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This paper argues that currently available methods for the assessment of the repeatability and reproducibil-
ity of ordinal classifications are not satisfactory. The paper aims to study whether we can modify a class
of models from Item Response Theory, well established for the study of the reliability of categorical mea-
surements in psychometrics and education, for use in business and industry, and whether the resulting
approaches offer a satisfactory solution. The fitted models can be presented graphically, but also allow
the calculation of probabilities of correct ordering and consistent classification. In addition, the model-
based approach allows refined diagnostics, giving the user insight into the workings of a classification
procedure, which is vital information for a user willing to improve a poor classification procedure. The
approach is illustrated from a real-life example, and the proposed analysis is contrasted to two popular
alternative analyses, based on Goodman and Kruskal’s gamma and Kendall’s coefficient of concordance.
The datasets and mathematical proofs are available as online supplemental materials.
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1. INTRODUCTION

Classifications can be nominal or ordinal. In the former case,
there is no particular order in the classes of the used scale. With
ordinal classifications the classes are ordered. Ordinal classifi-
cations are omnipresent in business and industry, as in the fol-
lowing examples:

• The classification of manufacturing faults into “minor,”
“major,” “critical.”

• Quality ratings using a scale such as “reject,” “critical,”
“acceptable,” “good,” “very good.”

• Sorting of produce or natural materials in grades such as I,
II, III, and IV.

Ordinal classification is measurement on an ordinal scale, and
as with numerical measurements, its reproducibility and re-
peatability (R&R) are important characteristics (especially in
view of the often critical application of these measurements).
This makes the development and study of methods for the as-
sessment of the R&R of ordinal measurements a highly relevant
subject.

Standard methods for the assessment of the quality of numer-
ical measurement systems include gauge repeatability and re-
producibility (gauge R&R) studies (Burdick, Borror, and Mont-
gomery 2003). Gauge R&R studies (and similar approaches
such as the intraclass correlation coefficient) express a measure-
ment system’s R&R in terms of standard deviations or (Pear-
son) correlations, both of which are not defined for ordinal data.

Methods that are offered in literature for ordinal data in-
clude approaches based on the concept of agreement, such
as the kappa index (de Mast 2007; de Mast and van Wierin-
gen 2007). Only considering consistency in absolute value,
these methods treat ordinal data as nominal data (i.e., the or-
der among the classes is not taken into account). Suppose, for
instance, that an appraiser rates 10 objects on a four-point ordi-
nal scale {a,b, c,d} and the results are c,b,d,d,b,b,d,b,d, c.
Suppose a second appraiser rates the same objects but finds
b,a, c, c,a,a, c,a, c,b. Agreement methods treat these data as
though they are nominal, and would yield that the agreement
between these sequences is nil. Such evaluation overlooks that
these appraisers are in fact quite consistent. Namely, appraiser 1
rates the first object larger than the second object, as does ap-
praiser 2. This holds for all pairs of objects; that is, the ap-
praisers are consistent in ordering objects relative to each other.
Agreement methods for nominal data are incapable of reflecting
this sort of consistency in order, and thus an important aspect
of the quality of ordinal classifications is ignored.

An ad hoc and rather arbitrary (and therefore unsatisfac-
tory) modification of agreement methods for ordered scales is
the weighted kappa (Cohen 1968). Other methods are based
on measures of association defined for ordinal scales (Haber-
man 1988 gives an overview). Goodman and Kruskal’s gamma
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(Goodman and Kruskal 1954), for example, is based on the no-
tion of concordance, as is Kendall’s tau (Kendall and Gibbons
1990, chapter 1). Concordance refers to the extent to which ap-
praisers are consistent in ordering objects relative to each other;
the two abovementioned sequences are fully concordant. Good-
man and Kruskal’s gamma expresses R&R as a difference be-
tween the probability of observing a concordant pair, and the
probability of observing a discordant pair (details of this and
the other indices discussed here are given in the last section).
A different approach is taken in Kendall’s coefficient of concor-
dance W , which is a generalization of Spearman’s rho (Kendall
and Gibbons 1990, p. 117). Here, the idea is to transform rat-
ings into rankings, and treat these rankings as though they were
on an interval or ratio scale (with equidistant classes), and apply
ANOVA-like techniques (such as sums of squares).

In our view, none of these approaches provides a satis-
factory method for expressing the result of R&R studies for
ordinal data. Some of these methods treat ordinal data as
though they are nominal data (kappa), numerical data (weighted
kappa), or rankings that in turn are treated as numerical data
(Kendall’s W). All of them capture the behavior of the measure-
ments in a single number in between 0 (implying completely
random and thus uninformative classifications) and 1 (imply-
ing perfect R&R). Whereas these extremes 0 and 1 have clear
interpretations, the intermediate values are hard to give a tan-
gible meaning. It is hard to substantiate that they convey more
information to the user than that the ratings are “somewhere” in
between perfectly repeatable and purely random. Such a single
number may be useful for comparing measurement systems rel-
ative to each other, but it is hard to see its practical value for the
user in evaluating a single measurement system. They provide
little insight, and make the question as to how large the index
should be to indicate an acceptable R&R hopelessly arbitrary.

In measurement in the social sciences the last decades wit-
nessed the development of Item Response Theory (IRT). Lord
(1980) is the classic introduction, while Embretson and Reise
(2000) give a recent overview. In IRT, measurements are not
evaluated based on a single index; instead, advanced statisti-
cal models are fitted to the data. The theoretical development of
IRT has been substantial, and IRT methods are routinely applied
to study a range of psychological and educational measuring in-
struments and tests.

Searching for an approach to characterize the R&R of or-
dinal measurements in a way that provides more insight than
the single-index approaches discussed above, this paper aims to
study whether IRT methods can be modified for use with the
types of ratings that are common in business and industry, and
whether the resulting approaches should be considered a better
alternative to current methods. Where the original applications
of IRT involve test items and tested persons, R&R experiments
involve objects, appraisers and repeated measurements per ap-
praiser. We propose an estimation method for fitting the pro-
posed models (including suggestions for model diagnostics),
and we demonstrate how the fitted models can be interpreted
to build understanding of the R&R of classifications. A real-life
example from industry serves as the basis for our discussion that
evaluates the advantages and disadvantages of IRT modeling
compared to the currently available single-index approaches.

2. EXPERIMENTAL DESIGN AND MODELING

We consider an ordinal measurement procedure, which clas-
sifies objects on an ordered scale {1,2, . . . ,H} (for example,
{“reject,” “critical,” “acceptable,” “good”}). This classification
is intended to order the objects according to a certain property
(such as quality), which is not directly observable. Following
considerations in Goodman and Kruskal (1954), we reason that
the fact that a scale’s categories are ordered suggests this latent,
underlying property is a continuum. We will denote the latent
value of an object on this continuum as X; it would be referred
to as the measurand in ISO’s Guide to the Expression of Un-
certainty of Measurements (ISO 1995), but we will refer to it
as an object’s true value. To assess the R&R of a classifica-
tion procedure one takes I objects, which are classified J times
by each of K appraisers into one of the classes h = 1, . . . ,H.
The data are denoted Yijk, with i = 1, . . . , I indexing objects,
j = 1, . . . , J indexing appraisers, and k = 1, . . . ,K indexing re-
peated measurements per appraiser. We assume that the I ob-
jects are a sample representative for the process in which the
classification procedure is used.

Of interest for R&R studies is the joint distribution of the
{Yijk}j=1,...,J;k=1,...,K , and in particular the association structure
between the repeated measurements (a lack of association im-
plying a poor R&R). We choose to model the Yijk using a la-
tent variable model. The main alternative are log-linear mod-
els; although these are powerful means to analyze association
structures (see Agresti 1988), the advantage of latent variable
models is that the cause of the association among repeated
measurements—the objects’ true values—is modeled explic-
itly. Consequently, the variation in the measurements is explic-
itly attributed to a systematic part (variation among true values)
and a random part (measurement variation), a practice which
resembles the typical manner in which gauge R&R studies for
numerical measurements are modeled.

The objects’ true values Xi are assumed stochastically inde-
pendent, and have a density fX . Let

qj(h|x) := P(Yijk = h|Xi = x). (1)

For each appraiser j, and for h = 1, . . . ,H the qj(h|x) could be
seen as a function (from R to [0,1]) in x. These functions,
known as characteristic curves, determine the probability of
observing a certain response category h, given the object’s true
value x. As announced in the Introduction, this paper studies a
class of models borrowed from IRT. In particular, we will use
Masters’ (1982) Partial Credit Model, in the generalized form
proposed by Muraki (1992). This model was developed for or-
dered polytomous responses, and it assumes that

qj(h|x) = exp(
∑h−1

m=1 αj(x − δjm))∑H
n=1 exp(

∑n−1
m=1 αj(x − δjm))

. (2)

This model has the following parameters:

• The threshold points δjh, j = 1, . . . , J and h = 1, . . . ,H−1,
which are the points of intersection of the curves qj(h|x)
and qj(h + 1|x), namely, P(Yijk = h|Xi = δjh) = P(Yijk =
h + 1|Xi = δjh). Loosely said, the δj1, . . . , δjH determine
how appraiser j relates response categories h = 1, . . . ,H
to the latent continuum of true values x, and we will refer
to them as appraiser j’s category boundaries.
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• Discrimination parameters αj > 0, j = 1, . . . , J. These de-
termine the width of the curves qj(h|x). Larger αj imply
that the curves are narrower, and (as will be shown later)
that repeatability is better (i.e., the appraiser’s ratings are
more discriminative).

The origin and scale of the continuum on which the true values
Xi vary are arbitrary and inconsequential. As a result, the δjh and
xi are fitted only up to a linear transformation. To simplify the
notation in the estimation algorithm, we fix the origin and scale
of the x continuum at μX and σX , whence we can take the Xi
to have zero mean and unit variance [in the estimation section
we will assume the Xi to be N(0,1) distributed]. Without these
or similar restrictions, the model suffers from an identifiability
problem.

The experimental model described by (1) and (2) is com-
pleted by the assumption of conditional independence. This
standard assumption in latent variable models states that
conditional on Xi and for fixed appraisers j = 1, . . . , J, the
Yi11, . . . ,YiJK are independent.

Figure 1 shows characteristic curves qj(h|x) for a 4-point
scale. In this example, αj = 3, δj,1 = −1.0, δj,2 = −0.5, δj,3 =
1.5. Note that for each x we have

∑H
h=1 qj(h|x) = 1. If the δj,h,

h = 1, . . . ,H − 1, are ordered, category h is the most likely re-
sponse if δj,h−1 < xi < δj,h.

There is no a priori justification for model (2); its useful-
ness must prove itself in application. Model (2) with all αj
identical (i.e., all appraisers have equal repeatability) is Mas-
ters’s original Partial Credit Model, and it is a so-called Rasch
model. The important property of Rasch models is known as
conjoint additivity (Wright 1997), and its effect is that there
are sufficient estimators for the threshold points δjh on the x-
continuum, and for the true values xi (whence they can be es-
timated independently). Masters (1982) derived the model by
considering measurement on a polytomous scale as a sequence
of dichotomous decisions. Thus, rating an object as “3” is con-
sidered as deciding positive, positive and negative on the se-
quence of dichotomies “2 instead of 1?,” “3 instead of 2?,” and
“4 instead of 3?.” For each of these dichotomies, Masters ap-
plies Rasch’s (1960) model for dichotomous responses, which
results in model (2). The main alternative to the Generalized
Partial Credit Model is Samejima’s (1969) Graded Response
Model. This model is computationally more awkward, and it is
less flexible (in the sense that in Samejima’s model, for each h

there is an interval on the x axis where the corresponding char-
acteristic curve is larger than the remaining curves; our model
avoids this assumption, thus accommodating a wider variety of
R&R behavior). Given the widely accepted use of the General-
ized Partial Credit Model in IRT, it is the most natural choice
for our present purpose, pending a validation of its usefulness
based on a large number of applications.

3. ESTIMATION AND MODEL DIAGNOSTICS

In order to fit his model to a set of data, Muraki (1992) makes
the assumption that the δjh, h = 1, . . . ,H − 1, are equidistant
(for all j). We avoid this assumption and fit the general model.
The parameters of model (2) are estimated from the experimen-
tal data by means of the maximum likelihood (ML) method.
To this end, it is more convenient to represent the experimental
data {Yijk}i=1,...,I;j=1,...,J;k=1,...,K in the form of response pat-
terns {Rijh}i=1,...,I;j=1,...,J;h=1,...,H , where Rijh = {#k|Yijk = h}.
Conditional on x the Rij = (Rij1, . . . ,RijH) follow a multino-
mial distribution with parameters qj(1|x), . . . ,qj(H|x). Thus,

P(Rij = rij|Xi = x) = K!∏H
h=1 rijh!

H∏
h=1

(qj(h|x))rijh ,

and the unconditional probability equals

P(Rij = rij) =
∫ ∞

−∞
K!∏H

h=1 rijh!
H∏

h=1

(qj(h|x))rijhφ(x)dx,

where, as mentioned in the previous section, we take the Xi to
be independently, standard normally distributed. The likelihood
of the experimental outcome is

L = P(R = r) =
I∏

i=1

P(Ri = ri)

=
I∏

i=1

∫ ∞

−∞

J∏
j=1

P(Rij = rij|Xi = x)fX(x)dx

=
I∏

i=1

∫ ∞

−∞

J∏
j=1

K!∏H
h=1 rijh!

H∏
h=1

(qj(h|x))rijhφ(x)dx,

where we used the assumption of conditional independence in-
troduced in the previous section.

Figure 1. Characteristic curves; number of classes H = 4, αj = 3, δj = {−1.0,−0.5,1.5}.
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To maximize the likelihood with respect to the parameters we
need to evaluate the integral in the likelihood. It is approximated
by means of the Gauss–Hermite quadrature (Stroud and Secrest
1966):

L �
I∏

i=1

G∑
g=1

h(xg)

J∏
j=1

K!∏H
h=1 rijh!

H∏
h=1

(qj(h|xg))
rijh =: L̃,

where the xg are the abscissas of the quadrature and h(xg)

the corresponding weights. In effect, the latent variable is dis-
cretized having values x1, . . . , xG with probabilities h(x1), . . . ,

h(xG) which satisfy
∑G

g=1 h(xg) = 1. The integral can be ap-
proximated to any desired degree of accuracy by increasing the
number of quadrature points (we have used 35 points through-
out our analyses).

Writing α for {αj}j=1,...,J and δ for {δjh}j,h, we determine the
ML estimates from

α̂, δ̂ = arg max
α,δ

log(L̃).

The maximum of L̃ is found by application of the Newton–
Raphson algorithm. In the algorithm we use the first and second
order partial derivatives of the log-likelihood.

The estimation procedure outlined above is, when there is
very little spread in the data, sensitive to the choice of the ini-
tial values used in the Newton–Raphson maximization. As a
resolution, we propose an iterative maximum penalized like-
lihood procedure based on a sequence of penalty parameters
λ0 > λ1 > · · · > λU = 0. The idea is that for u = . . . ,3,2,1,0,
the corresponding λu approach ∞, while for u = . . . ,U −
3,U − 2,U − 1, the λu approach 0, with λU = 0. We work with
the sequence λu = (5U−u − 1)/500, with U = 15. For each iter-
ation u the maximum penalized likelihood estimates are deter-
mined from

α̂u, δ̂u = arg max
α,δ

log(L̃) − λu

J∑
j=1

(logαj)
2. (3)

For u = 0 the value λ0 approaching ∞ ensures that α̂0
j = 1 for

all j; in fact, we fit Masters’s original Partial Credit Model. This
estimation step appears to be insensitive to the choice of ini-
tial values for the Newton–Raphson procedure. Subsequent it-
erations (u = 1,2, . . . ,U) consist of reapplying the Newton–
Raphson procedure to solve (3), with α̂u−1 and δ̂u−1 as ini-
tial values. These iterations result in a sequence of estimates
(α̂u, δ̂u)u=0,1,...,U . The final estimates are α̂u0 , δ̂u0 with

u0 = arg max
u=0,...,U

log(L̃
α̂u,δ̂u),

that is, the maximum penalized likelihood estimate resulting in
the highest unpenalized likelihood. Typically, λu0 = 0, but in
situations where the R&R are near perfect we observed some
nonzero values (λu0 < 0.1 in most cases). In these situations
the differences between estimated parameters based on λ = 0
versus λu0 > 0 were very small.

Confidence intervals of the parameter estimates could be
constructed by inverting the observed Fisher information ma-
trix, which is the matrix of second-order partial derivatives of
log(L̃) evaluated at the ML estimates. This approach assumes

that the confidence intervals are symmetric around the point es-
timates. This may be reasonable for large I, but not necessarily
for the small sample situation under study. We bootstrap the
confidence intervals, following De Menezes (1999), who uses
resampling techniques for the construction of confidence inter-
vals in the context of latent class models. New experimental
data are generated by randomly drawing (with replacement) I
samples (objects) from the original experimental data. The pa-
rameters are estimated for the new data. The process (resam-
pling and estimation) is repeated a large number of times, say B
times. The limits of the 95% confidence interval of the parame-
ter estimates are then given by the 0.025 and 0.975 quantiles of
each set of B estimated parameters (in the analyses later in this
paper, we used B = 1000).

As for model diagnostics, we present a number of op-
tions. First we propose an approach for validating the normal-
ity assumption for the true values Xi. The true value Xi of
each object i is predicted, given the response patterns Ri =
(Ri11, . . . ,Rijh, . . . ,RiJH), as

x̂i = E(Xi|Ri = ri; α̂, δ̂)

=
∫ ∞

−∞
xP(Xi = x|Ri = ri; α̂, δ̂)dx

=
∫ ∞

−∞
x

fX(x)P(Ri = ri|x; α̂, δ̂)∫ ∞
−∞ fX(u)P(Ri = ri|u; α̂, δ̂)du

dx

=
(∫ ∞

−∞
x

J∏
j=1

K!∏H
h=1 rijh!

H∏
h=1

(qj(h|x; α̂, δ̂))rijhφ(x)dx

)

/(∫ ∞

−∞

J∏
j=1

K!∏H
h=1 rijh!

H∏
h=1

(qj(h|x; α̂, δ̂))rijhφ(x)dx

)
,

(4)

which can be determined using the Gauss–Hermite quadrature.
The validity of the normality assumption is assessed by plotting
the predicted values x̂i in a normal probability plot.

Second, residual analysis should be performed to check for
observations that have disproportionate influence on the esti-
mates. In latent variable modeling, it is customary to work
with standardized or Freeman–Tukey variance stabilized resid-
uals (Formann 2003). Both report response patterns whose ob-
served frequency deviates substantially from their expected fre-
quency given the fitted model. It turns out to be difficult to trans-
late these flagged response patterns to interpretable indications
about anomalous observations, as it is hard to relate them to
specific objects or appraisers. Instead, we propose a method for
reporting unusual observations on the level of objects. Analo-
gous to common practice in fitting linear models, we define the
results for an object i as “unusual” if its response pattern Ri is
in the set of 5% least likely responses given the fitted model
and predicted response. This mirrors the practice in normal re-
gression analysis of labeling observations “unusual” if their ab-
solute standardized residual is larger than 2.

Let RP = {0, . . . ,K}JH be the set of all possible response pat-
terns, which contains L = (K +1)JH different patterns. For each
potential response rp� = (rp�,11, . . . , rp�,jh, . . . , rp�,JH) ∈ RP
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we define the usualness, given the fitted model and predicted
true value, for object i as

Ui(rp�) = P
α̂,δ̂

(Ri = rp�|Xi = x̂i)

=
J∏

j=1

K!∏H
h=1 rp�jh!

H∏
h=1

(q̂j(h|x̂i))
rp�jh .

Let, for part i, rp(�) be the response patterns ordered by de-
gree of usualness, that is, Ui(rp(1)) > · · · > Ui(rp(L)). For ob-
ject i, the collection RPUi of 5% least likely response patterns
consists of rp(�95)

, rp(�95+1), . . . , rp(L), where �95 is the small-

est �0 for which
∑�0

�=1 Ui(rp(�)) > 0.95. Object i is reported as
“unusual” if Ri ∈ RPUi.

4. INTERPRETATION OF THE RESULTS

4.1 Intraappraiser Analysis

First we study how to assess the repeatability of a single ap-
praiser j. In IRT the information function is frequently used.
Each item in a test has an information function, which enables
the test designer to distinguish good (i.e., discriminating) items
from poor test items, and to select a set of items such that their
combination is discriminating on the relevant range of the true
value axis (see Lord 1980, p. 65). For our purpose, where we
are not dealing with tests consisting of a set of items, the infor-
mation function is of limited value. The information function
does express for each true value x the repeatability of the mea-
surements, but it does so in the form of an abstract value which
is difficult to interpret.

Ordinal scales have two properties, namely, distinctiveness
and order. We find it important that both properties are taken
into account when evaluating the R&R. As explained in the In-
troduction, merely taking into account agreement on absolute
values would effectively treat the data as nominal instead of
ordinal. We propose two metrics, namely, the probabilities of
correct ordering ρ, and of consistent classification π . The first
one is a measure of concordance. Our model based approach al-
lows us to go further than Goodman and Kruskal’s gamma sta-
tistic, which is based on concordance between the observations
of two appraisers. Our metric is based on concordance between
observed order and true order.

We define the probability ρw
j (superscript “w” for within) of

correct ordering of appraiser j as

ρw
j := P(Yijk ≤ Yujk|Xi ≤ Xu)

= P(Yijk ≤ Yujk,Xi ≤ Xu)/P(Xi ≤ Xu)

= 2
∫ ∞

x=−∞

∫ ∞

w=x
P(Yijk ≤ Yujk|Xi = x,Xu = w)

× φ(x)φ(w)dw dx

= 2
∫ ∞

x=−∞

∫ ∞

w=x

H∑
h=1

H∑
g=h

qj(h|x)qj(g|w)

× φ(x)φ(w)dw dx. (5)

If the discrimination parameter αj approaches infinity (i.e.,
measurements approaching perfectly consistent ratings), qj(h|x)

converges to 1 (uniformly for δj,h−1 < x < δj,h; see the
Appendix, available as online supplemental material), and
limαj→∞ ρw

j = 1. The Appendix (online supplemental mater-
ial) also shows that for αj ↓ 0 (i.e., measurements approach-
ing random ratings), qj(h|x) converges uniformly to 1/H, and
limαj↓0 ρw

j = (H + 1)/2H =: ρ0 (which is approximately 1/2
for larger H). Note that the lower bound ρ0 depends on the num-
ber of classes of the ordinal scale. If one prefers a repeatability
index whose values are interpretable independent of the number
of classes H, one could work with ρ̃w

j = (ρw
j − ρ0)/(1 − ρ0),

which is an index that is similar in form to the κ (kappa) index
for nominal measurements (de Mast and van Wieringen 2007).
The extremes ρ̃w

j = 0 and ρ̃w
j = 1 represent the situations of

purely random and perfectly repeatable classifications. The dis-
advantage of this index is that it is more abstract.

The second metric is the probability of consistent classifi-
cation. A classification Yijk by an appraiser j is consistent if it
agrees with his own category bounds δjh. The probability of
consistent classification for appraiser j and class h is

πw
j (h) = P(Yijk = h|δj,h−1 < Xi < δj,h)

=
∫ δj,h

x=δj,h−1
qj(h|x)φ(x)dx∫ δj,h

x=δj,h−1
φ(x)dx

.

The limit behavior of πw
j (h) is similar to that of ρw

j . Ap-
proaching random ratings, we have limα↓0 πw

j (h) = 1/H := π0,
while limα→∞ πw

j (h) = 1. The probability of correct classifica-
tion for appraiser j is

πw
j =

H∑
h=1

πw
j (h)P(δj,h−1 < Xi < δj,h)

=
∫ ∞

x=−∞
q∗

j (x)φ(x)dx, (6)

with q∗
j (x) = ∑H

h=1 1{δj,h−1<x≤δj,h}qj(h|x). Also πw
j can be

rescaled to the [0,1] interval, and we define π̃w
j = (πw

j −
π0)/(1 − π0).

Besides repeatability (expressed as a probability of correct
ordering or consistent classification) it is important to verify
for each appraiser whether the used ordinal scale is valid. The
ordinal scale implies that there is a particular order in which
the classes 1, . . . ,H are intended. There is a validity problem
if the data show that there are appraisers who do not apply the
classes in their intended order. This becomes apparent if the
thresholds δj,1, . . . , δj,H−1 of an appraiser j are not ordered; let
us say δj,2 < δj,1 (see, e.g., Figure 2, in which δj,1 = −0.5, while
δj,2 = −1.5). Note that even in such case the intended order of
the classes is preserved in the sense that the log-odds of choos-
ing class h + 1 over class h,

log
qj(h + 1|x)

qj(h|x) = αj(x − δjh),

is an increasing function in x (confirming that lower classes cor-
respond to lower true values x, and higher classes to higher
x values). But a more strict sense of order is violated in this
case. For x values smaller than δj,2 we have P(Yijk = 1|x) >

P(Yijk = 2|x) > P(Yijk = 3|x), and for x values greater than δj,1
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Figure 2. Characteristic curves; H = 4, αj = 1.5, δj = {−0.5,−1.5,2.0}.

we have P(Yijk = 1|x) < P(Yijk = 2|x) < P(Yijk = 3|x) (which
implies the correct order), but for x values in between δj,2 and
δj,1 we have P(Yijk = 1|x) > P(Yijk = 3|x) > P(Yijk = 2|x) or
P(Yijk = 3|x) > P(Yijk = 1|x) > P(Yijk = 2|x), which implies a
conflict with the intended order. Note also that the curve corre-
sponding to h = 2 is dominated for all x values by other curves,
implying that there exist no true values x for which h = 2 is the
most probable response—put differently, the appraiser is reluc-
tant to use this class.

If a particular curve is dominated by the other curves (such
as h = 2 is dominated by the other curves in Figure 2) for all
appraisers, it is probably best to drop that class from the scale
(that is, the 4-point scale in Figure 2 is replaced with the 3-point
scale {1,3,4}).

4.2 Interappraiser Analysis

Differences among appraisers can pertain to the discrimina-
tion parameters αj (i.e., appraisers classify with different re-
peatability) and to the threshold parameters δjh (i.e., apprais-
ers act to different boundaries between the categories h =
1, . . . ,H). For the first, it is useful to give a table of the repeata-
bility ρw

j and πw
j per appraiser, and the mean repeatability ρ̄w

and π̄w. Especially differences among the δjh are understood as
an issue of reproducibility. Differences among each appraiser’s
δs could be differences with a fixed offset:

δjh = δ̄·h + τj with δ̄·h = 1

J

J∑
j=1

δjh.

The boundaries of appraiser j are all shifted by an amount τj on
the x continuum compared to the average over all appraisers.
In this case, we have a simple calibration problem. If the dif-
ferences in each appraiser’s δs have a more complex structure,
this is indicative for unclear definitions of the scale’s classes
h = 1, . . . ,H (and especially their boundaries). In both cases,
we think the user is best helped by a table or plot displaying
how the appraisers’ δs compare among each other.

For comparing the relative contributions of intraappraiser and
interappraiser inconsistencies, the intraappraiser probabilities
ρw

j of correct ordering could be compared to their interappraiser

variant ρb (“b” for between). We define the pair-wise probabil-
ity that observations from different appraisers result in correct
ordering as

ρb
j1,j2 = 2

∫ ∞

x=−∞

∫ ∞

w=x

H∑
h=1

H∑
g=h

qj1(h|x)qj2(g|w)

× φ(x)φ(w)dw dx. (7)

The total interappraiser probability of correct ordering is

ρb = 1

J(J − 1)

J∑
j1 	=j2=1

ρb
j1,j2 ,

and the rescaled version is ρ̃b = (ρb − ρ0)/(1 − ρ0).
Where the intraappraiser probability of consistent classifica-

tion πw
j reflects the degree to which an appraiser’s classifica-

tions are consistent with his own category bounds, the interap-
praiser version gives the probability that, given an object with
true value X, the category boundaries of two randomly selected
appraisers are consistent (in the sense that both sets of category
boundaries classify the object in the same category). In sym-
bols:

πb
j1,j2 =

H∑
h=1

P
(
δj1,h−1 < X < δj1,h ∧ δj2,h−1 < X < δj2,h

)

=
H∑

h=1

max
{
0,�

(
min

{
δj1,h, δj2,h

})
− �

(
max

{
δj1,h−1, δj2,h−1

})}
(8)

and

πb = 1

J(J − 1)

J∑
j1 	=j2=1

πb
j1,j2 .

5. PUTTING THE PROPOSED APPROACH TO THE
TEST: MEASURING SOLDERED JOINTS QUALITY

We illustrate our approach with a real-life example, and com-
pare our analysis with alternative indices proposed in literature.
A project at an electronics manufacturer aimed at redesign-
ing the process for soldering printed circuit boards (PCBs).
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The project’s objective was to deliver a lead-free soldering
process yielding an acceptable quality of soldered joints. Sol-
dered joints quality was judged by means of a visual inspection,
for which brief guidelines were given. Quality was rated on
a 4-point scale (1 = “reject,” 2 = “critical,” 3 = “acceptable,”
4 = “good”).

To establish the repeatability and reproducibility of the vi-
sual inspections, the project leader set up an experiment, in
which 45 PCBs were inspected by three operators, and three
weeks later the same operators rated the same PCBs a second

Table 1. Results of the Initial (left) and Follow-up experiment
studying the R&R of quality ratings for soldered joints

Appraiser Appraiser

Part A B C A B C

1 1 1 1 1 2 2 3 3 2 3 3 3
2 1 1 1 1 2 2 4 4 4 4 4 4
3 2 1 2 1 2 2 2 2 2 2 2 2
4 1 1 1 1 2 2 2 2 2 2 2 2
5 2 1 1 1 2 2 4 4 4 4 4 4
6 2 1 2 2 2 2 1 1 1 1 1 1
7 1 1 1 1 2 2 2 2 3 3 2 2
8 2 1 1 1 2 2 3 3 3 3 3 4
9 2 2 1 1 2 2 3 3 3 3 3 3

10 1 1 1 1 3 2 2 2 2 3 2 2
11 3 2 2 2 3 3 2 3 3 4 3 3
12 3 2 2 2 3 2 3 3 3 3 3 3
13 3 2 2 2 3 2 1 1 1 1 1 1
14 3 2 2 1 3 2 2 3 3 3 2 3
15 3 3 2 3 3 2 2 2 2 2 2 2
16 3 3 3 2 3 2 4 4 4 4 4 4
17 3 3 3 3 3 2 4 4 4 4 4 4
18 3 3 3 3 3 3 4 4 4 4 4 4
19 3 3 3 3 3 3 3 3 3 3 3 3
20 4 3 3 2 4 3 3 3 3 3 3 3
21 3 3 3 3 3 3 3 4 4 4 4 4
22 3 3 1 1 3 3 1 1 1 1 1 1
23 3 3 3 2 3 3 4 4 4 4 4 4
24 2 3 3 2 3 2 4 4 4 4 4 4
25 3 3 1 1 3 2 2 2 2 2 2 2
26 3 3 3 2 3 3 2 2 2 2 2 2
27 3 3 3 2 4 3 2 2 3 3 3 3
28 2 3 1 1 3 2 2 2 2 2 2 2
29 2 3 2 2 3 3 3 3 3 3 3 3
30 2 3 1 2 3 3 2 2 3 3 2 2
31 3 4 3 2 4 4
32 3 4 3 2 3 3
33 3 4 2 2 4 4
34 3 3 2 2 4 3
35 3 3 2 3 3 3
36 2 3 2 3 3 3
37 3 3 3 3 3 3
38 3 3 3 3 3 3
39 3 4 3 3 3 3
40 4 4 3 3 4 4
41 4 3 1 1 4 3
42 4 3 1 1 4 4
43 4 3 1 3 3 4
44 3 3 4 4 4 3
45 3 3 3 3 3 3

time (the “Initial” experiment). Table 1 gives the results. Not
conforming to good practice in experimental design, the PCBs
were not presented in randomized order, but in the order given
in the table. Note that the table suggest that the project leader
roughly sorted the PCBs by quality. They are a random sample,
though, and therefore can be considered representative for the
quality of the soldering process at that time; bear in mind that
this concerns a soldering process under development, whence
the frequency of rejects is rather large.

The project leader did a fairly elementary analysis, just
counting the number of PCBs for which all six ratings agreed.
The very low number (6 out of 45 PCBs) made her conclude
that she had a serious problem with this inspection procedure.
She discussed some of the PCBs in the sample with the oper-
ators, thus establishing clearer inspection guidelines. She also
made photos showing “border cases,” that is, photos which de-
fine the border between the “good” and “acceptable,” “accept-
able” and “critical,” and “critical” and “reject” categories. To
confirm the effectiveness of the new inspection guidelines, a
new experiment was set up (the “Follow-up” experiment), in-
volving the same three operators but 30 new PCBs (results
given in Table 1). The improved results (21 out of 30 PCBs with
full agreement) led her to accept the new inspection procedure.

5.1 IRT Analysis

Tables 2 and 3 and Figures 3 and 4 present the analysis as
proposed in this paper, executed in the R environment (R De-
velopment Core Team 2008). For the Initial experiment, the re-
sults imply that the repeatability of the first and third opera-
tor is fair, while the second operator’s repeatability seems poor.
The per appraiser probabilities of consistent classification [cal-
culated from (6)] are πw

j = 0.721, 0.540, 0.755. Note that the
probability of consistent classification would be π0 = 0.250 for
purely random ratings, which should be taken as an offset for
the estimated probabilities. The probabilities of correct order-
ing are ρw

j = 0.951, 0.846, and 0.952 (with ρ0 = 0.625).
Reproducibility is poor (the probability of correct ordering is

ρb = 0.864). Figure 3 tells part of the story of what goes wrong
in the classification procedure: the third operator avoids the cat-
egory “1,” while the second operator underuses the category
“4.” The category boundaries used by operator 2 are very differ-
ent from the boundaries used by the other two. The inconsistent
category boundaries are reflected in the interappraiser probabil-
ity of consistent category boundaries, which is πb = 0.498. The
pairwise probabilities of consistent category boundaries [calcu-
lated from (8)] are πb

1,2 = 0.421, πb
1,3 = 0.825, πb

2,3 = 0.247,
demonstrating that appraisers 1 and 3 are highly consistent, but
appraiser 2 has deviating category boundaries.

As for the results of the Follow-up experiment, we see that
matters have improved substantially, and all repeatabilities are
quite good now (probabilities of correct ordering are ρw

j =
0.989, 0.978, and 0.993; probabilities of consistent classifica-
tion are πw

j = 0.919, 0.830, 0.957). Also the interrater consis-
tency has greatly improved, as can be seen from Figure 4 and
from the estimated probability of correct ordering ρb = 0.980
and the interappraiser probability of consistent category bound-
aries πb = 0.795. Note that the relatively wide confidence inter-
vals in Tables 2 and 3 indicate that the relatively small sample
sizes somewhat limit the strength of our analyses.
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Table 2. Estimated model parameters for the Initial experiment, including probabilities of correct ordering and
consistent classification (with 95% confidence intervals)

j αj δj,1 δj,2 δj,3 ρw
j 95% C.I. πw

j 95% C.I.

1 3.2 −1.1 −0.5 1.3 0.951 (0.917, 0.977) 0.721 (0.665, 0.816)
2 1.0 −0.3 0.3 3.5 0.846 (0.747, 0.945) 0.540 (0.428, 0.743)
3 3.2 −22.3 −0.5 1.1 0.952 (0.893, 0.982) 0.755 (0.660, 0.876)

ρ0: 0.625 π0: 0.250

Reproducibility ρb: 0.864 (0.813, 0.903) πb: 0.498

Table 3. Estimated model parameters for the Follow-up experiment, including probabilities of correct ordering and
consistent classification (with 95% confidence intervals)

j αj δj,1 δj,2 δj,3 ρw
j 95% C.I. πw

j 95% C.I.

1 20.9 −1.8 −0.0 1.0 0.989 (0.974, 0.999) 0.919 (0.832, 0.996)
2 6.6 −1.8 −0.5 0.7 0.978 (0.952, 1.00) 0.830 (0.743, 0.997)
3 21.4 −1.8 −0.1 0.6 0.993 (0.984, 1.00) 0.957 (0.856, 0.998)

ρ0: 0.625 π0: 0.250

Reproducibility ρb: 0.980 (0.951, 0.992) πb: 0.795

Figure 3. Results of the analysis of the Initial experiment. Characteristic curves are shown for all three appraisers. The δjh are indicated on
the x-axis. By means of shading the areas δj,h−1 < x < δjh (for h = 1, . . . ,4) are demarcated.
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Figure 4. Results of the analysis of the Follow-up experiment. Characteristic curves are shown for all three appraisers. The δjh are indicated
on the x-axis. By means of shading the areas δj,h−1 < x < δjh (for h = 1, . . . ,4) are demarcated.

Figure 5 shows the normal probability plots of the fitted true
values x̂i [which were calculated from (4)]. The stacks of dat-
apoints (e.g., at x = 1.47 in the Follow-up experiment) need
not worry us, as they are an artifact of the fact that the xi are
reconstructed from categorical data: if ri1 = ri2 then x̂i1 = x̂i2 .
The probability plots do not give us strong evidence that the
normality assumption for the Xi is unwarranted.

Three response patterns in the Initial experiment are flagged
as “unusual” at the 95% level, namely, the results for PCBs 41,
42, and 44. Looking in the raw data, we see that PCBs 41 and
42 were rated “3” or “4” by appraisers 1 and 3. As can be seen
in Figure 3, the typical response from the second appraiser in
such cases would be “3,” perhaps a “2,” but the double “1” is
anomalous. Similarly for PCB 44, where the double “4” from
the second appraiser is at odds with his typical rating behavior.
The regular analysis [based on model (2)] allows for fixed dif-
ferences among the appraisers in their implicit category bounds
(the δjh); it does not allow for object × appraiser interaction ef-
fects (namely, that an appraiser’s δjh are different from object
to object). One way in which the model’s assumptions can be
violated, is that such interaction effects are present. A possi-
ble explanation says that the deviations are caused by specific

properties of the three PCBs in question; appraiser 2 responds
differently to these specific properties than appraisers 1 and 3.

Figure 6 is an interaction plot. It compares whether the analy-
sis results are in line with the results of J individual per-
appraiser analyses. In particular, fitting the model to the data
of appraiser j only, instead of to the complete dataset, yields
fitted values x̂(j)

i , where the (j) superscript indicates that it con-
cerns true values predicted from the data from appraiser j only.
Figure 6 graphs these x̂(j)

i (with the objects sorted by x̂i). The
graphs visualize the differences between the appraisers, with
parallel but shifted graphs indicating fixed differences. The dis-
crepancies in Figure 6 between appraiser 2 on the one hand,
and the other two appraisers on the other, are not only fixed dis-
crepancies, but differ from object to object, thus visualizing the
object × appraiser interaction effects. Note that the largest dis-
crepancies are for PCBs 41, 42, and 44, which are the same ones
that we had identified as “unusual observations” above. Thus,
the graph reveals a serious problem with this rating process.
The analysis provides the user with specific leads as to how
to pinpoint the core problem; a sensible next step would be to
examine and discuss PCBs 41, 42, and 44 with the three ap-
praisers.
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Figure 5. Normal probability plots of the fitted true values x̂i for the Initial (left) and Follow-up experiment (right).

Note that, in the original analysis, α2 was estimated substan-
tially lower than α1 and α3, suggesting that the repeatability of
the second appraiser is substantially worse. At first sight, this
seems at odds with the observation that the results of the sec-
ond appraiser disagree less than those of the other appraisers
(15 times out of 45, versus 21 and 16 for the other apprais-
ers). When fitting the model to the data of the second appraiser
only, α2 is estimated as 3.79, which seems better in line with
appraiser 2’s repeatability. The relatively low estimate in the
original analysis is explained by the observation that the above-
mentioned object × appraiser interaction effect is absorbed in
the intraappraiser results of the second appraiser, resulting in a
poorer value for α2.

Figure 7 shows that the Follow-up experiment does not seem
to suffer from problems like the Initial experiment. One re-

sponse pattern is flagged as “unusual,” namely, the one cor-
responding to object number 11. We do not have an explana-
tion for this unusual observation, but the reader should bear in
mind that even in datasets that conform perfectly to the model
assumptions, some 5% of the observations will be flagged as
“unusual.”

We summarize our conclusions. There is a general discrep-
ancy between the second appraiser and the other two. The out-
of-control behavior visualized in Figure 6, most prominent in
the three flagged PCBs, is indicative of ineffective instructions
or a general lack of understanding of the property that is being
measured. The wild behavior frustrates modeling attempts, and
the fitted model and estimated probabilities of correct ordering
and consistent classification are unreliable in the Initial experi-
ment, but the analysis pinpoints the source of the problem and

Figure 6. Comparison for the Initial experiment of the true values fitted from each appraiser’s data individually (the x̂(j)
i ), and the true values

fitted from the total dataset (the x̂i). The points are sorted by x̂i (objects i with smallest x̂i to the left). Labels give the numbers of the 10 objects

having the largest difference x̂(j)
i − x̂i.
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Figure 7. Comparison for the Follow-up experiment of the true values fitted from each appraiser’s data individually, and the true values fitted
from the total dataset. The points are sorted by x̂i (objects i with smallest x̂i to the left).

gives tangible and useful leads for improvement. In the analy-
sis of the Follow-up experiment we do not see serious validity
problems, and we conclude that this analysis gives a reliable
assessment of the R&R of the final inspection procedure.

5.2 Nonparametric Analysis

Our analysis approach was designed with the pursuit of tangi-
ble results in mind. It is not the purpose of this paper to compare
our methods with all alternatives found in literature (the inter-
ested reader is referred to de Mast and van Wieringen 2004,
who compare a fair number of indices). We draw two of the
most popular indices in the comparison, Kendall’s coefficient of
concordance W and Goodman and Kruskal’s γ , thus illustrating
our general concerns with many of the measures around.

The structure assumed in this paper (replications nested in
appraisers) is rarely encountered in the contexts in which W and
γ are usually defined. Instead, the data Yij are usually assumed
to be repeated measurements j = 1, . . . , J of objects i = 1, . . . , I
(in the datasets in Table 1, I = 45 and I = 30 respectively, while
J = 6).

Kendall’s W (briefly introduced in the Introduction) was
originally proposed for rankings, but can be modified for use
with (ordinal) ratings (de Mast and van Wieringen 2004). In
this form, it is defined as

W =
∑I

i=1(
∑J

j=1 Rij − J(I + 1)/2)2

IJ2(I2 − 1)/12 − J
∑J

j=1
∑H

h=1 Njh(N2
jh − 1)/12

,

where Njh = {#i : Yij = h} (for j = 1, . . . , J and h = 1, . . . ,H),

and Rij = ∑Yij−1
h=1 Njh + (1 + NjYij)/2. For the Initial experiment

(I = 45) we find W = 0.639 (computed for all six columns).
By applying the formula to pairs of columns, we can calcu-
late a W-value for each appraiser. For appraisers 1, 2, and 3 we
find 0.817, 0.866, and 0.846 respectively (thus representing an

intraappraiser analysis). The results for the Follow-up experi-
ment (I = 30) are W = 0.935 (computed for all six columns),
and 0.973, 0.971, and 0.982 for the individual appraisers.

Defining the probabilities of concordance, discordance, and
ties as

Pc := P
(
Yi1j1 < Yi2j1,Yi1j2 < Yi2j2

)
+ P

(
Yi1j1 > Yi2j1,Yi1j2 > Yi2j2

)
,

Pd := P
(
Yi1j1 < Yi2j1,Yi1j2 > Yi2j2

)
+ P

(
Yi1j1 > Yi2j1,Yi1j2 < Yi2j2

)
,

Ptie := P
(
Yi1j1 = Yi2j1

) + P
(
Yi1j2 = Yi2j2

)
,

Goodman and Kruskal’s gamma is defined as

γ = Pc − Pd

1 − Ptie

= P(concordance | no ties) − P(discordance | no ties).

A value of γ = 1 implies perfect consistency in order, whereas
a value of γ = 0 means that ratings are done at random (and
hence are uninformative). Kendall’s tau (Kendall and Gibbons
1990) follows quite a similar line of reasoning. Gamma is de-
fined for pairs of ratings (i.e., for data of the form Yij, where
i = 1, . . . , I and j = 1,2). Following the formulas in Goodman
and Kruskal (1954) (or Haberman 1988), gamma is estimated
from data Yij as follows

Ĉ = 2
1

I2

H−1∑
h=1

H−1∑
m=1

H∑
h′=h+1

H∑
m′=m+1

NhmNh′m′,

D̂ = 2
1

I2

H−1∑
h=1

H∑
m=2

H∑
h′=h+1

m−1∑
m′=1

NhmNh′m′ ,

γ̂ = (Ĉ − D̂)/(Ĉ + D̂).
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Here, Nhm = {#i : Yi1 = h,Yi2 = m}. Using this formula, we can
calculate a γ̂ (j1, j2) for each pair of columns (j1, j2 = 1, . . . ,6).
The results for the column pairs corresponding to the same
appraiser are γ̂ (1,2) = 0.830, γ̂ (3,4) = 0.843, and γ̂ (5,6) =
0.975 in the Initial experiment, and 1.00, 1.00, and 1.00 in the
Follow-up experiment. These values could be taken to represent
an intraappraiser analysis. Taking the average of the γ̂ -values
of the remaining columns, we find 0.707 (Initial) and 0.987
(Follow-up), which we take as the interappraiser analysis.

6. EVALUATION AND CONCLUSIONS

The purpose of this paper is to evaluate whether IRT mod-
elling could be the basis for a methodology for evaluating the
R&R of ordinal classifications in business and industry. We
have demonstrated that IRT methodology can be modified for
use with the sort of R&R studies that are common in business
and industry.

The main obstacle that we are aware of, is that it is not clear
whether IRT models can accommodate objects × appraiser in-
teraction effects. The analysis may become intractable, and the
inclusion of such an interaction effect runs somewhat against
the philosophy of IRT (where the presence of such interaction
effects would disqualify the rating process as a measurement
process, as the criteria are unstable). The issue is coped with in
our current approach by alerting the user to the problem (this is
done by reporting unusual observations and by interaction plots
such as Figures 6 and 7).

Comparing the analysis based on our IRT model to the analy-
ses based on the W and γ statistics, we note in the first place
that abstract values such as W = 0.639 and γ = 0.707 are diffi-
cult to interpret in tangible terms; they only say that the ratings
are somewhere in between perfectly repeatable and purely ran-
dom. We claim that the metrics that we propose (probabilities
of correct ordering and consistent classification) have a more
tangible interpretation than both W and γ .

The second point we wish to make concerns the case that a
classification system has a poor performance, such as the Initial
experiment’s measurements in the example. Our model-based
approach allows graphics and diagnostics that provide insight
into the workings of a classification process, which is vital in-
formation for fixing an unreliable classification system. Besides
the R&R metrics ρ and π themselves, the user is presented
with:

• Predicted x̂i and a normal probability plot of them; this
helps identifying objects with anomalous values.

• Unusual observations. The power of this diagnostic has
been demonstrated in the example, where it helped to pin-
point the problems in the Initial experiment’s results (in
combination with the interaction plot in Figure 6).

• The order of the estimated δ̂jh helps to check whether the
categories are used in their intended order (see Figure 2,
where this is not the case).

• Reproducibility modeling. The estimated δjh allow a de-
tailed analysis of the nature of the differences among the
appraisers (and this can also be done graphically, as in Fig-
ures 3 and 4).

Although both W and γ quantify repeatability and repro-
ducibility, they do not provide insight into the structure and
nature of intraappraiser and interappraiser differences, and we
are not sure how to do diagnostics checking. Unusual observa-
tions are not brought to our attention, and as a consequence, the
discrepancies between appraiser 2 and the other appraisers go
unnoticed, and the salient results for PCBs 41, 42, and 44 are
not revealed.

Future research should develop the methodology further by
applying it to real cases such as the one above. The critical
examination of how well our methods work in practice helps
to identify points for improvement. Additional research should
also result in recommendations for suitable sample sizes for
this type of studies. The most interesting challenge, however,
is to go beyond IRT modeling and try to develop models which
incorporate objects × appraiser interaction effects and yet are
tractable. In conclusion, then, we would say that IRT modeling
did, for now, not result in a perfect approach, but has substantial
merits above existing nonparametric approaches.

SUPPLEMENTAL MATERIALS

Dataset “Initial Experiment”: First dataset of the soldered
joints quality example (the initial experiment). (Initial-
experiment.txt, tab delimited text file)

Dataset “Follow-up Experiment”: Second dataset of the sol-
dered joints quality example (the follow-up experiment).
(Followup-experiment.txt, tab delimited text file)

Appendix: Appendix containing the mathematical derivations
of the limit behavior of qj(h|x) and ρw

j for α ↓ 0 and α → ∞.
(appendix.pdf, Acrobat reader document)

[Received March 2008. Revised March 2009.]
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