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The �X Control Chart under Non-Normality
Marit Schoonhoven∗† and Ronald J. M. M. Does

This paper studies design schemes for the �X control chart under non-normality. Different estimators of the standard
deviation are considered and the effect of the estimator on the performance of the control chart under non-normality
is investigated. Two situations are distinguished. In the first situation, the effect of non-normality on the �X control chart
is investigated by using the control limits based on normality. In the second situation we incorporate the knowledge of
non-normality to correct the limits of the �X control chart. The schemes are evaluated by studying the characteristics of
the in-control and the out-of-control run length distributions. The results indicate that when the control limits based on
normality are applied the best estimator is the pooled sample standard deviation both under normality and under non-
normality. When the control limits are corrected for non-normality, the estimator based on Gini’s mean sample differences
is the best choice. Copyright © 2009 John Wiley & Sons, Ltd.
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Introduction

This paper studies the �X control chart in the situation that the limits are estimated and the process distribution is not normal.
Let Yij , i=1, 2,. . . and j=1, 2,. . . , n denote the jth observation in sample i. The classical Shewhart control chart assumes that Yij

are N(�+��,�2) distributed, where � and � are known and � is a constant. When �=0 the process is in-control, otherwise the
process is shifted. The mean of this process can be monitored by plotting the sample means Ȳi =1 / n

∑n
j=1 Yij on the Shewhart control

chart with upper control limit (UCL) and lower control limit (LCL):

UCL=�+3
�√

n
, LCL=�−3

�√
n

(1)

When Ȳi is beyond the limits the process is considered to be out-of-control. Define RL� as the run length, that is the number of samples
until the first sample mean is beyond the limits, when the process mean equals �+��. The performance of a control chart can be
assessed by studying the characteristics of RL� for different values of �. Two functions of interest are the probability of showing a
signal in one sample (P�) and the average run length (ARL�). When the classical Shewhart control limits are applied (cf. (1)) and the
assumptions are met, RL� is geometrically distributed. P� is given by 1−�(3−�

√
n)+�(−3−�

√
n), where � denotes the standard

normal distribution and ARL� can be obtained by 1 / P�. From the preceding we can derive the performance characteristics in the
in-control situation: P0 =0.0027 and ARL0 =370.4.

When � and � are unknown, the limits need to be estimated. Woodall and Montgomery1 define this phase as Phase I. They define
the monitoring phase as Phase II. Estimating the parameters has two consequences for the performance of the control chart in Phase II.
First, when the parameters are estimated and the estimations are simply plugged into (1), P0 will deviate from the 0.0027 intended.
Second, the run length distribution is no longer geometric. The latter issue is first addressed by Quesenberry2. Quesenberry argues
that the number of estimation samples k should be at least 400 / (n−1) in order to get limits that behave like known limits. This is
of course unrealistic in most practical situations where we usually have 20–30 subgroups of sizes around 3–10 (see e.g. Ryan3 and
Montgomery4). In order to get accurate limits for moderate sample sizes, one could consider factors that replace the fixed constant
3 in (1). Another option is to investigate the influence of the estimator of the standard deviation. Schoonhoven et al.5 study design
schemes for the �X control chart under normality. Different estimators of the standard deviation are considered and for each scheme
the correction factor is derived by controlling P0. They conclude that the control chart based on the pooled sample standard deviation
is the best option under normality.

In practice, the normality assumption is often violated. Alwan and Roberts6 examine 235 quality control applications and find that
in most cases the assumptions of normality and independence are not fulfilled, resulting in incorrect control limits. The impact of
non-normality on the performance of the control chart can be substantial. Shewhart7 shows that the probability of false signalling of
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the �X control chart with 3� limits is smaller than 0.11 irrespective of the underlying distribution, and smaller than 0.05 for distributions
likely to be encountered in practice, i.e. for strongly unimodal distributions. Schilling and Nelson8 study the performance of the �X
control chart with limits conform (1). They conclude that the sample size n should be at least 4 in order to assure P0 to be 0.014 or
less. Padgett et al.9 examine the impact of non-normality on the design scheme in (1) when � and � are estimated by their usual
estimators, i.e. for � the mean of the sample means and for � the mean sample standard deviation or the mean sample range. They
also conclude that the in-control probability of signalling of both charts greatly increases under non-normality. Several researchers
correct the control limits based on the shape of the underlying distribution. Burr10 studies the effect of non-normality on the�X control
chart considering various degrees of skewness and kurtosis. He determines constants for each degree of non-normality. Albers and
Kallenberg11 use the normal power family to model the underlying distribution.

This paper studies design schemes for the �X control chart under non-normality in a different way. We propose different estimators
of the standard deviation and study the effect of the estimator on the control chart performance under non-normality for moderate
sample sizes (20 subgroups of sizes 4–10). Two situations are distinguished. In the first situation, the effect of non-normality on the �X
control chart is investigated by using the control limits based on normality. In the second situation, we incorporate the knowledge of
non-normality to correct the limits of the�X control chart. This approach is similar to the type of approach applied by Burr10 and Albers
and Kallenberg11, where the control limits based on the usual estimators of the standard deviation, i.e. the mean sample standard
deviation and the mean sample range, are also corrected for non-normality. In this paper we also consider other estimators of the
standard deviation, such as the pooled sample standard deviation, Gini’s mean sample differences and the mean sample interquartile
range. In Albers and Kallenberg11 a distinction is made between the model error and the stochastic error. The model error is defined as
the error due to the incorrect distributional assumption and the stochastic error is defined as the error due to estimation. Comparing
these two types of errors to the situations described above, in the first situation both the model and the stochastic error are involved,
whereas in the second situation only the stochastic error is present. To investigate the effect of non-normality on the design schemes,
we consider two cases: one by disturbing the kurtosis, i.e. the peak and tail behavior of the distribution, and the other by disturbing
the skewness, i.e. the symmetry of the distribution. The simulations are performed to study the in-control and the out-of-control run
length distributions.

The paper is organized as follows. The next section presents the design schemes, including the estimators that are applied and the
determination of the control limits. In the subsequent section the schemes are evaluated by the use of simulation. The paper ends
with concluding remarks.

Design schemes

In this study we investigate the effect of non-normality on the design scheme

ÛCL= �̂+c(n, k, 1−p / 2)
�̂√

n
, L̂CL= �̂+c(n, k, p / 2)

�̂√
n

(2)

where a hat above an alphabet represents an estimator and c(n, k, 1−p / 2) and c(n, k, p / 2) denote the factors that are dependent on
the number of samples k, the sample size n and p, the latter being equal to P0. In this section we present the estimators of � and �
that are considered and the determination of the factors.

Let Xij , i=1, 2,. . . , k and j=1, 2,. . . , n denote the Phase I data and let Yij , i=1, 2,. . . and j=1, 2,. . . , n denote the Phase II data. We
assume that Xij are independent and identically distributed with mean � and standard deviation � and that Yij are independent
and distributed according to the same type of distribution as Xij , with the only difference that the mean can be shifted to �+��.

In the study we distinguish two situations. In the first situation, we study the effect of non-normality on the �X control chart with
limits based on normality. Thus, Xij and Yij are incorrectly assumed to be normally distributed. In the second situation, we correct the
limits for non-normality. We assume that the shape of the underlying distribution of Xij and Yij is known, up to the location and scale
parameter. The design schemes that are considered in this study are location and scale invariant. Therefore, the constants used to
obtain unbiased estimators and the factors that are applied for the control limits can be corrected for non-normality.

To investigate the effect of non-normality on the resulting schemes, we consider two cases: one by disturbing the kurtosis and the
other by disturbing the symmetry of the distribution. For the case of disturbance in the kurtosis we use the Student’s t distribution
with 4 and 10 degrees of freedom and the logistic distribution, and for the disturbance in the symmetry we use the exponential
distribution and the chi-squared distribution with 5 and 20 degrees of freedom. Note that the results for the exponential distribution are
independent of the parameter value of the exponential distribution since this parameter only influences the scale of the distribution.

Estimators of spread

We estimate the process mean � by the unbiased estimator

¯̄X = 1

k

k∑
i=1

(
1

n

n∑
j=1

Xij

)
(3)

i.e. the grand sample mean. The primary issue is the choice of the estimator of �. We consider several estimators of �. Below, the
statistics and for each statistic the constant by which the statistic has to be divided in order to obtain an unbiased estimator of �
under normality are given. These constants are relevant to the first situation described.
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The first estimator of � that we consider is based on the pooled sample standard deviation

S̃=
(

1

k

k∑
i=1

S2
i

)1/2

(4)

where Si is the ith sample standard deviation defined by

Si =
(

1

n−1

n∑
j=1

(Xij − X̄i)
2

)1/2

An unbiased estimator of � is S̃ / c4(k(n−1)+1), where c4(m) is defined by

c4(m)=
(

2

m−1

)1/2 �(m / 2)

�((m−1) / 2)

Another unbiased estimator of � is S̄ / c4(n), where S̄ is the mean sample standard deviation

S̄= 1

k

k∑
i=1

Si (5)

We also consider the estimator based on the mean sample range

R̄= 1

k

k∑
i=1

Ri (6)

where Ri is the range of the ith sample. We estimate � by the unbiased estimator R̄ / d2(n), where d2(n) is the expected range of a
random N(0, 1) sample of size n. Values of d2(n) can be found in Duncan12, Table M.

The next estimator we propose is based on Gini’s mean sample differences. Gini’s mean differences of sample i are defined by

Gi =
n−1∑
j=1

n∑
l=j+1

|Xij −Xil| / (n(n−1) / 2)

An unbiased estimator of � is given by Ḡ / d2(2), where

Ḡ= 1

k

k∑
i=1

Gi (7)

The last estimator that we consider is based on the mean sample interquartile range. The interquartile range for sample i is defined
by

IQRi =Q75,i −Q25,i

where Qr,i is the rth percentile of the values in sample i. For a sample of size n, the sorted values X(j),i , j =1, 2,. . . , n denote the
P(j),i =100(j−0.5) / n percentiles. Linear interpolation is used to compute the intermediate percentiles. For example, for a sample of
size 5 the sorted values denoted by X(1),i , X(2),i , X(3),i , X(4),i and X(5),i are, respectively, the 10, 30, 50, 70 and 90 percentiles. Then, Q25,i
can be obtained by X(1),i +[(25−P(1),i) / (P(2),i −P(1),i)](X(2),i −X(1),i). In Kimball13 it is shown that the best choice for the P(j),i would be
100(j−3 / 8) / (n+1 / 4) instead of 100(j−0.5) / n. We could also have used the definition that for a sample of size n, the sorted values
are the 100j / n, j=1, 2,. . . , n percentiles. However, the choice 100(j−0.5) / n is more intuitively and better known (cf. Madansky14). The
unbiased estimator is IQR / q(n) where

IQR= 1

k

k∑
i=1

IQRi (8)

and q(n) is defined as the expectation of the interquartile range of a random sample of n N(0, 1) distributed variables. Values of q(n)
can be derived from the mean positions of ranked normal deviates, which are given in Table 28 in Pearson and Hartley15.

When the underlying distribution is not normal the constants c4(m), d2(n) and q(n) are different. In the second situation that we
consider, we incorporate the knowledge of non-normality to correct the limits. Therefore, the constants are corrected in this situation.
The corrected constants are determined such that the expected value of the statistic divided by the constant is equal to the true value
of �. For example, for the estimator S̃, the new constant c4(m) is determined such that E(S̃) / c4(m)=�. We obtain E(S̃) by simulation: we
generate 100 000 times k samples of size n, compute S̃ for each instance and take the average of the values. The resulting constants
are presented in Table I for k =20 and n=4, 6, 8, 10. For comparison purposes the original values based on the normality assumption
are also given in Table I. It follows that the differences between the normal case and the non-normal case can be substantial. As was to
be expected, the largest differences with respect to the constants based on the normal distribution are shown by the t4, exponential
and �2

5 distribution. Rather small differences are shown by the t10, logistic and �2
20 distribution.
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Table I. Constants to obtain unbiased estimators for � for k =20

n �̂ Normal t4 t10 Logistic Exponential �2
5 �2

20

4 S̃ 0.996 0.984 0.995 0.994 0.988 0.992 0.995
S̄ 0.922 0.858 0.907 0.903 0.840 0.886 0.913
R̄ 2.059 1.920 2.030 2.021 1.834 1.961 2.035
Ḡ 1.129 1.042 1.109 1.102 1.000 1.073 1.115

IQR 1.327 1.205 1.297 1.286 1.167 1.258 1.310

6 S̃ 0.998 0.987 0.997 0.996 0.992 0.995 0.997
S̄ 0.952 0.895 0.940 0.936 0.885 0.923 0.944
R̄ 2.534 2.421 2.521 2.518 2.284 2.426 2.506
Ḡ 1.128 1.041 1.109 1.103 1.000 1.074 1.114

IQR 1.284 1.062 1.218 1.194 1.084 1.202 1.262

8 S̃ 0.998 0.991 0.998 0.998 0.994 0.997 0.998
S̄ 0.965 0.915 0.955 0.952 0.909 0.941 0.959
R̄ 2.848 2.784 2.854 2.860 2.594 2.735 2.818
Ḡ 1.128 1.041 1.109 1.103 1.001 1.074 1.114

IQR 1.325 1.094 1.256 1.232 1.118 1.241 1.304

10 S̃ 0.998 0.993 0.998 0.998 0.996 0.997 0.998
S̄ 0.972 0.928 0.964 0.961 0.924 0.952 0.967
R̄ 3.077 3.073 3.107 3.119 2.830 2.965 3.048
Ḡ 1.128 1.042 1.109 1.102 1.000 1.074 1.114

IQR 1.312 1.060 1.235 1.205 1.093 1.223 1.290

Determination of the control limits

In order to control the risk of having false alarms, the fixed constant 3, which is applied for the limits when the process distribution
is normal and the parameters are known (cf. (1)), is replaced by the factors c(n, k, 1−p / 2) and c(n, k, p / 2) in (2). Since the run length
distribution is not geometric when the parameters are estimated, we should make in advance a decision on the purpose of the control
chart. For example, should the chart perform well in terms of P0, in terms of ARL0 or in terms of a specific percentile point of the
in-control run length distribution? Albers and Kallenberg16 describe different correction methods for the �X control chart. In this study
we choose to take P0 as a point of departure, i.e. we determine the factors c(n, k, 1−p / 2) and c(n, k, p / 2) such that

P(Ȳi ≤ L̂CL) = P

(
√

n
Ȳi − �̂

�̂
≤c(n, k, p / 2)

)
=p / 2 and

P(Ȳi ≥ ÛCL) = P

(
√

n
Ȳi − �̂

�̂
≥c(n, k, 1−p / 2)

)
=p / 2

(9)

where Ȳi is supposed to be in-control and p is chosen to be equal to 0.0027. The factors applied for the limits based on normality,
relevant to the first situation that is considered, are derived analytically. For this derivation we refer to Schoonhoven et al.5. The factors
applied in the second situation are chosen such that (9) holds under non-normality, where P(Ȳi ≤ L̂CL) and P(Ȳi ≥ ÛCL) are obtained
by simulation. The simulation procedure is described below.

Let Ei denote the event that the ith sample mean is beyond the limits. Further, denote by P(Ei| ¯̄X, �̂ ) the conditional probability

that for given ¯̄X and �̂, the sample mean Ȳi is beyond the control limits

P(Ei| ¯̄X, �̂ )=P(Ȳi < L̂CL or Ȳi > ÛCL)

Given ¯̄X and �̂, the events Es and Et (s �= t) are independent. Therefore, the run length has a geometric distribution with parameter

P(Ei| ¯̄X, �̂ ). When we take the expectation over the estimation data Xij we get the unconditional probability of one sample showing a
false alarm

P(Ei)=E(P(Ei| ¯̄X, �̂ ))

and, similarly, the unconditional ARL

ARL=E(1 / P(Ei| ¯̄X, �̂ ))

These expectations are simulated by generating 10 000 times k data samples of size n, computing for each data set the conditional
value and averaging the conditional values over the data sets. Note that for the calculation of the control limits in Phase I the process
is considered to be in-control, thus outliers are omitted in this phase. Table II shows the factors for k =20 and n=6.
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Table II. Factors for the �X control chart for n=6 and k =20

Exponential �2
5 �2

20

�̂ Normal t4 t10 Logistic Up Low Up Low Up Low

S̃ 3.145 3.950 3.282 3.310 4.530 2.098 3.984 2.441 3.547 2.788
S̄ 3.145 3.859 3.274 3.300 4.494 2.063 3.971 2.427 3.544 2.786
R̄ 3.145 3.869 3.270 3.310 4.490 2.063 3.973 2.432 3.546 2.788
Ḡ 3.145 3.849 3.275 3.300 4.464 2.038 3.958 2.419 3.541 2.783
IQR 3.225 3.884 3.342 3.369 4.560 2.130 4.040 2.486 3.621 2.863

Table III. P� of limits based on normality for k =20 and n=6

P� for �̂ unbiased under normality

�̂ �=0 �=0.25 �=0.5 �=1 �=2

Normal S̃ 0.0027 0.0081 0.034 0.25 0.95
S̄ 0.0027 0.0081 0.034 0.25 0.95
R̄ 0.0028 0.0081 0.034 0.25 0.95
Ḡ 0.0027 0.0081 0.034 0.25 0.95

IQR 0.0027 0.0077 0.032 0.24 0.94

t4 S̃ 0.0088 0.015 0.041 0.27 0.95
S̄ 0.0105 0.018 0.050 0.31 0.97
R̄ 0.0098 0.017 0.047 0.29 0.96
Ḡ 0.0113 0.019 0.054 0.33 0.97

IQR 0.0173 0.030 0.081 0.41 0.98

t10 S̃ 0.0038 0.0093 0.035 0.25 0.95
S̄ 0.0041 0.0100 0.037 0.26 0.96
R̄ 0.0040 0.0096 0.036 0.26 0.95
Ḡ 0.0043 0.0103 0.038 0.27 0.96

IQR 0.0053 0.0124 0.044 0.28 0.96

Logistic S̃ 0.0040 0.0098 0.036 0.25 0.95
S̄ 0.0045 0.0108 0.039 0.27 0.96
R̄ 0.0042 0.0102 0.037 0.26 0.95
Ḡ 0.0047 0.0112 0.040 0.27 0.96

IQR 0.0064 0.0145 0.049 0.30 0.96

Exponential S̃ 0.010 0.026 0.061 0.26 0.95
S̄ 0.013 0.033 0.077 0.31 0.98
R̄ 0.015 0.037 0.085 0.33 0.98
Ḡ 0.016 0.039 0.089 0.35 0.99

IQR 0.018 0.044 0.100 0.37 0.99

�2
5 S̃ 0.0064 0.019 0.052 0.26 0.96

S̄ 0.0073 0.021 0.058 0.28 0.97
R̄ 0.0078 0.023 0.062 0.29 0.97
Ḡ 0.0080 0.023 0.063 0.29 0.97

IQR 0.0082 0.023 0.063 0.29 0.97

�2
20 S̃ 0.0037 0.013 0.043 0.25 0.96

S̄ 0.0039 0.014 0.044 0.26 0.96
R̄ 0.0041 0.014 0.045 0.26 0.96
Ḡ 0.0040 0.014 0.045 0.26 0.96

IQR 0.0040 0.014 0.043 0.25 0.95

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 167--176
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Table IV. ARL� of limits based on normality for k =20 and n=6

ARL� for �̂ unbiased under normality

�̂ �=0 �=0.25 �=0.5 �=1 �=2

Normal S̃ 682 265 51.0 4.68 1.05
S̄ 701 270 51.6 4.70 1.05
R̄ 720 274 52.5 4.73 1.05
Ḡ 699 269 51.7 4.68 1.05

IQR 1474 509 81.3 5.11 1.07

t4 S̃ 202 162 68.5 11.8 1.16
S̄ 128 86.1 33.6 4.39 1.04
R̄ 140 94.7 37.2 4.76 1.04
Ḡ 114 75.6 29.1 3.89 1.03

IQR 77.6 50.0 19.1 2.88 1.02

t10 S̃ 470 219 53.0 4.93 1.05
S̄ 409 193 45.2 4.65 1.05
R̄ 451 212 48.9 4.85 1.05
Ḡ 391 185 43.6 4.55 1.05

IQR 437 203 46.5 4.68 1.05

Logistic S̃ 442 208 49.2 4.95 1.05
S̄ 378 179 43.5 4.59 1.05
R̄ 430 201 48.1 4.85 1.05
Ḡ 356 168 41.4 4.46 1.04

IQR 350 164 40.3 4.30 1.04

Exponential S̃ 251 90.4 34.3 6.17 1.06
S̄ 160 58.8 23.1 4.53 1.03
R̄ 136 50.5 20.1 4.06 1.02
Ḡ 122 45.6 18.3 3.79 1.02

IQR 117 43.5 17.4 3.65 1.02

�2
5 S̃ 403 118 36.7 5.45 1.05

S̄ 319 94.7 30.3 4.77 1.04
R̄ 292 87.7 28.3 4.54 1.03
Ḡ 276 83.1 27.0 4.41 1.03

IQR 332 97.5 31.0 4.84 1.04

�2
20 S̃ 620 163 41.3 5.04 1.05

S̄ 571 153 39.1 4.88 1.05
R̄ 561 151 38.7 4.84 1.04
Ḡ 545 147 37.9 4.79 1.04

IQR 939 211 50.5 5.68 1.06

Evaluation

In this section the design schemes are evaluated. The performance of the schemes is measured in terms of the probability of showing
a signal in one sample (P�) and the average run length (ARL�) for the in-control situation (�=0) and several out-of-control situations
(�=0.25, 0.5, 1, 2). We use the simulation method introduced in the previous paragraph to obtain these performance measures. The
simulations are performed for six non-normal distribution functions: Student’s t with 4 and 10 degrees of freedom, logistic, exponential
and chi-squared with 5 and 20 degrees of freedom. The first paragraph of this section presents the results of the simulations when
the limits based on normality are applied and the second paragraph shows the results for the case that the limits are corrected for
non-normality.

Limits based on normality

In this paragraph we study the effect of non-normality on the�X control chart with control limits based on the assumption of normality.
This question is inspired by the fact that, according to the central limit theorem, the distribution of the sample means will approach
normality for large sample sizes. Schilling and Nelson8 show that the sample size n should be at least 4 in order to assure P0 to be
0.014 or less when the process distribution is not normal. We investigate the effect of non-normality on estimated limits, and consider
different estimators of the standard deviation. We present the results of the simulation for n=6 and k =20. Tables III and IV show the
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Table V. P� of corrected limits for k =20 and n=6

P� for unbiased �̂

�̂ �=0 �=0.25 �=0.5 �=1 �=2

Normal S̃ 0.0027 0.0081 0.034 0.25 0.95
S̄ 0.0027 0.0081 0.034 0.25 0.95
R̄ 0.0028 0.0081 0.034 0.25 0.95
Ḡ 0.0027 0.0081 0.034 0.25 0.95

IQR 0.0027 0.0077 0.032 0.24 0.94

t4 S̃ 0.0027 0.0039 0.010 0.087 0.81
S̄ 0.0027 0.0041 0.011 0.092 0.84
R̄ 0.0027 0.0041 0.011 0.092 0.83
Ḡ 0.0027 0.0041 0.011 0.092 0.84

IQR 0.0027 0.0041 0.011 0.090 0.83

t10 S̃ 0.0027 0.0068 0.027 0.21 0.94
S̄ 0.0027 0.0068 0.027 0.21 0.94
R̄ 0.0027 0.0068 0.027 0.21 0.94
Ḡ 0.0027 0.0068 0.027 0.21 0.94

IQR 0.0027 0.0066 0.025 0.20 0.93

Logistic S̃ 0.0027 0.0066 0.025 0.20 0.93
S̄ 0.0027 0.0067 0.025 0.21 0.93
R̄ 0.0027 0.0067 0.025 0.20 0.93
Ḡ 0.0027 0.0067 0.025 0.21 0.93

IQR 0.0027 0.0066 0.024 0.19 0.92

Exponential S̃ 0.0027 0.0037 0.0098 0.057 0.60
S̄ 0.0027 0.0037 0.0099 0.057 0.61
R̄ 0.0027 0.0037 0.0099 0.057 0.61
Ḡ 0.0027 0.0037 0.0099 0.058 0.62

IQR 0.0027 0.0037 0.0097 0.056 0.59

�2
5 S̃ 0.0027 0.0044 0.014 0.094 0.78

S̄ 0.0027 0.0044 0.014 0.094 0.79
R̄ 0.0027 0.0044 0.014 0.095 0.79
Ḡ 0.0027 0.0044 0.014 0.095 0.80

IQR 0.0027 0.0044 0.014 0.090 0.76

�2
20 S̃ 0.0027 0.0058 0.021 0.16 0.90

S̄ 0.0027 0.0059 0.021 0.16 0.90
R̄ 0.0027 0.0059 0.021 0.16 0.90
Ḡ 0.0027 0.0059 0.021 0.16 0.90

IQR 0.0027 0.0057 0.020 0.15 0.88

effect of non-normality on P� and ARL�, respectively. From the tables it follows that also in this case P0 significantly increases and so
ARL0 decreases under non-normality. The level of increase in P0 depends on the estimator of �. The increase in P0 is the smallest for
the �X control chart based on S̃ and the largest for the �X control chart based on IQR. This is due to the fact that the estimator based
on S̃ has a small bias under non-normality, while the bias of the estimator based on IQR is large under non-normality, see Table I. As
Table I shows, this is also the case for other values of n. The performance of the other schemes is in between the performance of the
charts based on S̃ and IQR.

Corrected limits
The performance characteristics P� and ARL� of the corrected limits are presented in Tables V and VI, respectively. From Table V it

follows that the differences between the charts in terms of P� are small. The only remarkable thing is that the charts based on S̃ and
IQR have a slightly lower P� for �>0 in a number of cases. Table VI shows that the deviations between the normal and non-normal
case are the smallest for the control chart based on Ḡ and therefore this chart is most robust against deviations from normality.
This is due to the fact that the unbiased estimator based on Ḡ has the lowest variance in almost all cases (the variance determines
the performance of the chart since the bias is removed). This can be shown by the relative efficiency of the estimators. The relative
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Table VI. ARL� of corrected limits for k =20 and n=6

ARL� for unbiased �̂

�̂ �=0 �=0.25 �=0.5 �=1 �=2

Normal S̃ 682 265 51.0 4.68 1.05
S̄ 701 270 51.6 4.70 1.05
R̄ 720 274 52.5 4.73 1.05
Ḡ 699 269 51.7 4.68 1.05

IQR 1474 509 81.3 5.11 1.07

t4 S̃ 769 529 321 79.3 14.7
S̄ 503 380 179 22.5 1.27
R̄ 511 390 184 23.2 1.27
Ḡ 484 365 169 20.4 1.23

IQR 521 391 188 23.3 1.25

t10 S̃ 717 324 76.0 6.09 1.07
S̄ 685 309 70.5 5.97 1.07
R̄ 701 316 71.6 6.00 1.07
Ḡ 686 309 70.4 6.00 1.07

IQR 1120 480 102 7.41 1.09

Logistic S̃ 735 339 77.3 6.56 1.08
S̄ 692 322 74.0 6.38 1.07
R̄ 738 343 77.4 6.57 1.08
Ḡ 682 318 73.3 6.34 1.07

IQR 1094 509 111 7.91 1.09

Exponential S̃ 3822 1703 606 68.1 2.49
S̄ 1978 1278 432 54.9 2.22
R̄ 2012 1279 433 54.8 2.23
Ḡ 1275 1114 380 49.0 2.11

IQR 4167 1785 601 72.3 2.54

�2
5 S̃ 1276 863 232 23.3 1.37

S̄ 1015 768 212 21.7 1.35
R̄ 1043 775 213 21.8 1.35
Ḡ 865 713 198 20.6 1.33

IQR 2120 1179 299 28.8 1.45

�2
20 S̃ 795 456 106 9.47 1.13

S̄ 776 449 105 9.41 1.12
R̄ 803 459 107 9.49 1.13
Ḡ 759 440 104 9.35 1.12

IQR 1700 758 165 12.4 1.16

efficiency of an unbiased estimator �̂ is defined as

Reff(�̂ )= Var(MV)

Var(�̂ )
∗100%

where MV is the estimator out of the collection of unbiased estimators considered (in this case the estimators based on S̃, S̄, R̄, Ḡ and
IQR) which has minimum variance. The efficiency comparisons are presented in Table VII. This table shows that the unbiased estimator
based on Ḡ has in almost all cases the lowest variance under non-normality. The unbiased estimator based on S̄ is the second best.
We can also derive from the table that the variance of the unbiased estimators based on S̃ and IQR is in some cases higher than the
variance of the other unbiased estimators. Therefore, when the knowledge of non-normality can be used to correct the limits we
recommend Ḡ instead of S̃.

Concluding remarks

The choice of the estimator for the �X control chart when the process distribution is non-normal depends on the situation at hand.
When the limits based on normality are applied, the best estimator is the estimator based on S̃ since the resulting charts perform
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Table VII. Efficiency comparisons for k =20

Reff(�̂ ) of unbiased �̂ in percentages

n �̂ Normal t4 t10 Logistic Exponential �2
5 �2

20

4 S̃ 100 48 94 94 75 84 98
S̄ 94 89 99 99 93 95 99
R̄ 92 90 97 97 96 97 98
Ḡ 93 95 100 100 100 100 100

IQR 86 100 96 97 100 97 94

6 S̃ 100 43 92 92 72 80 96
S̄ 96 86 98 98 88 91 98
R̄ 89 81 90 89 87 89 93
Ḡ 94 100 100 100 100 100 100

IQR 48 81 57 58 68 60 53

8 S̃ 100 42 91 91 70 79 94
S̄ 97 80 97 96 84 88 96
R̄ 86 70 82 82 80 82 88
Ḡ 95 100 100 100 100 100 100

IQR 56 97 68 69 78 70 62

10 S̃ 100 39 91 91 70 78 93
S̄ 98 76 96 95 82 86 96
R̄ 83 61 76 76 73 76 83
Ḡ 96 100 100 100 100 100 100

IQR 43 78 53 53 64 56 48

the best both under normality and under non-normality. When the knowledge of non-normality can be used to correct the limits, the
best choice is the unbiased estimator based on Ḡ since this estimator has the lowest variance under non-normality.

Note that we have performed the simulations for n varying from 4 to 10 and k equal to 20, which is in line with the assumption
that in practice usually 20–30 subgroups are available of sizes around 3–10 (see e.g. Ryan3 and Montgomery4). A higher value of k
would moderate the effect of parameter estimation, resulting in higher probabilities of signalling in the out-of-control situation and
smaller differences between the estimators.
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