen (1998) studied the marginal RL
distribution of the standard deviation control chart
under normality. He showed that, if the shift in the
standard deviation in Phase II is large, the impact of
parameter estimation is small. In order to achieve a
performance comparable with known limits, he rec-
ommended taking at least 30 samples of size 5 and
updating the limits when more samples become avail-
able. For permanent limits, at least 75 samples of
size 5 should be used. Thus, the situation is some-
what better than for the X control chart with both
process mean and standard deviation estimated.

Jensen et al. (2006) conducted a literature sur-
vey of the e↵ects of parameter estimation on control-
chart properties and identified several issues for fu-
ture research. One of their recommendations is to
consider robust or other alternative estimators for
the location and the standard deviation in Phase I
applications because it seems more appropriate to
use an estimator that will be robust to outliers and
step changes in Phase I. Also, the e↵ect of using these
robust estimators on Phase II should be assessed
(Jensen et al. (2006, p. 360)). This recommendation
is the subject of the present paper, i.e., we will study
alternative estimators for the standard deviation in
Phase I and we will study the impact of these esti-
mators on the Phase II performance of the standard
deviation control chart.

Chen (1998) studied the standard deviation con-
trol chart when � is estimated by the pooled-sample
standard deviation (S̃), the mean-sample standard
deviation (S), or the mean-sample range (R) un-
der normality. He showed that the performance of
the charts based on S̃ and S is almost identical,
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while the performance of the chart based on R is
slightly worse. Rocke (1989) proposed robust con-
trol charts based on the 25% trimmed mean of the
sample ranges, the median of the sample ranges, and
the mean of the sample interquartile ranges in con-
taminated Phase I situations. Moreover, he studied
the use of a two-stage procedure whereby the initial
chart is constructed first and then subgroups that
seem to be out of control are excluded. Rocke (1992)
gave the practical details for the construction of these
charts. Wu et al. (2002) considered three alternative
statistics for the sample standard deviation, namely
the median of the absolute deviation from the me-
dian (MDM), the average absolute deviation from
the median (ADM), and the median of the average
absolute deviation (MAD), and investigated their ef-
fect on X control-chart performance. They concluded
that, if there are no or only a few contaminations in
the Phase I data, ADM performs best. Otherwise,
MDM is the best estimator. Riaz and Saghir (2007,
2009) showed that the statistics for the sample stan-
dard deviation based on the Gini’s mean di↵erence
and the ADM are robust against nonnormality. How-
ever, they only considered the situation where a large
number of samples is available in Phase I and did not
consider contaminations in Phase I. Tatum (1997)
clearly distinguished two types of disturbances: dif-
fuse and localized. Di↵use disturbances are outliers
that are spread over multiple samples, whereas lo-
calized disturbances a↵ect all observations in a single
sample. He proposed a method, constructed around a
variant of the biweight A estimator, that is resistant
to both di↵use and localized disturbances. A result
of the inclusion of the biweight A method is, how-
ever, that the estimator is relatively complicated in
its use. Besides several range-based methods, Tatum
did not compare his method with other methods for
Phase I estimation. Finally, Boyles (1997) studied the
dynamic linear-model estimator for individual charts
(see also Braun and Park (2008)).

In this paper, we compare an extensive number of
Phase I estimators that have been presented in the
literature and a number of variants on these statis-
tics. We study their e↵ect on the Phase II perfor-
mance of the standard deviation control chart. The
estimators considered are: S̃, S, the 25% trimmed
mean of the subgroup standard deviations (rather
than the 25% trimmed sample ranges because it
is well known that S is more robust than R), the
mean of the subgroup standard deviations after trim-
ming the observations in each sample, the sample
interquartile range, the Gini’s mean di↵erence, the

MDM, the ADM, the MAD, and the robust estima-
tor of Tatum (1997). Moreover, we investigate the
use of a variant of the screening methods proposed
by Rocke (1989) and Tatum (1997). The performance
of the estimators is evaluated by assessing the mean-
squared error (MSE) of the estimators under normal-
ity and in the presence of various types of contam-
inations. Further, we derive the constants that de-
termine the control limits. We then have the desired
marginal probability that the chart will produce a
false signal in Phase II. Finally, we assess the Phase
II performance of the control charts by means of a
simulation study.

The paper is structured as follows. The next sec-
tion introduces the estimators of the standard devia-
tion and assesses the MSE of the estimators. Subse-
quently, we derive the Phase II control limits. Next,
we describe the simulation procedure and the results
of the simulation study. Furthermore, we discuss a
real-world example implementing the various charts
created. The paper ends with some concluding re-
marks.

Proposed Phase I Estimators

In practice, the same statistic is generally used
to estimate both the in-control standard deviation �
in Phase I and the standard deviation �� in Phase
II. Because the requirements for the estimators di↵er
between the two phases, this is not always the best
choice. In Phase I, an estimator should be e�cient in
uncontaminated situations and robust against distur-
bances, whereas in Phase II the estimator should be
sensitive to disturbances (cf., Jensen et al. (2006)). In
this section, we present the Phase I estimators con-
sidered in our study. The first subsection introduces
the estimators, while the second subsection presents
the MSE of the estimators.

Estimators of the Standard Deviation

David (1998) gave a brief account of the history
of standard-deviation estimators. The traditional es-
timators are of course the pooled and the mean-
sample standard deviation and the mean-sample
range. Mahmoud et al. (2010) studied the relative
e�ciencies of these estimators for di↵erent sample
sizes n and number of samples k. In deriving esti-
mates of the in-control standard deviation, we will
look at these as well as nine other estimators.

The first estimator of � is based on the pooled-
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sample standard deviation

S̃ =
✓

1
k

kX
i=1

S2
i

◆1/2

, (3)

where Si is the ith sample standard deviation defined
by

Si =
✓

1
n� 1

nX
j=1

(Xij � X̄i)2
◆1/2

.

The unbiased estimator is given by S̃/c4(k(n�1)+1),
where c4(m) is defined by

c4(m) =
✓

2
m� 1

◆1/2 �(m/2)
�((m� 1)/2).

The second estimator is based on the mean-sample
standard deviation

S̄ =
1
k

kX
i=1

Si. (4)

An unbiased estimator of � is given by S̄/c4(n).

Rocke (1989) proposed the trimmed mean of the
sample ranges. In our study, we consider a variant
of this estimator, namely, the trimmed mean of the
sample standard deviations because it is well known
that the standard deviation is more robust than the
sample range. The trimmed mean of the sample stan-
dard deviation is given by

Sa=
1

k � dkae⇥
 k�dkaeX

v=1

S(v)

�
, (5)

where a denotes the percentage of samples to be
trimmed, dze denotes the smallest integer not less
than z and S(v) denotes the vth ordered value of the
sample standard deviations. In our study, we consider
the 25% trimmed mean of the sample standard de-
viations. To simplify the analysis, we trim an integer
number of samples. For example, the 25% trimmed
mean trims o↵ the eight largest sample standard de-
viations when k = 30. To provide an unbiased esti-
mate of � for the normal case, the estimate must be
divided by a normalizing constant. These constants
are obtained from 100,000 simulation runs. For n = 5
and k = 20, 30, 75, the constants are 0.579, 0.585, and
0.568, respectively; for n = 9 and k = 20, 30, 75, the
constants are 0.701, 0.705, and 0.693, respectively.

Because the above estimator trims o↵ samples in-
stead of individual observations, we expect the es-
timator to be robust against localized disturbances.

We also consider a variant that is expected to be ro-
bust against di↵use disturbances, namely, the mean-
sample standard deviation after trimming the obser-
vations in each sample:

Sa =
1
k

kX
i=1

S0
i, (6)

where S0
i is the standard deviation of sample i after

trimming the observations, given by

S0
i =

✓
1

n� 2dnae � 1

n�dnaeX
v=dnae+1

(Xi(v) � X̄ 0
i)

2

◆1/2

,

where

X
0
i=

1
n� 2dnae

n�dnaeX
v=dnae+1

Xi(v),

with Xi(v) the vth ordered value in sample i and a the
percentage of lowest and highest observations to be
trimmed in each sample. In this study, we take 20%
as our trimming percentage and, again, we trim an
integer number of observations. The estimator trims
o↵ the smallest and largest observation for n = 5; it
trims o↵ the two smallest and the two largest obser-
vations for n = 9. The normalizing constant is 0.520
for n = 5 and 0.473 for n = 9.

The next estimator is based on the mean-sample
range

R=
1
k

kX
i=1

Ri, (7)

where Ri is the range of the ith sample. An unbi-
ased estimator of � is R /d2(n), where d2(n) is the
expected range of a random N(0, 1) sample of size n.
Values of d2(n) can be found in Duncan (1986, Table
M).

The next estimator is based on the mean of the
sample interquartile ranges (IQRs)

IQR =
1
k

kX
i=1

IQRi, (8)

with IQRi the interquartile range of sample i

IQRi = Xi(n�dnae) �Xi(dnae+1).

Thus, the same observations are trimmed o↵ as in
the calculation of S0

i. (Note that one would expect
the IQR to correspond to a = 0.25. However, to sim-
plify the analysis, we only trim an integer number of
observations.) The normalizing constant is 0.990 for
n = 5 and 1.144 for n = 9.
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We also consider an estimator based on Gini’s
mean-sample di↵erences

Ḡ =
1
k

kX
i=1

Gi, (9)

where Gi is Gini’s mean di↵erence of sample i defined
by

Gi =
n�1X
j=1

nX
l=j+1

|Xij �Xil|/(n(n� 1)/2),

representing the mean absolute di↵erence between
any two observations in the sample. This statistic
was proposed by Gini (1912), although basically the
same statistic had already been proposed by Jor-
dan (1869). An unbiased estimator of � is given
by Ḡ/d2(2). Appendix A shows that the estimator
based on Gini’s mean di↵erence can be rewritten as
a linear function of order statistics and that Gini’s
mean di↵erence is essentially the same as the so-
called Downton estimator (Downton (1966)) and the
probability-weighted moments estimator (Muham-
mad et al. (1993)). From David (1981, p. 191), it
follows that the estimator derived from Gini’s mean
di↵erence is highly e�cient (98%) and is more robust
to outliers than the estimators based on R or S.

An estimator of � that is simpler and easier to in-
terpret uses the mean of the sample-average absolute
deviation from the median, given by

ADM =
1
k

kX
i=1

ADMi, (10)

where ADMi is the average absolute deviation from
the median of sample i, given by

ADMi =
1
n

nX
j=1

|Xij �Mi|,

with Mi the median of sample i. An unbiased estima-
tor of � is given by ADM/t2(n). Because it is di�cult
to obtain the constant t2(n) analytically, it has to be
obtained by simulation. Extensive tables of t2(n) can
be found in Riaz and Saghir (2009). Like G, we can
rewrite ADM as a function of order statistics. As a
result, we can express G in terms of ADM. The exact
relationship can be found in Appendix B.

We also study the above estimator supplemented
with a screening method based on control charting.
Rocke (1989) proposed a two-stage procedure that
first estimates � by R, then deletes any subsample
that exceeds the control limits and recomputes R

using the remaining subsamples. Our approach fol-
lows a similar procedure. First, we estimate � by
ADM because ADM is expected to be more robust
against outliers. For simplicity, we use for the screen-
ing method the well-known factors of the S/c4(n)
control chart corresponding to the 3� control limits
in Phase I. Hence, the factors for the limits are 2.089
and 0 for n = 5 and 1.761 and 0.239 for n = 9 (cf.,
Table M in Duncan (1986)). Then we chart S/c4(n),
delete any subsample that exceeds the control limits,
and recompute ADM using the remaining subsam-
ples. We continue until all subsample estimates fall
within the limits. The normalizing constant is 0.996
for n = 5 and 0.998 for n = 9. The resulting estima-
tor is denoted by ADM0.

Next we study two other median statistics: the av-
erage of the sample medians of the absolute deviation
from the median

MDM =
1
k

kX
i=1

MDMi, (11)

with
MDMi = median{|Xij �Mi|},

and the mean of the sample median of the average
absolute deviation

MAD =
1
k

kX
i=1

MADi, (12)

with
MADi = median{|Xij� Xi |}.

The normalizing constant for MDM is 0.554 for n =
5 and 0.613 for n = 9. For MAD, the normalizing
constant is 0.627 for n = 5 and 0.658 for n = 9.

We also evaluate a robust estimator proposed by
Tatum (1997). His method has proven to be robust
to both di↵use and localized disturbances. The es-
timation method is constructed around a variant of
the biweight A estimator. The method begins by cal-
culating the residuals in each sample, which involves
substracting the subsample median from each value:
resij = Xij � Mi. If n is odd, then, in each sam-
ple, one of the residuals will be zero and is dropped.
As a result, the total number of residuals is equal to
m0 = nk when n is even and m0 = (n � 1)k when n
is odd. Tatum’s estimator is given by

S⇤
c =

m0

(m0 � 1)1/2

⇥
(
Pk

i=1

P
j:|uij |<1 res2ij(1� u2

ij)4)1/2

|
Pk

i=1

P
j:|uij |<1(1� u2

ij)(1� 5u2
ij)|

, (13)
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TABLE 1. Normalizing Constants d⇤(c, n, k) for Tatum’s Estimator S⇤c

c = 7 c = 10

n k = 20 k = 30 k = 40 k = 75 k = 20 k = 30 k = 40 k = 75

5 1.070 1.069 1.068 1.068 1.054 1.053 1.053 1.052
7 1.057 1.056 1.056 1.056 1.041 1.040 1.040 1.040
9 1.052 1.051 1.050 1.050 1.034 1.034 1.033 1.033
11 1.047 1.046 1.046 1.046 1.029 1.029 1.028 1.028
13 1.044 1.044 1.043 1.043 1.026 1.025 1.025 1.025
15 1.041 1.041 1.041 1.040 1.023 1.023 1.023 1.022

where uij = hiresij/(cM⇤), M⇤ is the median of all
residuals,

hi =

( 1 Ei  4.5,
Ei � 3.5 4.5 < Ei  7.5,
c Ei > 7.5,

and Ei = IQRi/M⇤. The constant c is a tuning
constant. Each value of c leads to a di↵erent esti-
mator. Tatum showed that c = 7 gives an estima-
tor that loses some e�ciency when no disturbances
are present, but gains e�ciency when disturbances
are present. We apply this value of c in our sim-
ulation study. Note that we have h(i) = Ei � 3.5
for 4.5 < Ei  7.5 in the equations instead of
h(i) = Ei � 4.5 as presented by Tatum (Tatum
(1997), p. 129). This was a typographical error in
the formula, resulting in too much weight on local-
ized disturbances and thus an overestimation of �.
An unbiased estimator of � is given by S⇤

c /d⇤(c, n, k),

where d⇤(c, n, k) is the normalizing constant. During
the implementation of the estimator, we discovered
that, for odd values of n, the values of d⇤(c, n, k)
given by Table 1 in Tatum (1997) should be adapted.
We use the corrected values, which are presented in
Table 1 below. The resulting estimator is denoted by
D7 as in Tatum (1997).

The estimators considered are summarized in Ta-
ble 2. SI denotes the estimator used in Phase I to
estimate the in-control �.

E�ciency of Proposed Estimators

For comparison purposes, we assess the MSE of
the proposed Phase I estimators, as was done in
Tatum (1997). The MSE will be estimated as

MSE =
1
N

NX
i=1

(�̂i � �)2, (14)

TABLE 2. Proposed Estimators for the Standard Deviation

SI Description

S̃ Pooled sample standard deviation
S Mean of sample standard deviations
S25 25% trimmed mean of sample standard deviations
S20 Mean of sample standard deviations after trimming the sample observations
R Mean of sample ranges
IQR Mean of sample interquartile ranges
G Mean of the sample Gini’s mean di↵erences
ADM Mean of sample averages of absolute deviation from the median
ADM0 AMD after subgroup screening
MDM Mean of the sample medians of the absolute deviation from the median
MAD Mean of sample medians of the absolute deviation from the mean
D7 Tatum’s robust estimator
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FIGURE 1. MSE of Estimators when Symmetric Di↵use Variance Disturbances Are Present. (a) n = 5, k = 30; (b) n =
5, k = 75; (c) n = 9, k = 30; (d) n = 9, k = 75.

where �̂i is the value of the unbiased estimate in the
ith simulation run (note that �̂i di↵ers from �̂i, the
latter denoting the Phase II estimates of the stan-
dard deviation) and N is the number of simulation
runs. We include the uncontaminated case, i.e., the
situation where all Xij are from the N(0, 1) distribu-
tion as well as four types of disturbances (cf. Tatum
(1997)):

1. A model for di↵use symmetric variance distur-
bances in which each observation has a 95%
probability of being drawn from the N(0, 1) dis-
tribution and a 5% probability of being drawn
from the N(0, a) distribution, with a = 1.5,
2.0, . . . , 5.5, 6.0.

2. A model for di↵use asymmetric variance dis-

turbances in which each observation is drawn
from the N(0, 1) distribution and has a 5%
probability of having a multiple of a �2

1 vari-
able added to it, with the multiplier equal to
0.5, 1.0, . . . , 4.5, 5.0.

3. A model for localized variance disturbances in
which observations in three (when k = 30) or
six (when k = 75) samples are drawn from the
N(0, a) distribution, with a = 1.5, 2.0, . . . , 5.5,
6.0.

4. A model for di↵use mean disturbances in which
each observation has a 95% probability of be-
ing drawn from the N(0, 1) distribution and a
5% probability of being drawn from the N(b, 1)
distribution, with b = 0.5, 1.0, . . . , 9.0, 9.5.
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FIGURE 2. MSE of Estimators when Asymmetric Di↵use Variance Disturbances Are Present. (a) n = 5, k = 30; (b) n =
5, k = 75; (c) n = 9, k = 30; (d) n = 9, k = 75.

The MSE is obtained for k = 30, 75 subgroups of
sizes n = 5, 9. The number of simulation runs N is
equal to 50,000. (Note that Tatum (1997) used 10,000
simulation runs.)

The following results can be observed (see Fig-
ures 1–4). When no contaminations are present, S25,
MDM, S20, IQR, and MAD are less e�cient than
any of the other estimators because they use less in-
formation. The e�ciency of the other estimators is
almost similar when no contaminations are present.

When symmetric di↵use variance disturbances are
present (Figure 1), the best performing estimators
are D7 and ADM0. The fact that the performance of
ADM0 is similar to D7 is interesting because the for-
mer is more intuitive and the estimates are simpler

to obtain. Tatum (1997) showed that the screening
procedure based on the chart with � estimated by R
fails to match D7 in this situation, which is due to
the fact that R is more sensitive to outliers. Thus, us-
ing a robust statistic like ADM, supplemented with
subgroup screening by means of the control chart (re-
sulting in ADM0), works very well when symmetric
di↵use outliers are present. The estimators S25, S20

IQR, and MDM are more robust than the traditional
estimators but less robust than D7 and ADM0. An-
other result worth noting is that S̃ performs worst
in this situation (with comparable bad performance
like S and R). While others (e.g., Mahmoud et al.
(2010)) recommend using this estimator because it
is most e�cient in the absence of contaminations,
we see that its performance decreases most quickly
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FIGURE 3. MSE of Estimators when Localized Di↵use Variance Disturbances Are Present. (a) n = 5, k = 30; (b) n = 5,
k = 75; (c) n = 9, k = 30; (d) n = 9, k = 75.

when there are outliers. The estimators G and ADM
are e�cient when no contaminations are present and
perform better than the traditional estimators (S̃, S,
and R) in the case of occasional outliers. The e↵ect
is more pronounced for n = 9 than for n = 5.

When asymmetric di↵use variance disturbances
are present (Figure 2), the same general results are
found as for symmetric di↵use variance disturbances.
Tatum (1997) showed that, when n = 9, D7 is su-
perior to several other estimators, including the es-
timator resulting from subgroup screening based on
R. Our subgroup screening algorithm produces out-
comes similar to Tatum’s estimator. Note that, to
estimate �, we use an estimator that is less sensitive
to outliers, namely ADM rather than R.

In the case of localized variance disturbances (Fig-
ure 3), the estimator that performs best is ADM0,
followed by D7 and then by S25. It is interesting to
see that ADM0 performs substantially better than
D7. In other words, screening based on the control-
charting procedure in Phase I seems more e↵ective
than using D7 when the data are contaminated by
localized variance disturbances.

When di↵use mean disturbances are present in
Phase I (Figure 4), D7 performs best, followed by
ADM0. The di↵erences appear primarily for n = 9.
When there is a possibility of this type of outliers in
practice, we recommend using D7 or screening on the
basis of an individual chart. The latter is a subject
for future research.
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FIGURE 4. MSE of Estimators when Di↵use Mean Disturbances Are Present. (a) n = 5, k = 30; (b) n = 5, k = 75; (c)
n = 9, k = 30; (d) n = 9, k = 75.

To summarize, the most e�cient estimators are
D7 and ADM0 when there are di↵use variance dis-
turbances, ADM0 when there are localized variance
disturbances, and D7 when there are mean-shift dis-
turbances.

Derivation of the Phase II
Control Limits

The design of the Phase II control charts requires
a derivation of the factors Un and Ln in Equation
(2) to control the unconditional in-control p. Hillier
(1969) showed for the R chart that, when the limits
are estimated, the factors Un and Ln derived for the
�-known case will not produce the desired signaling
probability. To address this issue, he derived the fac-

tors based on n, k, and ↵ for the R-chart in such a
way that p equals ↵. Yang and Hillier (1970) derived
correction factors for the S and S̃ charts. The solu-
tion suggested by Hillier (1969) is well known as a so-
lution for short production runs. Another advantage
of designing based on the marginal p is that it seems
more tractable because of the dependence in Phase
II due to the estimated �̂. On the other hand, the
ARL gives an indication of the expected run length
and so is intuitively very appealing. The disadvan-
tage of the ARL is, however, that it is determined
by the occurrence of extremely long runs while, in
practice, processes do not remain unchanged for a
very long period (see also Does and Schriever (1992)).
Nedumaran and Pignatiello (2001) developed an ap-
proach for constructing X control limits that attempt
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TABLE 3. Factors Un and Ln to Determine Phase II Control Limits

Factors for Control Limits

n = 5 n = 9

k = 20 k = 30 k = 75 k = 20 k = 30 k = 75

SI Un Ln Un Ln Un Ln Un Ln Un Ln Un Ln

S̃ Eq. (15) 2.352 0.171 2.315 0.172 2.272 0.173 1.890 0.349 1.872 0.350 1.851 0.351
S Eq. (18) 2.357 0.171 2.318 0.172 2.274 0.173 1.892 0.349 1.873 0.350 1.852 0.351
S25 Eq. (18) 2.704 0.167 2.527 0.169 2.359 0.171 2.011 0.342 1.946 0.345 1.883 0.349
S20 Eq. (18) 2.540 0.169 2.438 0.170 2.319 0.172 1.987 0.343 1.934 0.346 1.876 0.349
R Eq. (18) 2.364 0.171 2.322 0.172 2.275 0.173 1.900 0.348 1.879 0.349 1.854 0.351
IQR Eq. (18) 2.541 0.169 2.439 0.170 2.318 0.172 1.982 0.343 1.933 0.346 1.875 0.350
G Eq. (18) 2.359 0.171 2.320 0.172 2.275 0.173 1.894 0.348 1.874 0.350 1.852 0.351
ADM Eq. (18) 2.366 0.171 2.324 0.172 2.275 0.173 1.898 0.348 1.877 0.349 1.854 0.351
ADM0 Eq. (18) 2.376 0.171 2.332 0.171 2.279 0.172 1.901 0.348 1.879 0.349 1.854 0.351
MDM Eq. (18) 2.554 0.169 2.442 0.170 2.322 0.172 1.987 0.343 1.936 0.346 1.876 0.349
MAD Eq. (18) 2.447 0.170 2.380 0.171 2.296 0.172 1.956 0.345 1.915 0.347 1.868 0.350
D7 Eq. (18) 2.376 0.171 2.331 0.172 2.278 0.172 1.901 0.348 1.879 0.349 1.854 0.351

to match any percentile point of the run-length dis-
tribution.

In this study, we derive the factors Un and Ln to
obtain the desired value for p. Later we will show
that this issue is less important for the standard-
deviation control chart than for the X- and X-charts,
because the estimation e↵ect is less pronounced for
the standard-deviation control chart.

The factors Un and Ln depend on n, k, and ↵.
The Phase I estimators considered are the estima-
tors presented in Table 2. We employ the same statis-
tic, namely S/c4(n), as the Phase II charting statis-
tic in each case so that any di↵erences between the
charts are entirely due to di↵erences introduced by
the Phase I estimators. Below, we present the deriva-
tion of the factors for these charts.

We start with the factors for the chart where �̂ is
estimated by S̃/c4(k(n� 1) + 1) (see Equation (3)).
Exact results for this chart can be calculated and can
also be found in Yang and Hillier (1970). We derive
the factor for the upper control limit; the factor for
the lower control limit can be obtained in a similar
way. Note that Si and S̃ are independent, so the fac-
tors can be chosen as the upper and lower ↵/2 quan-
tiles of the distribution Si/S̃. We can write (Si/S̃)2

as
(n� 1)S2

i /�2

k(n� 1)S̃2/�2
· 1/(n� 1)
1/k(n� 1)

,

which is distributed as
�2

n�1/(n� 1)
�2

k(n�1)/(k(n� 1))
= Fn�1,k(n�1),

where �2
m denotes a chi-square distribution with

m degrees of freedom and Fv,w denotes an F -
distribution with v numerator degrees of freedom and
w denominator degrees of freedom. Hence,

Un =
p

Fn�1,k(n�1)(1� ↵/2)c4(k(n� 1) + 1)
c4(n)

.

(15)

For the charts based on the other Phase I estima-
tors, we use the result of Patnaik (1950). Patnaik ap-
proximates the distribution of R̄/� by a(n, k)�⌫(n,k)/p

⌫(n,k), where �⌫(n,k) is the square root of a chi-
square distribution with ⌫(n, k) degrees of freedom
and a(n, k) is a scale factor. The factors a(n, k)
and ⌫(n, k) are obtained by equating the first two
moments of R̄/� to the first two moments of
a(n, k)�⌫(n,k)/

p
⌫(n,k). Patnaik’s approach can also

be applied to approximate the distribution of �̂/�,
where �̂ is obtained via one of the unbiased esti-
mators of the standard deviation in Phase I. Let
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TABLE 4. In-Control p ⇥ 102 of Control Limits. The estimated relative standard error is never worse than 1%.

p ⇥ 102

n = 5 n = 9

k = 20 k = 30 k = 75 k = 20 k = 30 k = 75

SI Un Ln Un Ln Un Ln Un Ln Un Ln Un Ln

S̃ Eq. (15) 0.135 0.135 0.135 0.135 0.135 0.135 0.134 0.135 0.134 0.135 0.134 0.135
S Eq. (18) 0.135 0.135 0.135 0.135 0.135 0.135 0.136 0.134 0.136 0.136 0.134 0.135
S25 Eq. (18) 0.131 0.134 0.135 0.135 0.135 0.134 0.141 0.135 0.137 0.134 0.134 0.135
S20 Eq. (18) 0.135 0.135 0.135 0.134 0.136 0.135 0.131 0.134 0.135 0.135 0.135 0.133
R Eq. (18) 0.135 0.134 0.135 0.136 0.135 0.137 0.135 0.135 0.134 0.134 0.134 0.136
IQR Eq. (18) 0.130 0.134 0.131 0.134 0.135 0.135 0.134 0.134 0.133 0.135 0.133 0.137
G Eq. (18) 0.133 0.134 0.136 0.135 0.134 0.136 0.133 0.134 0.134 0.136 0.134 0.136
ADM Eq. (18) 0.132 0.134 0.135 0.135 0.134 0.137 0.134 0.135 0.134 0.134 0.133 0.136
ADM0 Eq. (18) 0.136 0.135 0.137 0.133 0.134 0.134 0.134 0.135 0.138 0.134 0.135 0.135
MDM Eq. (18) 0.130 0.136 0.133 0.134 0.134 0.136 0.134 0.134 0.138 0.134 0.136 0.133
MAD Eq. (18) 0.131 0.135 0.130 0.135 0.134 0.135 0.134 0.136 0.133 0.135 0.133 0.136
D7 Eq. (18) 0.135 0.135 0.134 0.136 0.136 0.133 0.134 0.135 0.136 0.134 0.133 0.136

M1 = E(�̂/�) = 1 and M2 = Var(�̂/�). From Pat-
naik (1950), it follows that the values of ⌫(n, k) and
a(n, k) are

⌫(n, k) = 1/(�2 + 2
p

1 + 2M2 + 1/(16⌫(n, k))3),
(16)

a(n, k) = 1 +
1

4⌫(n, k)
+

1
32⌫2(n, k)

� 5
128⌫3(n, k)

.

(17)

Because
(Si/�)2

(c4(n)�̂/�)2

is distributed as

�2
n�1/(n� 1)

c2
4(n)a2(n, k)�2

⌫(n,k)/⌫(n, k)
=

Fn�1,⌫(n,k)

c2
4(n)a2(n, k)

,

it follows that

Un =
q

F(n�1),⌫(n,k)(1� ↵/2)/(c4(n)a(n, k)). (18)

In Table 3, we summarize the factors Un and Ln for
the control charts with k = 20, 30, 75 subgroups of
sizes n = 5, 9 and ↵ = 0.0027. For other situations,
values of M2 can be derived by simulating �̂/�. Then
the constants ⌫(n, k) and a(n, k) can be readily ob-
tained from Equations (16) and (17).

To judge the quality of the proposed corrections,
we evaluate the marginal probabilities of a false sig-
nal (p) in Phase II. The probabilities, presented in
Table 4, are assessed using 50,000 simulation runs.
This is enough to obtain a su�ciently small relative
standard error.

Control-Chart Performance

In this section, we evaluate the performance of the
design schemes presented above. The design schemes
are set up in the uncontaminated normal situation
and several contaminated situations. We consider
models similar to those used to assess the MSE with
a, b and the multiplier equal to 4 to simulate the con-
taminated case (cf., subsection entitled E�ciency of
Proposed Estimators).

The performance of the design schemes is assessed
in terms of the unconditional p and ARL as well as
the conditional ARL associated with the 2.5% and
97.5% quantiles of the distribution of �̂. We consider
di↵erent shifts in the standard deviation �� in Phase
II, namely, � equal to 0.5, 1, 1.5, and 2. The per-
formance characteristics are obtained by simulation.
The next section describes the simulation method,
followed by the results for the control charts con-
structed in the uncontaminated situation and various
contaminated situations.
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Simulation Procedure

The unconditional p and ARL for estimated con-
trol limits are determined by averaging the condi-
tional characteristics, i.e., the characteristics for a
given set of estimated control limits, over all values
of the control limits produced in the Phase I simula-
tion runs: Let Xij , i = 1, 2, . . . , k and j = 1, 2, . . . , n,
denote the Phase I data and let Yij , i = 1, 2, . . .
and j = 1, 2, . . . , n, denote the Phase II data. For
each Phase I dataset of k samples of size n, we de-
termine the estimate of the standard deviation �̂
and the control limits dUCL and dLCL. Let Si/c4(n)
be an estimate of �� based on the ith sample Yij ,
j = 1, 2, . . . , n. Further, let Fi denote the event that
Si/c4(n) is above dUCL or below dLCL. We define
P (Fi | �̂) as the probability that sample i generates
a signal given �̂, i.e.,

P (Fi | �̂)

= P (Si/c4(n) < dLCL or Si/c4(n) > dUCL | �̂).

Given �̂, the distribution of the run length is ge-
ometric with parameter P (Fi|�̂). Consequently, the
conditional ARL is given by

E(RL | �̂) =
1

P (Fi | �̂)
.

When we take the expectation over the Xij ’s, we get
the unconditional probability of a signal

P = E(P (Fi | �̂)),

and the unconditional average run length

ARL = E(E(RL | �̂)).

These expectations are obtained by simulation:
50,000 datasets are generated and, for each dataset,
P (Fi | �̂) and E(RL | �̂) are computed. By averaging
these values, we obtain the unconditional values. We
also present the conditional ARL values associated
with the 2.5% and 97.5% quantiles of the distribu-
tion of �̂.

Simulation Results

First we consider the situation where the process
follows a normal distribution and the Phase I data
are not contaminated. We investigate the impact of
the estimator used to estimate � in Phase I. Tables
5 and 6 present the marginal probability of one sam-
ple generating a signal (p), the marginal average run
length (ARL), and the upper and lower conditional
ARL values corresponding to the upper and lower
0.025 quantiles of the distribution of �̂. When � = 1,
the process is in control, so we want p to be as low

as possible and ARL to be as high as possible. When
� 6= 1, i.e., in the out-of-control situation, we want
to achieve the opposite. The tables show that, when
the limits are estimated, the in-control ARL is higher
than the desired 370 (the control limits are chosen to
provide an unconditional p of 0.0027), the value that
is achieved when the limits are known. Note that the
increase in the marginal ARL due to the estimation
process is not as large as for the X control chart. The
reason is that, for the X control chart, the run-length
distribution is very right skewed, which would give a
very large unconditional ARL. This seems to be less
the case for standard-deviation control charts.

We also study the conditional ARL values (or,
equivalently, the conditional p values, because the
conditional RL distribution is simply geometric with
parameter equal to the conditional p). The first value
in parentheses represents the ARL for the 2.5% quan-
tile of the distribution of �̂, while the second value
represents the ARL for the 97.5% quantile of the dis-
tribution of �̂. The results show that the conditional
ARL values vary quite strongly, even when k equals
75. When lambda equals 0.5, we see that a lower
value of �̂ gives a higher ARL and vice versa. The
reason is that a smaller value of �̂ in Phase I results in
a lower value for the lower control limit and hence a
lower probability of detecting a decrease in the stan-
dard deviation in Phase II. In the normal uncontam-
inated situation, we observe a nice pattern for all the
estimators: the upper and lower conditional ARL val-
ues in the in-control situation are higher than in the
out-of-control situation. However, this is not always
the case when there are contaminations in Phase I
(Tables 7–14). Confining ourselves to the conditional
ARL values in the contaminated case, we judge the
upper and lower conditional ARL values as good,
provided that they do not change too much from the
values observed in the uncontaminated normal case.

When we compare the di↵erences between the es-
timators in the situation where the Phase I data are
uncontaminated (Tables 5 and 6), S̃, S, R, G, ADM,
ADM0, and D7 produce very similar outcomes. The
estimators S25, S20, IQR, MDM, and MAD are less
powerful under normality.

The performance of the charts in the case of con-
taminated data are tabulated in Tables 7–14. The
same general results are found as for the MSE com-
parisons. The most important points are:

• The chart based on S̃ is most powerful under
normality; however, its performance decreases
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TABLE 5. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
Under Normality for n = 5

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.019 0.0027 0.084 0.32 54.7 418 14.5 3.28
(86.7; 33.7) (151; 455) (5.94; 33.0) (2.18; 5.10)

S 0.019 0.0027 0.083 0.32 54.7 419 14.8 3.30
(87.8; 33.4) (150; 451) (5.90; 34.2) (2.18; 5.18)

S25 0.019 0.0027 0.058 0.25 65.1 535 47.8 5.45
(155; 24.7) (91.9; 334) (4.78; 248) (1.95; 15.2)

S20 0.019 0.0027 0.068 0.27 60.9 490 28.3 4.29
(126; 27.1) (104; 369) (5.03; 113) (2.01; 9.63)

R 0.019 0.0027 0.082 0.32 54.9 421 15.1 3.33
(88.8; 32.9) (147; 447) (5.85; 35.9) (2.17; 5.31)

IQR 0.019 0.0026 0.067 0.27 61.0 490 28.5 4.32
(125; 27.0) (106; 367) (5.06; 114) (2.01; 9.66)

G 0.019 0.0027 0.083 0.32 54.8 421 14.9 3.52
(88.3; 33.2) (148; 450) (5.87; 35.1) (2.17; 5.53)

ADM 0.020 0.0027 0.082 0.32 54.8 423 15.2 3.34
(89.1; 32.8) (148; 444) (5.87; 36.6) (2.16; 5.34)

ADM
0

0.019 0.0027 0.081 0.31 56.5 434 15.7 3.39
(95.2; 33.2) (138; 451) (5.69; 39.3) (2.13; 5.50)

MDM 0.019 0.0027 0.067 0.27 60.9 490 29.2 4.37
(129; 26.6) (101; 365) (5.02; 123) (2.01; 10.0)

MAD 0.019 0.0026 0.074 0.29 57.7 457 20.4 3.77
(107; 29.4) (124; 404) (5.40; 65.6) (2.08; 7.20)

D7 0.020 0.0027 0.081 0.31 55.1 427 15.7 3.38
(92.0; 32.4) (140; 442) (5.72; 38.7) (2.14; 5.49)

75 S̃ 0.019 0.0027 0.090 0.34 52.7 391 11.9 3.02
(70.8; 38.8) (208; 479) (6.98; 19.8) (2.35; 3.92)

S 0.020 0.0027 0.090 0.34 52.7 392 12.0 3.03
(71.2; 38.6) (205; 478) (6.94; 20.1) (2.35; 3.94)

S25 0.019 0.0027 0.077 0.30 57.1 446 18.2 3.60
(101; 30.8) (127; 423) (5.24; 52.5) (2.10; 6.44)

S20 0.019 0.0027 0.083 0.32 54.8 420 14.8 3.30
(88.2; 33.2) (150; 451) (5.90; 34.7) (2.17; 5.20)

R 0.020 0.0027 0.090 0.34 52.3 391 12.1 3.05
(71.1; 38.0) (203; 475) (6.88; 20.6) (2.34; 4.00)

IQR 0.020 0.0027 0.083 0.32 54.7 419 14.8 3.30
(88.0; 33.1) (150; 450) (5.90; 34.6) (2.17; 5.20)

G 0.020 0.0027 0.090 0.34 52.2 391 12.0 3.04
(70.8; 38.1) (206; 476) (6.93; 20.4) (2.35; 3.98)

ADM 0.020 0.0027 0.090 0.34 52.2 391 12.1 3.04
(71.4; 37.8) (201; 474) (6.87; 20.7) (2.34; 4.00)

ADM
0

0.019 0.0027 0.089 0.33 53.4 399 12.3 3.07
(74.4; 38.2) (194; 484) (6.74; 21.6) (2.32; 4.09)

MDM 0.020 0.0027 0.082 0.32 54.7 422 15.0 3.33
(88.0; 32.8) (150; 449) (5.89; 36.1) (2.17; 5.29)

MAD 0.019 0.0027 0.086 0.33 53.9 409 13.3 3.17
(80.2; 35.4) (174; 471) (6.29; 27.2) (2.25; 4.59)

D7 0.019 0.0027 0.090 0.34 53.6 396 12.1 3.04
(74.1; 38.5) (197; 485) (6.75; 21.1) (2.32; 4.06)
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TABLE 6. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
Under Normality for n = 9

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.12 0.0027 0.17 0.58 9.05 402 6.48 1.74
(14.4; 5.64) (173; 394) (3.52; 11.9) (1.42; 2.22)

S 0.12 0.0027 0.17 0.58 9.02 400 6.52 1.75
(14.4; 5.57) (172; 390) (3.50; 12.1) (1.42; 2.23)

S25 0.11 0.0027 0.14 0.52 10.6 479 10.4 2.02
(24.2; 4.52) (108; 296) (2.97; 32.3) (1.34; 3.35)

S20 0.11 0.0027 0.15 0.53 10.3 462 9.60 1.96
(22.3; 4.59) (119; 306) (3.05; 28.4) (1.35; 3.15)

R 0.12 0.0027 0.17 0.58 9.23 410 6.74 1.77
(15.1; 5.48) (163; 383) (3.44; 13.3) (1.42; 2.31)

IQR 0.11 0.0027 0.15 0.54 10.3 463 9.52 1.96
(22.0; 4.59) (118; 306) (3.06; 28.0) (1.35; 3.13)

G 0.12 0.0027 0.17 0.58 9.02 401 6.55 1.75
(14.5; 5.56) (171; 387) (3.50; 12.2) (1.41; 2.25)

ADM 0.12 0.0027 0.17 0.58 9.17 409 6.69 1.76
(15.1; 5.51) (168; 387) (3.46; 13.0) (1.41; 2.29)

ADM
0

0.12 0.0027 0.17 0.58 9.22 409 6.75 1.77
(15.4; 5.49) (160; 385) (3.40; 13.1) (1.40; 2.32)

MDM 0.11 0.0027 0.14 0.53 10.4 465 9.68 1.97
(22.5; 4.59) (115; 300) (3.03; 29.0) (1.35; 3.18)

MAD 0.12 0.0027 0.15 0.55 9.90 444 8.48 1.89
(19.7; 4.82) (130; 325) (3.13; 22.0) (1.37; 2.85)

D7 0.12 0.0027 0.17 0.58 9.22 410 6.73 1.76
(15.3; 5.50) (165; 385) (3.43; 13.1) (1.40; 2.32)

75 S̃ 0.12 0.0027 0.18 0.60 8.67 383 5.77 1.68
(11.7; 6.43) (235; 429) (3.97; 8.39) (1.48; 1.94)

S 0.12 0.0027 0.18 0.60 8.67 383 5.78 1.68
(11.7; 6.39) (229; 429) (3.96; 8.45) (1.48; 1.94)

S25 0.12 0.0027 0.17 0.57 9.27 412 6.90 1.78
(15.8; 5.42) (156; 380) (3.38; 13.9) (1.40; 2.36)

S20 0.12 0.0027 0.17 0.58 9.22 408 6.58 1.75
(15.0; 5.58) (169; 394) (3.46; 12.4) (1.41; 2.26)

R 0.12 0.0027 0.18 0.60 8.70 384 5.85 1.69
(12.0; 6.26) (225; 425) (3.90; 8.86) (1.47; 1.98)

IQR 0.12 0.0027 0.17 0.58 9.02 402 6.58 1.75
(14.6; 5.52) (196; 386) (3.48; 12.4) (1.41; 2.26)

G 0.12 0.0027 0.18 0.60 8.68 384 5.80 1.68
(11.7; 6.38) (231; 428) (3.95; 8.53) (1.48; 1.95)

ADM 0.12 0.0027 0.18 0.59 8.67 386 5.86 1.69
(11.9; 6.28) (225; 427) (3.95; 8.78) (1.47; 1.97)

ADM
0

0.12 0.0027 0.18 0.60 8.70 384 5.86 1.69
(12.0; 6.28) (219; 425) (3.87; 8.84) (1.46; 1.98)

MDM 0.12 0.0027 0.17 0.58 9.23 407 6.58 1.75
(95.2; 33.2) (138; 451) (5.69; 39.3) (2.13; 5.50)

MAD 0.12 0.0027 0.17 0.58 8.96 398 6.35 1.73
(13.9; 5.73) (185; 401) (3.60; 11.2) (1.43; 2.18)

D7 0.12 0.0027 0.18 0.60 8.69 385 5.84 1.70
(12.0; 6.28) (223; 426) (3.89; 8.81) (1.46; 1.98)
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TABLE 7. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Symmetric Variance Disturbances Are Present in Phase I for n = 5

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.055 0.0043 0.016 0.11 23.0 293 195 22.9
(52.0; 7.68) (475; 92.0) (13.2; 427) (3.22; 131)

S 0.041 0.0031 0.024 0.15 28.7 359 104 9.45
(55.8; 12.5) (441; 158) (11.5; 468) (3.02; 30.8)

S25 0.024 0.0024 0.040 0.20 52.7 526 84.4 7.60
(128; 19.4) (164; 262) (6.00; 478) (2.19; 24.7)

S20 0.024 0.0023 0.045 0.22 48.5 493 54.9 5.97
(103; 20.4) (187; 275) (6.50; 272) (2.29; 16.6)

R 0.041 0.0032 0.023 0.15 28.4 356 110 9.82
(55.4; 12.2) (445; 157) (11.8; 483) (3.05; 32.7)

IQR 0.024 0.0023 0.044 0.22 48.3 493 55.0 5.99
(103; 20.4) (191; 276) (6.56; 274) (2.29; 16.2)

G 0.038 0.0029 0.026 0.16 30.2 379 86.0 8.10
(56.6; 14.0) (429; 183) (11.3; 388) (2.99; 23.3)

ADM 0.035 0.0027 0.029 0.17 31.8 393 73.2 7.28
(58.9; 15.3) (411; 200) (10.8; 320) (2.92; 19.3)

ADM
0

0.024 0.0025 0.060 0.26 47.2 450 27.0 4.31
(86.6; 24.0) (178; 330) (6.41; 94.1) (2.25; 8.80)

MDM 0.026 0.0023 0.041 0.21 46.6 489 63.5 6.43
(99.6; 19.3) (213; 259) (6.89; 323) (2.35; 18.4)

MAD 0.033 0.0026 0.029 0.17 34.9 423 86.3 8.02
(69.6; 15.6) (382; 206) (9.68; 412) (2.78; 23.8)

D7 0.025 0.0024 0.055 0.25 44.1 452 27.8 4.41
(76.6; 23.9) (230; 326) (7.30; 90.8) (2.40; 8.50)

75 S̃ 0.054 0.0042 0.012 0.11 20.4 270 163 13.5
(36.1; 10.3) (467; 128) (23.0; 478) (4.23; 42.5)

S 0.040 0.0030 0.022 0.16 26.7 353 68.3 7.86
(41.7; 16.0) (482; 210) (17.3; 217) (3.67; 14.8)

S25 0.024 0.0023 0.053 0.25 46.4 473 29.4 4.55
(83.1; 24.7) (219; 339) (7.04; 97.3) (2.38; 9.01)

S20 0.025 0.0023 0.054 0.25 43.3 459 25.1 4.25
(27.4; 25.6) (276; 351) (8.08; 68.7) (2.52; 7.49)

R 0.041 0.0030 0.022 0.16 26.2 347 70.5 7.30
(41.2; 15.7) (478; 205) (17.5; 226) (3.69; 15.2)

IQR 0.025 0.0023 0.054 0.25 43.2 459 25.0 4.25
(70.1; 25.7) (276; 351) (8.07; 96.0) (2.52; 7.48)

G 0.037 0.0028 0.026 0.17 28.1 371 55.2 6.41
(42.7; 17.6) (477; 233) (16.2; 161) (3.53; 12.2)

ADM 0.035 0.0027 0.029 0.18 29.7 387 46.9 5.89
(44.5; 18.9) (470; 253) (15.1; 128) (3.41; 10.6)

ADM
0

0.023 0.0023 0.065 0.28 44.7 445 18.2 3.69
(65.9; 29.5) (269; 403) (8.00; 39.3) (2.52; 5.56)

MDM 0.026 0.0023 0.049 0.24 41.5 458 28.4 4.51
(67.8; 24.3) (299; 332) (8.57; 80.6) (2.59; 8.12)

MAD 0.033 0.0025 0.031 0.19 32.2 413 45.8 5.78
(50.7; 20.0) (462; 264) (13.0; 135) (3.18; 10.9)

D7 0.024 0.0022 0.059 0.27 42.7 454 19.5 3.82
(61.1; 29.2) (321; 399) (9.05; 40.3) (2.66; 5.61)
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TABLE 8. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Symmetric Variance Disturbances Are Present in Phase I for n = 9

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.40 0.011 0.021 0.21 2.91 147 156 8.78
(6.13; 1.41) (432; 39.2) (10.2; 417) (2.10; 36.4)

S 0.32 0.0068 0.033 0.27 3.55 200 77.4 4.61
(6.77; 1.81) (463; 55.6) (8.73; 384) (1.98; 12.3)

S25 0.16 0.0026 0.089 0.43 7.70 449 20.9 2.58
(17.6; 3.31) (242; 197) (3.93; 83.7) (1.47; 5.03)

S20 0.15 0.0025 0.10 0.46 7.92 456 15.8 2.35
(16.7; 3.63) (233; 207) (3.88; 54.6) (1.47; 4.18)

R 0.35 0.0084 0.025 0.23 3.24 175 118 6.19
(6.52; 1.60) (461; 41.8) (9.69; 494) (2.05; 20.4)

IQR 0.15 0.0025 0.10 0.46 7.79 454 15.9 2.35
(16.5; 3.62) (240; 205) (3.93; 55.3) (1.47; 4.19)

G 0.27 0.0050 0.045 0.32 4.08 246 43.2 3.52
(7.38; 2.20) (480; 84.8) (7.69; 181) (1.87; 7.45)

ADM 0.24 0.0042 0.054 0.35 4.56 284 31.2 3.09
(8.11; 2.52) (490; 110) (7.03; 114) (1.82; 5.85)

ADM
0

0.16 0.0027 0.12 0.49 7.10 400 11.5 2.12
(13.2; 3.72) (236; 217) (3.95; 31.7) (1.48; 3.32)

MDM 0.15 0.0025 0.096 0.45 7.73 452 17.0 2.41
(16.5; 3.52) (249; 197) (3.96; 59.8) (1.48; 4.36)

MAD 0.18 0.0029 0.076 0.41 6.21 392 22.0 2.66
(12.3; 3.07) (392; 156) (4.92; 80.3) (1.59; 4.91)

D7 0.15 0.0025 0.11 0.49 7.02 415 10.8 2.09
(12.0; 4.03) (294; 247) (4.32; 25.9) (1.53; 3.05)

75 S̃ 0.41 0.010 0.016 0.20 2.61 121 123 6.10
(4.23; 1.65) (262; 44.7) (18.4; 414) (2.65; 15.2)

S 0.32 0.0063 0.030 0.28 3.30 180 49.4 3.85
(5.00; 2.15) (336; 82.0) (13.1; 157) (3.31; 7.00)

S25 0.16 0.0025 0.11 0.48 6.72 414 11.7 2.15
(11.4; 3.95) (331; 241) (4.62; 27.9) (1.56; 3.12)

S20 0.15 0.0024 0.12 0.50 7.06 426 9.90 2.04
(11.3; 4.36) (320; 279) (4.56; 20.9) (1.56; 2.79)

R 0.36 0.0079 0.022 0.24 2.96 149 77.3 4.71
(4.60; 1.90) (301; 62.6) (15.6; 274) (2.46; 9.68)

IQR 0.15 0.0025 0.12 0.50 6.90 417 10.0 2.04
(11.0; 4.27) (324; 271) (4.59; 21.0) (1.56; 2.80)

G 0.27 0.0048 0.044 0.34 3.83 229 29.3 3.11
(5.59; 2.59) (383; 118) (10.5; 74.7) (2.12; 4.86)

ADM 0.24 0.0041 0.055 0.37 4.25 266 22.1 2.80
(6.10; 2.93) (417; 146) (9.23; 50.4) (2.02; 4.07)

ADM
0

0.16 0.0025 0.12 0.52 6.64 401 8.99 1.97
(9.82; 4.44) (331; 287) (4.75; 16.8) (1.58; 2.54)

MDM 0.15 0.0025 0.11 0.49 6.88 422 10.4 2.07
(8.66; 3.61) (443; 207) (6.00; 30.7) (1.71; 3.28)

MAD 0.19 0.0029 0.086 0.44 5.60 368 13.9 2.32
(95.2; 33.2) (138; 451) (5.69; 39.3) (2.13; 5.50)

D7 0.16 0.0025 0.12 0.51 6.58 409 8.85 1.97
(9.22; 4.65) (370; 307) (5.15; 15.2) (1.66; 2.44)
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TABLE 9. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Asymmetric Variance Disturbances Are Present in Phase I for n = 5

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.16 0.020 0.016 0.074 16.1 189 211 137
(54.9; 1.46) (444; 8.54) (12.0; 34.0) (3.08; 99.9)

S 0.063 0.0052 0.019 0.12 23.6 286 196 43.3
(57.8; 5.15) (420; 56.2) (11.1; 262) (2.95; 447)

S25 0.023 0.0024 0.044 0.21 55.1 530 74.8 7.08
(133; 20.5) (140; 279) (5.79; 421) (2.13; 22.8)

S20 0.025 0.0024 0.047 0.22 49.6 488 57.9 6.88
(106; 19.0) (173; 249) (6.30; 354) (2.24; 20.2)

R 0.061 0.0050 0.019 0.12 23.8 291 195 39.5
(52.3; 5.51) (420; 61.2) (11.1; 284) (2.95; 389)

IQR 0.025 0.0024 0.047 0.22 49.5 490 58.3 6.72
(107; 19.1) (176; 254) (6.36; 339) (2.24; 19.6)

G 0.053 0.0042 0.021 0.13 25.8 315 168 25.6
(58.2; 6.94) (407; 80.3) (10.8; 375) (2.91; 195)

ADM 0.047 0.0037 0.023 0.14 27.6 334 147 18.8
(60.0; 8.23) (403; 98.5) (10.5; 458) (2.88; 113)

ADM
0

0.022 0.0025 0.069 0.28 51.1 448 21.0 3.86
(90.7; 27.5) (153; 378) (5.94; 63.3) (2.19; 7.12)

MDM 0.024 0.0023 0.045 0.22 48.8 492 56.0 6.05
(104; 20.5) (181; 275) (6.48; 279) (2.25; 16.8)

MAD 0.046 0.0037 0.022 0.13 29.4 352 176 23.9
(68.9; 8.06) (405; 96.4) (9.89; 453) (2.79; 166)

D7 0.023 0.0024 0.062 0.27 47.5 452 22.6 4.00
(81.3; 26.5) (197; 363) (6.71; 65.1) (2.32; 7.24)

75 S̃ 0.16 0.017 0.0079 0.038 10.5 130 263 163
(32.5; 1.91) (432; 13.9) (31.1; 61.8) (4.88; 185)

S 0.059 0.0046 0.013 0.11 20.2 264 186 19.7
(39.5; 7.93) (482; 93.3) (19.1; 427) (3.85; 95.0)

S25 0.023 0.0023 0.057 0.26 48.5 473 26.7 4.31
(86.8; 25.9) (198; 343) (6.71; 83.8) (2.31; 8.27)

S20 0.025 0.0023 0.056 0.26 44.0 453 26.2 4.27
(72.8; 24.0) (256; 328) (7.64; 84.5) (2.47; 8.15)

R 0.058 0.0045 0.013 0.11 20.4 268 177 17.6
(39.4; 8.24) (478; 99.1) (19.2; 449) (3.87; 78.1)

IQR 0.025 0.0023 0.056 0.26 44.0 453 25.7 4.27
(72.7; 24.2) (256; 332) (7.66; 81.3) (2.47; 8.02)

G 0.050 0.0038 0.016 0.13 22.7 299 135 12.1
(41.2; 10.1) (480; 124) (17.5; 478) (3.70; 43.3)

ADM 0.046 0.0035 0.019 0.14 24.5 320 107 9.66
(42.9; 11.7) (477; 147) (16.2; 433) (3.54; 29.6)

ADM
0

0.021 0.0024 0.075 0.30 48.4 433 15.3 3.39
(70.0; 32.9) (231; 442) (7.42; 30.2) (2.42; 4.82)

MDM 0.025 0.0023 0.054 0.25 43.5 460 25.4 4.25
(71.6; 25.5) (268; 349) (8.00; 72.2) (2.52; 7.53)

MAD 0.044 0.0034 0.019 0.14 25.7 335 116 10.2
(47.0; 11.7) (492; 147) (15.1; 472) (3.42; 33.0)

D7 0.022 0.0023 0.069 0.29 46.1 447 16.4 3.52
(64.8; 32.2) (278; 433) (8.21; 31.9) (2.55; 4.97)
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TABLE 10. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Asymmetric Variance Disturbances Are Present in Phase I for n = 9

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.69 0.11 0.025 0.093 1.90 68.9 176 122
(5.92; 1.00) (412; 1.63) (10.9; 8.33) (2.14; 44.3)

S 0.48 0.021 0.021 0.17 2.66 127 192 33.7
(6.68; 1.09) (460; 9.89) (8.81; 123) (1.97; 383)

S25 0.15 0.0026 0.099 0.45 8.20 462 17.7 2.43
(18.6; 3.52) (208; 198) (3.67; 66.8) (1.44; 4.60)

S20 0.14 0.0025 0.11 0.47 8.28 460 14.9 2.29
(17.7; 3.63) (204; 217) (3.69; 51.7) (1.44; 4.06)

R 0.50 0.024 0.017 0.15 2.52 116 214 43.3
(6.45; 1.07) (453; 8.73) (9.72; 107) (2.06; 469)

IQR 0.14 0.0025 0.11 0.47 8.18 459 15.0 2.29
(17.4; 3.68) (211; 268) (3.71; 51.7) (1.45; 4.05)

G 0.37 0.010 0.030 0.24 3.31 179 126 8.78
(7.26; 1.37) (478; 26.5) (7.77; 390) (1.89; 41.9)

ADM 0.31 0.0070 0.038 0.28 3.81 220 87.5 5.42
(7.95; 1.63) (491; 42.4) (7.10; 490) (1.82; 19.6)

ADM
0

0.14 0.0026 0.14 0.53 7.95 413 9.00 1.95
(14.4; 4.34) (190; 277) (3.67; 21.6) (1.43; 2.83)

MDM 0.14 0.0025 0.10 0.47 8.16 461 15.3 2.31
(17.2; 3.68) (220; 216) (3.77; 52.3) (1.45; 4.08)

MAD 0.26 0.0052 0.049 0.32 4.79 291 74.2 4.73
(10.8; 1.82) (479; 56.1) (5.68; 517) (1.67; 16.2)

D7 0.14 0.0025 0.13 0.52 7.69 426 9.07 1.96
(12.9; 4.46) (249; 291) (4.02; 20.3) (1.48; 2.74)

75 S̃ 0.77 0.092 0.012 0.044 1.42 32.1 205 145
(2.95; 1.00) (150; 2.59) (46.5; 18.5) (3.97; 111)

S 0.49 0.017 0.012 0.15 2.27 94.3 204 14.3
(4.26; 1.25) (269; 19.3) (18.3; 272) (2.63; 71.1)

S25 0.15 0.0025 0.12 0.50 7.18 424 10.4 2.06
(12.1; 4.21) (288; 266) (4.31; 23.8) (1.52; 2.92)

S20 0.14 0.0024 0.13 0.52 7.36 429 9.33 1.99
(12.0; 4.47) (292; 293) (4.33; 19.8) (1.52; 2.72)

R 0.52 0.019 0.0093 0.13 2.11 82.0 233 18.6
(3.93; 1.20) (241; 16.9) (21.7; 233) (2.86; 102)

IQR 0.15 0.0025 0.12 0.51 7.20 420 9.28 1.99
(11.6; 4.40) (294; 284) (4.36; 19.9) (1.53; 2.73)

G 0.37 0.0086 0.024 0.24 2.97 151 92.8 5.25
(5.03; 1.68) (342; 46.9) (12.7; 395) (2.29; 14.1)

ADM 0.31 0.0064 0.034 0.29 3.41 191 54.7 3.95
(5.58; 1.99) (385; 69.3) (10.7; 226) (2.13; 8.53)

ADM
0

0.14 0.0025 0.15 0.55 7.47 408 7.39 1.83
(10.8; 5.11) (277; 347) (4.32; 12.7) (1.52; 2.27)

MDM 0.15 0.0024 0.12 0.51 7.25 428 9.50 2.00
(11.8; 4.47) (297; 288) (4.38; 20.1) (1.53; 2.72)

MAD 0.26 0.0047 0.059 0.34 4.19 256 36.3 3.29
(7.21; 2.29) (470; 92.0) (7.70; 143) (1.88; 6.71)

D7 0.14 0.0024 0.14 0.54 7.22 416 7.63 1.86
(10.0; 5.17) (321; 351) (4.70; 12.4) (1.56; 2.26)
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TABLE 11. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Localized Variance Disturbances Are Present in Phase I for n = 5

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.10 0.0083 0.0038 0.035 12.1 153 370 92.9
(26.3; 4.82) (362; 51.7) (63.6; 243) (7.10; 476)

S 0.051 0.0038 0.011 0.10 21.3 286 172 13.1
(36.8; 12.0) (489; 152) (27.0; 486) (4.58; 34.6)

S25 0.022 0.0024 0.047 0.22 57.2 534 66.1 6.47
(136; 21.8) (129; 291) (5.54; 363) (2.09; 19.6)

S20 0.051 0.0039 0.010 0.086 24.3 317 285 27.4
(54.9; 9.42) (633; 115) (18.4; 540) (3.77; 133)

R 0.051 0.0038 0.011 0.10 21.4 286 176 12.2
(37.3; 11.8) (492; 150) (27.0; 499) (4.59; 36.4)

IQR 0.051 0.0039 0.010 0.086 24.3 316 286 28.1
(55.0; 9.39) (633; 115) (18.4; 537) (3.78; 134)

G 0.051 0.0038 0.011 0.10 21.4 286 174 13.1
(37.1; 11.9) (450; 151) (27.1; 491) (4.62; 35.2)

ADM 0.051 0.0038 0.010 0.099 21.4 287 178 13.5
(37.1; 11.7) (496; 149) (26.4; 503) (4.55; 37.2)

ADM
0

0.020 0.0027 0.079 0.31 55.1 433 17.3 3.53
(97.2; 30.3) (130; 415) (5.51; 48.1) (2.11; 6.16)

MDM 0.051 0.0039 0.010 0.086 24.3 318 288 28.7
(56.0; 9.25) (635; 112) (18.1; 532) (3.75; 144)

MAD 0.051 0.0039 0.010 0.092 22.7 301 233 18.9
(46.0; 10.3) (573; 128) (21.7; 563) (4.09; 72.3)

D7 0.025 0.0023 0.053 0.25 43.6 454 27.9 4.43
(75.6; 24.2) (240; 327) (7.34; 85.2) (2.44; 8.44)

75 S̃ 0.080 0.0064 0.0041 0.050 13.5 175 330 32.9
(22.9; 7.39) (312; 87.4) (73.0; 406) (7.74; 117)

S 0.043 0.0032 0.017 0.14 24.1 326 77.6 7.77
(34.2; 16.7) (450; 222) (26.7; 186) (4.57; 13.3)

S25 0.021 0.0024 0.065 0.28 51.7 467 22.5 3.99
(92.7; 27.8) (165; 384) (6.21; 67.9) (2.21; 7.39)

S20 0.043 0.0032 0.016 0.13 25.3 337 112 9.48
(43.1; 14.1) (520; 183) (19.4; 377) (3.85; 23.0)

R 0.043 0.0032 0.017 0.14 24.0 323 78.1 7.81
(33.9; 16.5) (448; 218) (26.1; 188) (4.53; 13.6)

IQR 0.043 0.0032 0.016 0.13 0.043 337 112 9.51
(43.0; 14.1) (519; 183) (19.3; 375) (3.85; 23.1)

G 0.043 0.0032 0.017 0.14 23.9 323 77.6 7.82
(33.7; 16.6) (447; 220) (26.5; 186) (4.55; 13.5)

ADM 0.043 0.0032 0.017 0.14 23.9 323 78.9 7.84
(34.3; 16.4) (449; 217) (26.2; 195) (4.52; 13.7)

ADM
0

0.020 0.0026 0.087 0.33 52.4 405 12.8 3.13
(74.6; 36.5) (194; 474) (6.72; 23.7) (2.31; 4.30)

MDM 0.043 0.0032 0.016 0.13 25.2 336 115 9.69
(43.3; 14.0) (522; 180) (19.3; 392) (3.85; 24.1)

MAD 0.043 0.0032 0.016 0.13 24.8 333 94.4 8.60
(38.7; 15.3) (494; 139) (22.1; 288) (4.13; 18.0)

D7 0.023 0.0023 0.064 0.28 44.7 452 17.5 3.63
(63.1; 31.1) (295; 423) (8.55; 34.2) (2.60; 5.19)

Journal of Quality Technology Vol. 43, No. 4, October 2011



mss # 1294.tex; art. # 03; 43(4)

DESIGN AND ANALYSIS OF CONTROL CHARTS FOR STANDARD DEVIATION 327

TABLE 12. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Localized Variance Disturbances Are Present in Phase I for n = 9

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.66 0.033 0.0037 0.054 1.60 43.1 344 49.3
(2.60; 1.12) (117; 12.0) (93.7; 154) (5.30; 263)

S 0.38 0.0088 0.015 0.20 2.75 132 111 5.63
(4.22; 1.86) (462; 59.3) (21.8; 346) (2.82; 11.4)

S25 0.13 0.0025 0.12 0.49 9.49 481 12.8 2.17
(21.5; 4.13) (142; 255) (3.24; 41.9) (1.38; 3.74)

S20 0.37 0.0089 0.015 0.18 3.09 164 201 8.68
(6.29; 1.61) (469; 42.3) (14.2; 590) (2.40; 30.0)

R 0.38 0.0087 0.015 0.20 2.80 136 120 5.86
(4.41; 1.82) (285; 57.5) (20.9; 395) (2.77; 12.7)

IQR 0.37 0.0089 0.014 0.18 3.09 162 202 8.59
(6.25; 1.61) (467; 42.3) (14.5; 591) (2.42; 29.2)

G 0.38 0.0088 0.015 0.20 2.75 133 113 5.68
(4.23; 1.85) (269; 59.4) (21.7; 358) (2.82; 11.7)

ADM 0.38 0.0087 0.015 0.20 2.79 135 117 5.79
(4.37; 1.84) (276; 58.0) (21.1; 379) (2.79; 12.2)

ADM
0

0.12 0.0028 0.17 0.57 9.21 405 6.86 1.78
(15.9; 5.33) (147; 369) (3.31; 14.0) (1.39; 2.37)

MDM 0.37 0.0089 0.015 0.18 3.10 164 203 8.78
(6.27; 1.61) (475; 42.2) (14.4; 587) (2.39; 30.6)

MAD 0.37 0.0088 0.015 0.18 2.97 154 175 7.54
(5.57; 1.66) (406; 56.0) (16.0; 567) (2.50; 22.7)

D7 0.16 0.0026 0.11 0.49 6.88 412 11.1 2.11
(11.7; 3.99) (302; 243) (4.42; 26.3) (1.53; 3.09)

75 S̃ 0.58 0.021 0.0039 0.088 1.79 55.0 321 15.5
(2.51; 1.33) (110; 24.2) (85.3; 346) (5.11; 43.4)

S 0.32 0.0063 0.027 0.27 3.19 169 44.6 3.77
(4.22; 2.43) (264; 104) (18.7; 97.0) (2.66; 5.45)

S25 0.13 0.0025 0.15 0.55 8.48 427 7.82 1.86
(14.4; 4.97) (195; 339) (3.65; 16.3) (1.44; 2.51)

S20 0.31 0.0062 0.026 0.26 3.36 186 61.7 4.22
(5.30; 2.17) (371; 81.6) (13.7; 205) (2.36; 7.92)

R 0.32 0.0063 0.027 0.27 3.20 170 46.3 3.81
(4.30; 2.39) (273; 100) (18.0; 106) (2.62; 5.68)

IQR 0.32 0.0064 0.026 0.26 3.31 182 61.6 4.22
(5.21; 2.14) (361; 80.0) (13.8; 199) (2.37; 7.85)

G 0.32 0.0063 0.027 0.27 3.19 169 45.0 3.78
(4.23; 2.43) (266; 103) (18.6; 97.9) (2.66; 5.46)

ADM 0.32 0.0063 0.026 0.27 3.19 169 46.1 3.81
(4.28; 2.40) (270; 101) (18.4; 104) (2.64; 5.64)

ADM
0

0.12 0.0027 0.18 0.59 8.68 384 5.90 1.69
(12.2; 6.15) (214; 421) (3.83; 9.10) (1.46; 1.99)

MDM 0.31 0.0062 0.026 0.26 3.37 187 62.0 4.22
(5.28; 2.16) (374; 82.0) (13.8; 206) (2.35; 7.96)

MAD 0.32 0.0063 0.026 0.26 3.28 179 56.5 4.09
(4.91; 2.21) (335; 85.8) (14.9; 169) (2.42; 7.15)

D7 0.15 0.0024 0.13 0.53 6.91 414 8.16 1.91
(9.61; 4.93) (347; 332) (4.92; 13.6) (1.59; 2.44)
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TABLE 13. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Di↵use Mean Disturbances Are Present in Phase I for n = 5

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.055 0.0042 0.010 0.094 20.5 271 204 15.8
(38.8; 10.5) (501; 131) (23.7; 518) (4.27; 49.0)

S 0.046 0.0035 0.015 0.12 24.1 318 139 11.3
(44.2; 12.4) (519; 158) (18.1; 477) (3.76; 32.5)

S25 0.027 0.0024 0.033 0.18 47.8 509 112 9.29
(117; 17.4) (213; 230) (6.82; 617) (2.32; 33.7)

S20 0.030 0.0025 0.031 0.18 40.3 456 97.3 8.65
(87.6; 15.9) (291; 211) (8.22; 509) (2.53; 29.5)

R 0.047 0.0035 0.015 0.12 23.8 316 147 11.8
(43.9; 12.1) (522; 155) (18.4; 486) (3.78; 34.1)

IQR 0.030 0.0025 0.031 0.18 40.3 458 96.7 8.51
(87.8; 16.0) (293; 212) (8.24; 504) (2.53; 28.9)

G 0.044 0.0033 0.017 0.13 25.4 336 119 9.98
(45.7; 13.3) (519; 172) (16.8; 442) (3.61; 26.7)

ADM 0.041 0.0031 0.019 0.14 26.7 351 107 9.25
(47.9; 14.0) (514; 182) (15.7; 393) (3.51; 24.2)

ADM0 0.032 0.0028 0.041 0.20 38.2 403 67.7 6.84
(84.0; 15.5) (202; 204) (6.73; 337) (2.32; 21.0)

MDM 0.030 0.0025 0.030 0.17 39.7 459 100 8.69
(87.0; 16.2) (319; 213) (8.52; 497) (2.58; 28.0)

MAD 0.039 0.0029 0.019 0.14 29.5 380 128 10.5
(57.8; 13.7) (531; 178) (13.4; 510) (3.26; 32.7)

D7 0.031 0.0025 0.038 0.21 36.8 422 52.1 5.98
(69.0; 17.8) (304; 237) (8.45; 216) (2.60; 14.8)

75 S̃ 0.054 0.0042 0.0091 0.097 19.2 257 156 12.0
(29.0; 12.7) (393; 162) (39.0; 383) (5.56; 24.6)

S 0.046 0.0034 0.014 0.13 22.8 307 96.8 8.79
(33.7; 15.1) (447; 197) (27.2; 255) (4.59; 16.8)

S25 0.026 0.0023 0.044 0.22 42.2 468 38.1 5.14
(76.3; 22.3) (283; 302) (3.21; 133) (2.53; 10.6)

S20 0.030 0.0024 0.036 0.21 35.8 434 42.7 5.48
(59.9; 20.1) (394; 274) (10.6; 139) (2.86; 11.1)

R 0.047 0.0035 0.014 0.12 22.3 301 101 9.00
(33.3; 14.7) (442; 192) (27.5; 270) (4.68; 17.4)

IQR 0.030 0.0024 0.037 0.21 35.7 434 41.4 5.45
(59.9; 20.2) (393; 275) (10.5; 136) (2.86; 11.0)

G 0.044 0.0032 0.017 0.14 23.9 322 81.6 7.96
(35.0; 36.1) (457; 211) (24.5; 213) (4.39; 14.5)

ADM 0.041 0.0031 0.019 0.15 25.1 338 70.8 7.36
(36.5; 16.9) (468; 223) (22.4; 182) (4.14; 13.2)

ADM0 0.030 0.0025 0.043 0.22 36.1 416 36.3 5.05
(60.6; 20.0) (321; 267) (9.03; 119) (2.69; 10.1)

MDM 0.031 0.0024 0.035 0.20 35.3 434 43.9 5.56
(58.5; 20.4) (411; 274) (10.9; 140) (2.92; 10.9)

MAD 0.039 0.0029 0.021 0.15 27.3 364 71.1 7.30
(42.4; 17.1) (504; 225) (18.4; 208) (3.78; 14.3)

D7 0.030 0.0024 0.040 0.22 35.4 433 32.1 4.85
(53.2; 22.6) (410; 305) (11.3; 82.0) (2.97; 8.17)
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TABLE 14. Marginal p and ARL and (in Parentheses) the Upper and Lower Conditional ARL Values
when Di↵use Mean Disturbances Are Present in Phase I for n = 9

p ARL

k SI � = 0.5 � = 1 � = 1.5 � = 2 � = 0.5 � = 1 � = 1.5 � = 2

30 S̃ 0.41 0.010 0.014 0.18 2.62 122 149 6.74
(4.40; 1.67) (282; 46.3) (19.6; 461) (2.70; 16.5)

S 0.36 0.0082 0.019 0.22 2.95 150 103 5.40
(4.97; 1.82) (342; 56.7) (15.0; 373) (2.44; 12.4)

S25 0.18 0.0031 0.069 0.38 6.51 402 32.9 3.04
(14.8; 2.75) (343; 132) (4.55; 154) (1.55; 6.82)

S20 0.18 0.0029 0.077 0.41 6.67 411 25.1 2.76
(14.3; 2.97) (322; 150) (4.52; 105) (1.54; 5.64)

R 0.40 0.0098 0.014 0.19 2.72 129 152 6.86
(4.70; 1.66) (310; 45.8) (18.1; 486) (2.61; 17.8)

IQR 0.18 0.0029 0.076 0.40 6.57 409 25.8 2.79
(14.2; 2.95) (346; 147) (4.62; 108) (1.55; 5.72)

G 0.32 0.0065 0.027 0.26 3.33 183 66.5 4.33
(5.59; 2.04) (391; 73.5) (12.0; 246) (2.23; 8.91)

ADM 0.29 0.0054 0.034 0.29 3.72 218 50.0 3.81
(6.24; 2.25) (444; 90.0) (10.3; 176) (2.10; 7.44)

ADM0 0.23 0.0041 0.069 0.48 5.16 345 30.0 2.97
(11.3; 2.44) (326; 104) (4.56; 130) (1.56; 6.19)

MDM 0.18 0.0029 0.075 0.40 6.60 412 25.1 2.78
(18.9; 3.01) (360; 154) (4.59; 104) (1.56; 5.55)

MAD 0.23 0.0038 0.053 0.34 5.03 322 38.1 3.30
(9.93; 2.52) (529; 110) (6.23; 163) (1.74; 7.02)

D7 0.19 0.0031 0.081 0.42 5.69 356 18.3 2.52
(10.3; 3.02) (387; 155) (5.11; 59.2) (1.61; 4.35)

75 S̃ 0.41 0.010 0.012 0.19 2.49 109 112 5.74
(3.41; 2.86) (189; 60.0) (31.7; 284) (3.32; 10.0)

S 0.36 0.0080 0.019 0.23 2.82 137 72.8 4.64
(3.89; 2.07) (234; 74.8) (22.4; 188) (2.86; 7.68)

S25 0.19 0.0029 0.081 0.43 5.75 372 16.4 2.44
(9.78; 3.37) (428; 185) (5.51; 44.2) (1.66; 3.80)

S20 0.18 0.0028 0.089 0.45 5.92 384 14.0 2.31
(9.63; 3.61) (423; 205) (5.48; 34.2) (1.66; 3.41)

R 0.40 0.0097 0.013 0.19 2.55 114 108 5.62
(3.57; 1.87) (203; 60.0) (28.6; 290) (3.17; 10.0)

IQR 0.18 0.0029 0.087 0.45 5.77 373 14.3 2.33
(9.32; 3.52) (425; 197) (5.58; 34.7) (1.67; 3.44)

G 0.32 0.0064 0.027 0.27 3.18 169 47.4 3.84
(4.40; 2.33) (281; 95.3) (17.1; 114) (2.57; 5.91)

ADM 0.29 0.0054 0.034 0.30 3.51 199 35.7 3.41
(4.83; 2.56) (323; 113) (14.0; 82.0) (2.37; 5.03)

ADM0 0.22 0.0037 0.070 0.40 4.80 301 18.9 2.59
(7.98; 2.94) (432; 147) (6.24; 50.0) (1.73; 4.03)

MDM 0.18 0.0028 0.087 0.45 5.87 383 14.2 2.32
(9.50; 3.61) (430; 208) (5.55; 34.0) (1.67; 3.40)

MAD 0.23 0.0038 0.058 0.38 4.57 292 22.2 2.78
(7.04; 2.97) (467; 149) (8.05; 55.9) (1.92; 4.24)

D7 0.20 0.0030 0.085 0.44 5.30 346 13.7 2.30
(7.77; 3.59) (439; 204) (6.43; 28.4) (1.76; 3.16)
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TABLE 15. Measurements of Pitch Diameter of Threads on Aircraft Fittings

Sample Observations S/c4(5) Sample Observations S/c4(5)

1 36 35 34 33 32 1.682 11 34 38 35 34 38 2.180
2 31 31 34 32 30 1.613 12 36 38 39 39 40 1.613
3 30 30 32 30 32 1.165 13 36 40 35 26 33 5.477
4 32 33 33 32 35 1.303 14 36 35 37 34 33 1.682
5 32 34 37 37 35 2.257 15 30 37 33 34 35 2.754
6 32 32 31 33 33 0.890 16 28 31 33 33 33 2.331
7 33 33 36 32 31 1.990 17 33 30 34 33 35 1.990
8 23 33 36 35 36 5.856 18 27 28 29 27 30 1.387
9 43 36 35 24 31 7.424 19 35 36 29 27 32 4.079

10 36 35 36 41 41 3.138 20 33 35 35 39 36 2.331

most quickly when di↵use or localized disturbances
occur. Because of this risk, we do not recommend
using S̃.

• The charts based on the estimators S20, IQR,
and MDM perform relatively well in response
to di↵use disturbances but not very well when
there are no contaminations.

• The charts based on estimators G and ADM are
e�cient under normality and are more e�cient
than the traditional charts based on S̃, S, and
R when di↵use outliers are present.

• The charts based on the estimators ADM0 and
D7 perform equally well as the traditional
charts in the uncontaminated case and sub-
stantially better than any of the other charts
in contaminated situations. When mean di↵use
disturbances are likely to occur in Phase I, we
recommend using D7 because the control chart
based on this estimator is more robust against
such (extreme) disturbances. When localized
disturbances, i.e., disturbances that a↵ect an
entire sample, are likely to occur, we recom-
mend using ADM0. Advantages of the latter es-
timator are the ease of obtaining estimates and
its intuitiveness: extreme samples and, hence,
the root cause of any disturbances can be read-
ily identified.

Real-Data Example

In this section, we demonstrate the implementa-
tion of the control charts created above. Our dataset
was supplied by Grant and Leavenworth (1988, p.
9). The operation concerns thread grinding a fitting
for an aircraft hydraulic system. Table 15 shows the

pitch diameters of the threads for 20 randomly cho-
sen samples. Each sample consists of 5 observations.

The control-charting process starts with estimat-
ing the in-control standard deviation � (Phase I).
We construct control charts based on the di↵erent
Phase I estimators proposed. The estimates derived
from these estimators are shown in Table 16. Based
on the Phase I estimates, the Phase II control lim-
its are determined. For example, the estimate of �
based on S̃ is equal to 2.972, and Table 3 shows that
the respective factors for the upper and lower control
limits are 2.352 and 0.171. Consequently the Phase
II control limits are 6.990 and 0.508. Figure 5 com-
pares the Phase II control limits for the proposed
estimators.

TABLE 16. Control-Chart Limits for Pitch Diameters

SI �̂ dUCL dLCL

S̃ 2.972 6.990 0.508
S 2.657 6.263 0.112
S25 2.193 5.930 0.366
S20 2.456 6.238 0.415
R 2.666 6.302 0.456
IQR 2.424 6.159 0.410
G 2.623 6.188 0.449
ADM 2.594 6.137 0.444
ADM0 2.041 4.849 0.349
MDM 2.256 5.762 0.381
MAD 2.408 5.892 0.409
D7 2.067 4.911 0.353
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FIGURE 5. Control-Chart Limits for Pitch Diameters.

In the case of ADM0, we apply a simple subgroup-
screening method. The factors for the Phase I control
limits are 2.089 and 0 for n = 5. We first determine
the ADM from the 20 subsamples, which generates
2.594. The Phase I control limits are 5.419 and 0.
Then we determine the standard deviation S/c4(5)
of each subsample and delete subsamples for which
the standard deviation falls outside the initial control
limits. For the example discussed here, the standard
deviations of subsamples 8, 9, and 13 fall outside
the control limits. The same procedure is repeated
in the second iteration: new values for the in-control
� (2.041) and the Phase I control limits (4.263 and
0) are generated from the remaining subsamples and
any subsample for which the standard deviation falls
outside the control limits is deleted. In the second
iteration, it appears no longer necessary to delete
further subsamples.

The estimator S̃ gives the highest dUCL and dLCL.
The estimators that give the lowest dUCL and dLCL
are D7 and ADM0. Note, however, that the question
of which estimator gives the best estimate can not
be resolved from such a limited sample.

Concluding Remarks

In this article, we have compared 12 di↵erent es-
timators for designing the control chart for the stan-
dard deviation and investigated their performance in
Phase II. The added value of incorporating a sim-
ple screening procedure into an estimation method
turned out to be substantial. This method performed

better than estimators that remove samples (S25)
or observations (S20 or IQR) beforehand. The dis-
advantage of removing samples and/or observations
beforehand is that too much information is lost in
uncontaminated situations while, at the same time,
the resulting estimates are biased in contaminated
situations. The estimator ADM0 uses a great deal of
information, deleting only extreme subgroups so that
the final estimate is not a↵ected substantially. More-
over, ADM0 is intuitive and easy to implement. We
recommend using ADM0 when the dataset is likely to
be contaminated by localized disturbances, i.e., dis-
turbances that a↵ect an entire sample. On the other
hand, we prefer D7 when the dataset is likely to be
contaminated by mean di↵use disturbances because
D7 is more robust against such disturbances. There
is no single best control-chart method that would
cover every process and every company. ASTM 15D
(1976, p.143) says it best: “The final justification of
a control chart criterion is its proven ability to de-
tect assignable causes economically under practical
conditions.”

Appendix A

The literature proposes several estimators for the
standard deviation of a normal distribution, includ-
ing estimators based on Gini’s mean di↵erences,
Downton’s linear function of order statistics (Down-
ton (1966)), and the probability-weighted moments
estimator (Muhammad et al. (1993)).

Let Xi(1),Xi(2), . . . ,Xi(n) denote the order statis-
tics of sample i. According to David (1968), the sam-
ple statistic Gi can also be written as a function of
order statistics,

Gi = 2/(n(n� 1))
nX

j=1

(2j � n� 1)Xi(j). (19)

Downton (1966) suggests as a possible unbiased es-
timator of � the statistic

Di = 1/
p

⇡
nX

j=1

(2j � n� 1)Xi(j)/(n(n� 1)), (19)

and Muhammad et al. (1993) proposes the so-called
probability weighted-moments estimator of �,

Spw,i =
p

⇡/n2
nX

j=1

(2j � n� 1)Xi(j). (21)

It follows directly from (19), (20), and (21) that

Gi = 2/
p

⇡Di = 2n/((n� 1)
p

⇡)Spw,i.
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Appendix B

One of our estimators of the sample standard de-
viation is based on the average absolute deviation
from the median, ADMi. As is true for Gi, we can
write ADMi as a function of order statistics,

nADMi

=

8>>><
>>>:

Xi(n) + · · · + Xi((n+3)/2)

�Xi((n�1)/2) � · · · �Xi(1) if n is odd

Xi(n) + · · · + Xi(n/2+1)

�Xi(n/2) � · · · �Xi(1) if n is even.
(22)

From Equations (19) and (22), we can easily derive
the relationship between Gi and ADMi,

Gi =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2ADMi

+
2

n(n� 1)

✓
2Xi(2) + 4Xi(3) + 6Xi(4)

+ · · · + (n� 3)Xi( n�1
2 )

�(n� 3)Xi( n+3
2 ) � · · ·

�6Xi(n�3) � 4Xi(n�2)

�2Xi(n�1)

◆

if n is odd

2ADMi

+
2

n(n� 1)

✓
2Xi(2) + 4Xi(3) + 6Xi(4)

+ · · · + (n� 2)Xi( n
2 )

�(n� 2)Xi( n
2 +1) � · · ·

�6Xi(n�3) � 4Xi(n�2)

�2Xi(n�1)

◆

if n is even.
From David (1981, p. 192), it follows that the esti-
mator based on the average absolute deviation from
the median is less e�cient than the estimator based
on Gini’s mean di↵erences.
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