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The standard method to assess a measurement system’s precision is a gauge repeatability and repro-

ducibility (gauge R&R) study. It exploits replications to estimate variance components that are interpreted

as measurement spread. For nonrepeatable measurements, it is not feasible to obtain replications because

objects are destroyed when they are measured or because the object changes over time. Possible solutions

are to replace replications with measurements of multiple objects or with the measurement of one object

at multiple times. Subsequently, these measurements are modeled by a fixed pattern (over time or over

positions). We show that the experimental design used in this type of nonrepeatable gauge R&R studies

is best constructed in a way that is similar to a Latin square design. These designs have a great flexibility,

can be applied in many situations encountered in practice, and have nice mathematical properties as well.

We consider several examples in which this approach is applied and worked out. For the examples given,

we provide the analysis and the results following the worked-out approach. Analysis of the envisaged exper-

imental set-up is done with linear and nonlinear mixed models in which variance components are estimated

by restricted maximum-likelihood estimators.
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reproducibility (gauge R&R) study (see e.g., Mont-
gomery (2005), Burdick et al. (2003)). An example
of the standard layout of such a study is presented
in Table 1.

Each object out of a sample of objects is mea-
sured multiple times by a number of operators. Vari-
ation within rows is measurement spread. We denote
the data by yijk, where i indexes objects, j indexes
operators, and k indexes replications. The data are
modeled as

yijk = μ + ai + bj + (ab)ij + εijk. (1)
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TABLE 1. Standard Layout of Gauge R&R Study

Operator

Objects 1 2 3

1 y111 y112 y121 y122 y131 y132

2 y211 y212 y221 y222 y231 y232

...
...

...
...

...
...

...
10 y10,1,1 y10,1,2 y10,2,1 y10,2,2 y10,3,1 y10,3,2

Here μ denotes the overall average, ai ∼ N(0, σ2
a)

are random object effects, bj ∼ N(0, σ2
b ) are random

operator effects, and (ab)ij ∼ N(0, σ2
ab) represent

object–operator interaction. The εijk ∼ N(0, σ2)
are error terms. All ai, bj , (ab)ij , and εijk are as-
sumed stochastically independent. One is typically
interested in the repeatability σ2, the reproducibil-
ity σ2

b + σ2
ab, and the total measurement spread

σm =
√

σ2 + σ2
b + σ2

ab.

The standard approach exploits replications to
estimate measurement spread. For some measure-
ments, it is not feasible to obtain replications, for
example, because objects are destroyed when they
are measured or because the object being measured
changes over time. Such measurements used to be
called destructive, but are nowadays often referred
to as nonrepeatable. De Mast and Trip (2005) give
a precise, mathematical definition of the problem of
gauge R&R studies for nonrepeatable measurements.
This comes down to the following: Nonrepeatable
measurements are measurements for which either of
the following two conditions does not hold:

(I) Temporal stability, by which we mean that the
real value of the object does not change in time.
For example, suppose we measure the temper-
ature of a piece of metal after heating and
we wish to determine the error in this mea-
surement. Because the metal may cool off very
rapidly, the temperature is not stable in time
and the condition of temporal stability is vio-
lated.

(II) Robustness against measurement. This condi-
tion is violated when the object is destroyed
or changed significantly during measurement.
An example is measuring the strength of bis-
cuits, in which the biscuits break as a result
of the measurement. Another example is mea-
suring the rate of dissolution of a tablet. After

the measurement, the tablet is (partially) dis-
solved, so it has changed significantly.

Performing a gauge R&R study for nonrepeat-
able measurements is a fundamental problem be-
cause such measurements cannot be repeated under
entirely equal conditions. This problem has been a
persistent problem in quality engineering. Although
there is no structural solution to it, there are a num-
ber of approaches that work in some cases. De Mast
and Trip (2005) give an overview of seven such ap-
proaches.

One of these approaches works with an experi-
mental layout similar to the one in Table 1, but one
in which the rows contain measurements on different
objects instead of measurements on the same object.
This experimental layout necessarily confounds mea-
surement spread with object-to-object variation. The
usual estimators for measurement spread now esti-
mate

√
σ2

m + σ2
a instead of σm. If object-to-object

variation (σ2
a) within rows is not negligible, this ap-

proach gives an overestimation of the measurement
spread. Although this is commonly the case, the ap-
proach is still useful because the bias is on the con-
servative side: if the estimated measurement spread
is acceptable, then the true measurement spread is
as well.

As suggested in De Mast and Trip (2005), this ap-
proach can be improved upon if the object-to-object
spread within rows is not just noise, but has a pat-
tern, i.e., if either of the following conditions hold:

• Patterned temporal variation (PTV): the vari-
ation over time of each object follows a certain
pattern.

• Patterned object variation (POV): the variation
across objects follows a certain pattern.

The idea is to fit a model for this systematic part of
the within-rows-objects variation (condition POV) or
temporal variation (condition PTV) and correct the
data for it. This approach leads to a smaller over-
estimation of measurement spread. Because we cor-
rect for systematic differences between the objects
within a row, the estimators for measurement spread
(
√

σ2
m + σ2

a) will be closer to σm.

The approaches outlined above require a more ad-
vanced experimental set-up and analysis than stan-
dard gauge studies. This paper considers three cases,
which are each introduced by a practical example:

1. I is violated, but PTV holds. Objects vary over
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time, but the variation over time follows a cer-
tain pattern that can be modeled.

2. II is violated, but POV holds. Objects change
during measurement, but their variation follows
a pattern that can be modeled.

3. In the third example, we consider the analy-
sis of a dissolution testing gauge R&R experi-
ment that is discussed in Gao (2007). Contrary
to their analysis, we suggest taking patterned
temporal variation into account.

In each case, we show the usefulness of Latin-square–
related designs. The present work extends the work
by De Mast and Trip (2005). First, it gives three
practical case examples, showing for what kind of sit-
uations their approach can be used. Furthermore, we
pay much more attention to the experimental design,
explaining the rationale for using certain designs, and
extend the classes of experimental designs used, in-
creasing the flexibility of this approach. Finally, the
statistical analysis of the experiments is explained in
more detail than in De Mast and Trip (2005).

The remainder of this article is organized as fol-
lows. The next section introduces the three case ex-
amples, describes the experimental design, and pro-
vides the actual data for the first two examples. Sub-
sequently, we discuss appropriate statistical models
for the data and their analysis. In the final section,
conclusions are drawn.

Experimental Design and Data
for Three Cases

In this section, three case examples will be intro-
duced. For each example, we will discuss the experi-
mental set-up and data.

Measuring the Core Temperature of a Food
Product: Example for PTV without I

A food product is baked until its core reaches a
temperature of about 80◦C. The core temperature
is measured by inserting a digital thermometer into
the product. Because heat is not distributed perfectly
homogeneously over the product and the operators
insert the thermometer by feel (aiming for the core),
it is likely that random measurement error is sub-
stantial.

To estimate random measurement error, we could
do a standard gauge R&R study. Each food spec-
imen could be measured multiple times, but be-
cause the product cools down quite rapidly (about
1.0◦C per minute), these repeated measurements

would confound measurement spread with variation
in the product’s true core temperature (condition I—
temporal stability—is violated).

The Constructed Design: Latin-Square–Type Designs

Let us examine how to best analyze the measure-
ment error in this case. (Later we will see that the
designs used in the other cases are very similar.) As-
sume that we measure at n time instances. Assume,
furthermore, that n = q × r, where q denotes the
number of operators and r the number of times each
operator measures a certain object. (This assumption
is not needed, as we will point out later.) Ideally, each
operator would measure each object at each time in-
stant. However, at any given time instant, a particu-
lar food specimen can only be measured by one op-
erator. Nonetheless, we can create an experimental
design in which each operator measures at each time
instant, though not always the same object. This can
easily be accomplished by a Latin-square design. To
set the stage, consider the case for which we have
three objects (n = 3) and each operator measures
once (r = 1). If we denote the operators by A, B,
and C, then an example of a design satisfying our
requirements is the Latin-square design given by

t1 t2 t3

object 1 A B C
object 2 B C A
object 3 C A B

If we want to have each object measured twice by
each operator (r = 2), we can add measurements
at 3 additional time instances t4, t5, and t6. Using
another Latin-square design for the measurements at
these times, we obtain the following design:

t1 t2 t3 t4 t5 t6

object 1 A B C A C B
object 2 B C A C B A
object 3 C A B B A C

Any permutation of the columns of this design will
yield a design that suits our purposes. In a permuted
design still, each operator measures each object twice
(r = 2), and still each operator measures at all time
instants. This feature is what makes Latin-square de-
signs attractive. Latin-square designs can generally
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TABLE 2. Latin-Square–Type Design

(Entries Indicate Operator)

Time

Specimen 0 60 120 180 240 300

I A C B A B C
II A A B C B C
III C C A B A B
IV C B A A C B
V B A C B C A
VI B B C C A A

be obtained from standard Latin squares via per-
mutation of rows, columns, and labels. (We refer to
chapter 31 of Neter et al. (1985) for this.)

Typically, one wants to measure more than three
objects. To obtain a design for the more general case,
we can adjust the above procedure, starting with
Latin squares of a different (higher) dimension. Usu-
ally, we can set up the experiment in such a way
that the condition n = q × r holds, but if this con-
dition does not hold, an appropriate design can be
constructed by deleting rows or columns in a larger
design (see also Cochran and Cox (1957) and chap-
ter 31 in Neter et al. (1985) about these so called
“Youden” designs).

Experimental Set-Up and Data

In the actual experiment, it was decided to select
six specimens of the food product (n = 6). Each
specimen was to be measured twice (r = 2) by each
of three operators (q = 3), according to the design in
Table 2. The two times three measurements were to
be done with 60 seconds between successive measure-

TABLE 3. Measurements for Food-Product Experiment

Time

Specimen 0 60 120 180 240 300

I 87.0 83.9 82.2 82.0 77.0 76.4
II 78.1 76.8 75.0 73.8 69.2 70.4
III 77.2 77.7 77.0 76.4 76.3 73.1
IV 74.3 72.8 73.9 70.9 70.7 69.6
V 81.6 81.9 79.9 79.3 78.3 78.1
VI 77.6 76.1 74.8 73.9 74.2 74.2

FIGURE 1. Data, Food Experiment.

ments. We constructed the Latin-square–type exper-
imental design that is shown in Table 2. The results
of the experiment are shown in Table 3. The entries
are the measured core temperatures (◦C). Figure 1
shows a Trellis graph of the core temperature over
time per food product specimen.

Before proceeding to the analysis of this exper-
iment, we first introduce two other examples. The
statistical analysis of the three examples is given in
the upcoming section.

Measuring Shrinkage of Carpet Tiles:
Example for POV Without II

A company produces carpet tiles. Out of a stretch
of carpet, carpet tiles are blanked. After production,
the amount of shrinkage (or expansion) of the carpet
tiles is measured. If the carpet tiles shrink or expand
during their lifetimes, customers complain.

The challenge in this measurement procedure is
to mimic the circumstances to which the carpet tiles
are exposed during their lifetime. In order to stress
test the carpet tile’s performance with respect to
shrinkage, it is exposed to extreme temperatures and
moisture conditions during the measurement. The
gauge R&R of such stress tests refer to the consis-
tency of the test results that would be obtained if the
test were performed multiple times on the same tile.
However, these tests are irreversible and therefore
the measurement procedure is nonrepeatable (von-
dition II—robustness against measurement—is vio-
lated here).
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Experimental Set-Up and Data

In order to determine how to construct a good de-
sign, we need to know a little bit more about the
process of producing carpet tiles. As we explained,
carpet tiles are blanked out of a stretch of carpet.
From the left to right side of the the carpet stretch,
six tiles are blanked. It is assumed, however, that the
amount of shrinkage varies from the left to right side
of the carpet stretch. So the shrinkage follows a pat-
tern that can be modeled, similar to the pattern over
time in the first case example (in which the temper-
ature of a food product was measured). Therefore,
we choose a design that is similar to the one used in
the food experiment (see Table 2). Note that, in this
case, “time” should be interpreted as the position at
which the carpet tile is blanked out of the stretch.
Position 1 indicates the position at the utmost left,
position 6 the position at the utmost right of the
stretch of carpet.

The results of the experiment are shown in Table
4. Entries are measured shrinkage percentages. Fig-
ure 2 shows the shrinkage per position (from left to
right) per carpet tile.

Measuring Dissolution of Tablets: Example
for PTV Without I and II

The third case is based on an example given in a
paper of Gao et al. (2007). They examine the process
of dissolution testing of tablets. The rate at which
tablets dissolve is an important aspect in pharma-
ceutical applications. The dissolution rate of tablets
is measured by an apparatus that exposes the tablets
to the flow of some liquid. Over time, measurements
are done. The drug released into the medium from
the tablet matrix is measured. The measurement is,
of course, nonrepeatable because the tablet is par-
tially gone after the measurement. As we will see,

TABLE 4. Measurements for Carpet-Tile Experiment

Position

Carpet tile 1 2 3 4 5 6

I 0.69 0.42 0.28 0.38 0.15 0.4
II 0.81 0.55 0.23 0.27 0.23 0.43
III 0.67 0.45 0.42 0.21 0.36 0.38
IV 0.53 0.28 0.32 0.22 0.12 0.23
V 0.51 0.43 0.20 0.19 0.24 0.41
VI 0.47 0.29 0.22 0.23 0.27 0.45

FIGURE 2. Data, Carpet-Tile Experiment.

the dissolution percentage of a single tablet follows
a certain pattern in time.

Experimental Set-Up and Data

The experiment of Gao (2007) is as follows.
Two operators measure the dissolution percentage
of tablets on each of two apparatuses (labeled A
and B). Each apparatus contains six separate ves-
sels. This experiment is then a three-factor crossed
then nested model design. The whole experiment is
replicated 6 times, resulting in 6 runs. A single mea-
surement on one tablet consists of measurements at 7
time instants (t = 7.5, 15, 30, 45, 60, 75, 90 minutes).
Figure 3 shows these measurements for two typical
tablets.

Gao (2007) based the gauge R&R analysis on the

FIGURE 3. Data, Tablets Experiment (Dissolution Profile

for Two Tablets).
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measurements conducted at time t = 30 and fit a
model similar to the one specified in Equation (1).
Our approach in this case is twofold. First, we will
model the dissolution profile in time, thereby using
all data available from the experiment. Gauge R&R
results are obtained from fitting a nonlinear mixed-
effects model. This results in estimates of measure-
ment error at all measurement times of the experi-
ment. Second, we will suggest another experimental
design (with fewer runs) that could have been used,
resulting in reduced confounding of tablet and mea-
surement error.

Analyzing the Three Examples

General Remarks: Estimation Method

The standard gauge-R&R model, as given in
Equation (1), is an example of a linear mixed model
(mixed referring to the presence of both random and
fixed effects). In analyzing the first two examples, we
will use linear mixed models as well. For the third
example, we will fit the data by a nonlinear mixed
model. In this section, we make some comments on
the way these models can be estimated and our pre-
ferred method.

The traditional way to estimate variance com-
ponents is the ANOVA method. Unfortunately,
ANOVA has some well-established drawbacks, espe-
cially in the case of unbalanced data (which is im-
portant for our examples). The most important are
(see Searle et al. (1992), pp. 35–39)

1. The possibility of negative estimates for vari-
ance components, which are not realistic from
a practical viewpoint.

2. The lack of uniqueness of the choice of sums
of squares. For unbalanced data, one can use,
for instance, Henderson’s methods I, II, and
III, which are all using different sets of sums
of squares. On top of this, criteria for deciding
which choice for sums of squares is optimal are
lacking. Therefore, the choice for a particular
set of sums of squares is arbitrary.

Maximum likelihood (ML) estimation is a viable al-
ternative for estimating variance components. Neg-
ative estimates are impossible when using ML es-
timation and the problem of the arbitrary nature
of ANOVA is solved as well. An additional bene-
fit of ML estimation is that the resulting estima-
tors are asymptotically efficient. Detailed explana-
tion of its application to variance–component esti-
mation can be found in Searle et al. (1992). A slight

drawback of ML estimation for mixed models (which
includes the models under study) is that estima-
tors for variance components depend on the fixed
effects. This problem is circumvented by restricted
maximum-likelihood (REML) estimation, where the
fixed parameters are treated as nuisance parameters
(see McCullagh and Nelder (1989), chapter 8, or Da-
vidian and Giltiman (1995), chapters 3 and 4). The
restricted likelihood is defined as the likelihood ob-
tained by integrating out the fixed effects. By maxi-
mizing the restricted likelihood over the set of vari-
ance components, we obtain the REML estimators.
Once the REML estimates are computed, they re-
place the variance components in the (generalized)
least squares equations. From these, we can then ob-
tain estimates for the fixed effects.

REML estimators can be justified from a Bayesian
point of view as well (Searle et al. (1992), section
9.2b). In the Bayesian setup, besides the random ef-
fects, also the fixed effects are considered random.
If we use a noninformative improper (flat) prior dis-
tribution on the elements of fixed effects, then it is
not hard to see that the resulting posterior density is
proportional to the restricted likelihood (the propor-
tionality constant not depending on the random ef-
fects). As a consequence, the REML estimator equals
the posterior mode if we use a noninformative prior
for the fixed effects.

In the following, we will use the “nlme” library of
S-plus to perform the statistical analysis of the ex-
amples. We will report REML estimates. For a de-
tailed explanation of the nlme package, we refer to
Pinheiro and Bates (2000).

Analysis of Examples

Measuring the Core Temperature of a Food Product

First we fit the data to the standard gauge R&R
model of Equation (1). Although it is obvious from
Figure 1 that the measured temperatures for each
specimen are time dependent, it is instructive to com-
pare this “naive” approach (neglecting time as co-
variate) to a more sophisticated one, which we will
outline below. Hence, denote by yijk the temperature
for specimen i, measured by operator j for the kth
time. Fitting a crossed-random effect models yields
the results summarized in Table 5 (Here and in the
following, we report 95% confidence intervals. In the
output these are denoted by [lower, upper]; est. de-
notes the REML estimate. Furthermore, fixed effects
are aligned to the left, random effects are indented.)
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TABLE 5. Results for Fitting a Crossed Random-

Effects Model

Lower Est. Upper

Intercept 73.36 76.43 79.47

Specimen 1.73 3.42 6.74
Operator 0.05 0.61 7.23
Specimen: operator 0.00 0.43 4521.91
Residual 1.81 2.49 3.44

The estimates for random effects are standard devia-
tions. The width of the confidence interval for the in-
teraction term is huge. Blind application of the stan-
dard model is therefore not sensible, as opposed to
what is often done in practice. An ANOVA test shows
that the interaction term can be dropped from the
model. Refitting gives the results of Table 6. There-
fore, the “naive” approach shows that reproducibility
is a minor issue, but repeatability is a serious issue
for this measurement. In fact, the estimated measure-
ment spread equals 2.60. The proportion of measure-
ment variance due to repeatability equals 94%.

Next, we will start with a very easy model and
refine it in steps. Looking at Figure 1, it seems that,
for each object, the temperature decreases linearly in
time. Let t1, . . . , t6 denote the times of measurement
in the experiment. If yik denotes the temperature of
specimen i at time tk, we fit the model

yik = μ + γ(tk − 150) + εik. (2)

Here {εik} denotes a sequence of independent identi-
cally distributed normal random variables. The dot
plots of the residuals per specimen in Figure 4 re-
veal that this model is too simplistic. Because the
specimens are drawn from a population of specimens,
it is natural to model their effects as random ef-
fects. This is confirmed by Figure 5, which shows

TABLE 6. Results for Fitting a Random-

Effects Model Without Interaction

Lower Est. Upper

Intercept 73.38 76.43 79.47

Specimen 1.74 3.42 6.73
Operator 0.06 0.62 6.55
Residual 1.93 2.52 3.27

FIGURE 4. Dot Plots of Residuals for Each Specimen for

Naive Model.

the fitted parameters plus confidence intervals in case
we apply a linear fit for each specimen separately.
The confidence intervals for the intercept parameter
β0 show little overlap. Additional drawbacks of the
fixed-effects model are, first, that it does not pro-
vide an estimate of the between-specimen variability
(which we are interested in) and, second, that the
number of parameters in the model grows linearly
with the number of specimen. Therefore, we propose
the following mixed analysis of covariance model:

yik = μ + ai + γ(tk − 150) + εik. (3)

Here μ and γ are fixed effects and ai is a random
specimen effect. To see if an operator effect should
be taken into account as well, we plot the residu-
als obtained by fitting model (3) in Figure 6. We
made separate box plots for each operator. This fig-
ure points out a distinction between operator A and

FIGURE 5. Confidence Intervals for Estimates in Simple

Linear Fit for Each Specimen.
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FIGURE 6. Residuals per Operator for Model (3).

operators B and C. We will assume that the three
operators are drawn from a population and therefore
model its effect as a random effect. This leads to the
model

yik
 = μ + αi + β
 + γ(tk − 150) + εik
, (4)

where � indexes operators and {εik
 is a sequence of
independent and identically distributed normal ran-
dom variables. With this model, we obtain an esti-
mate for the between-operator spread as well (adding
an additional random interaction term gives similar
problems as in the naive approach). The results for
model (4) are summarized in Table 7. Further resid-
ual plots did not reveal interesting patterns. We con-
clude that the measurement spread σm equals 1.42
and that 60% of the measurement variance is due to
repeatability. This analysis clearly shows that the es-
timated measurement spread is in fact much smaller
than the naive analysis pointed out.

Measuring Shrinkage of Carpets

The analysis for this example is similar to that of
the food product data. We fitted both the standard

TABLE 7. Results for Fitting Model (4)

Lower Est. Upper

Intercept 73.38 76.43 79.58
I(time − 150) −0.023 −0.030 −0.016

Specimen 1.89 3.55 6.66
Operator 0.30 0.90 2.70
Residual 0.84 1.10 1.44

TABLE 8. Results for Fitting a Standard Gauge

R&R Model Without Interaction Term

Lower Est. Upper

Intercept 0.28 0.40 0.52

Batch 0.0011 0.0150 0.2134
Operator 0.0163 0.0656 0.2640
Residual 0.1148 0.1467 0.1875

gauge R&R model (without interaction term) and
the following model:

yijk = μ + αi + βj + γk + εijk. (5)

Here α, β, and ε are independent batch, operator,
and repeatability random effects, respectively; μ is
the overall mean and γ1, . . . , γ6 are fixed position ef-
fects. For identifiability, we will set γ1 = 0, which cor-
responds to treatment contrasts. The results for the
naive analysis are in Table 8. Therefore, σm ≈ 0.16.
The proportion of measurement variance due to re-
peatability equals 83%.

The results for fitting model (5) are in Table 9.
From this table, it follows that

σm ≈
√

0.07662 + 0.05192 ≈ 0.093.

The proportion of measurement variance due to re-
peatability equals 46%. Again, we see that the over-
estimation of the measurement spread is relatively
large.

Measuring Dissolution of Tablets

We now discuss the analysis of the gauge R&R
experiment of Gao (2007). We are grateful to the au-

TABLE 9. Results for Fitting Model (5)

Lower Est. Upper

Intercept 0.58 0.68 0.79
Position2 −0.27 −0.21 −0.15
Position3 −0.40 −0.34 −0.27
Position4 −0.42 −0.36 −0.30
Position5 −0.45 −0.39 −0.33
Position6 −0.29 −0.23 −0.17

Batch 0.0046 0.0202 0.0880
Operator 0.0277 0.0766 0.2120
Residual 0.0398 0.0519 0.0678
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thors of Gao (2007) for sharing their data with us. In
dissolution testing, variability arises primarily from
three factors: apparatus, operator, and tablet formu-
lation and/or manufacturing process (Gao (2007), p.
1796). Therefore, the following model could be fit for
the 30-minute data:

yijk = μ + bj + ck + (bc)jk + εijk. (6)

Here yijk denotes the dissolution percentage after 30
minutes of tablet i, measured by operator j at ap-
paratus k, bj denotes a random operator effect, ck a
random apparatus effect, and (bc)jk a random opera-
tor × apparatus interaction effect. However, because
there are only two operators (apparatuses) involved
in this experiment, we doubt whether it is sensible to
treat them as randomly chosen from a possibly larger
population of operators (apparatuses). Instead, we
suggest the following model to include their effects:

yijk = μ + εijk, with εijk
i.i.d.∼ N(0, σ2

jk),
j = A, B, k = 1, 2. (7)

Here j and k are index operator and apparatus, re-
spectively. Model (7) is a short way to write down
the model for which the measurements by operator
A on apparatus 1 are assumed to follow a N(μ, σ2

A1)
distribution, measurements by operator A on appa-
ratus 2 have a N(μ, σ2

A2) distribution, measurements
by operator B on apparatus 1 have a N(μ, σ2

B1) dis-
tribution, and measurements by operator B on ap-
paratus 2 have a N(μ, σ2

B2) distribution. As pointed
out on page 209 in Pinheiro and Bates (2000), S-plus
uses a different parametrization, in which it estimates
σ2

A1 by σ̂2
A1 and expresses the estimates for the other

variance parameters as multiples of σ̂2
A1. Tablet 63

contains an exceptionally low value at time t = 15
and is excluded from this analysis. The results for
fitting model (7) are summarized in Table 10.

TABLE 10. Each Line Shows the Results from

Fitting Model (7) to the Dissolution Data

at a Certain Fixed Time

Time 103σA1 103σA2 103σB1 103σB2

7.5 13.90 12.92 17.60 5.40
15 13.39 12.17 16.45 3.56
30 9.68 10.97 12.17 3.28
45 5.65 8.76 9.10 2.52
60 3.33 8.93 7.30 2.86
75 3.00 9.15 7.57 3.61
90 3.21 10.01 7.97 4.41

We will now deduce one statistical model for the
data at all time instances. We start with a very
simple model that specifies the dissolution profile in
time. As we go along, we will include factors (sim-
ilarly as in the analysis of the food-product experi-
ment). Let yi
 denote the measurement at time t
 of
the ith tablet. We propose to model the shape of the
profile by the Weibull model,

yi
 = f(t
; ã, r̃, h) + εi
,

f(t; ã, r̃, h) = ã

(
1 − exp

[
−r̃

t1−h

1 − h

])
, t ≥ 0. (8)

Here {εi
} is a sequence of independent and iden-
tically distributed N(0, σ2

ε) random variables. The
parameters ã and r̃ are assumed to be positive and
h < 1. Note that this modeling step is analogous to
the model in Equation (2) for the food-product ex-
ample. The only difference is that here we do not pro-
pose a linear function of time, but a nonlinear func-
tion. Depending on the values of ã, r̃, and h, we will
see that the graph of the mapping t �→ f(t; ã, r̃, h)
looks like the curves observed in Figure 3.

Because h < 1, limt→∞ f(t; ã, r̃, h) = ã, the
parameter ã models the final fraction of dissolved
tablet. An interpretation for the other two parame-
ters (r̃ and h) is given by Lánsky and Weiss (2003).
We now briefly explain their approach. If we define
C(t) = f(t; Ã, r̃, h)/ã, then C(t) is the amount of
dissolved tablet at time t, divided by the amount
of tablet that is going to be dissolved ultimately, as
time increases. Lánsky and Weiss (2003) interpret
C(t) as the cumulative distribution function of a ran-
dom variable T , which is defined as the dissolution
time of a randomly selected molecule (or the time
until a molecule of the tablet enters solution). Thus,
C(t) = P (T ≤ t). With this probabilistic interpreta-
tion, we can give a meaning to the parameters r̃ and
h. Suppose T has a probability density f . Define the
fractional dissolution rate by

k(t) :=
f(t)

1 − F (t)
, t ≥ 0. (9)

From this definition, it is seen that the fractional
dissolution rate is analogous to the hazard rate in
survival analysis. Its probabilistic interpretation is
as follows (see Lánsky and Weiss (2003), p. 1633):
k(t)dt equals the probability that a molecule in solid
state will be dissolved in the interval [t, t+dt) under
the condition that this has not happened up to time
t. For the Weibull model, the fractional dissolution

Journal of Quality Technology Vol. 41, No. 4, October 2009



NONREPEATABLE GAUGE R&R STUDIES ASSUMING TEMPORAL OR PATTERNED OBJECT VARIATION 435

rate equals k(t) = r̃t−h, which is determined by r̃
and h. Our motivation for using the Weibull model
comes from its flexibility and ability to allow for both
an increasing and a decreasing fractional dissolution
rate (depending on the sign of h).

Because ã and r̃ should be positive, we use an
alternative parameterization when fitting the model.
We simply set ã = ea and r̃ = er, so that a and r
take values in R (we could have reparameterized h
as well, but that turned out to make no difference in
the following analysis).

We fitted the model by nonlinear least squares
(NLS) without the data at t = 0 (these are fit-
ted without error) and found estimates for a, r,,
and h equal to â = −0.78(0.007), r̂ = −2.60(0.01),
ĥ = 0.28(0.01), respectively (standard errors are
in parentheses). Note that ã is then estimated by
exp(â) ≈ 0.46, which seems to agree with a visual
inspection of Figure 3. The residual standard devi-
ation equals σ̂ε = 0.0147. Next, we examined the
residuals. Figure 7 shows box plots of standardized
residuals for each tablet. This figure clearly demon-
strates a random tablet effect (as could be expected).
This is further confirmed if we fit the nonlinear model
for each tablet separately and plot confidence inter-
vals for (a, r, h) for each tablet in the plane. See Fig-
ure 8. Although the confidence intervals are based on
asymptotic distribution theory and should be trusted
with caution, this figure points out that we may ex-
pect an improved fit if we associate with parameter r
a random effect (confidence intervals for the param-
eter r among different tablets are disjoint for many
couples of tablets).

We henceforth propose the following model:

yi
 = f(t
; ea, eri , h) + εi
, ri = r + ηi, (10)

where {ηi} is a sequence of independent N(0, σ2
η) dis-

tributed random variables that is independent of the
sequence {εi
}. Adding a random effect to parame-
ter r implies that we model the fractional dissolution
rate of a randomly chosen tablet by k(t) = r̃eηt−h,
where η is a normal random variable with variance
σ2

η.

Fitting the model gives the following results for
the fixed effets: â = −0.77(0.003), r̂ = −2.61(0.01),
ĥ = 0.28(0.004) (standard errors are in parenthe-
ses). Estimates for the variance components are
given by σ̂ε = 0.0071 ([0.0068, 0.0074]) and σ̂η =
0.096 ([0.085, 0.108]) (95% confidence intervals are
in parentheses). Figure 9 compares the fit of the

FIGURE 7. Box Plots of Residuals per Tablet after Fitting

Model (8).

fixed-effect model (8) with the prediction from the
random-effect model (10) for 15 randomly chosen
tablets. The improved fit is very apparent. Residual
plots for model (10) are shown in Figure 10. These
plots help to check whether the model assumptions
are satisfied. The rightmost picture shows a normal
QQ plot for the estimated best linear unbiased pre-
dictors of the random effects ri. The left and mid-
dle figures show standardized within-group residu-
als. Within-group residuals are defined as the differ-
ences between yi
 and ̂E(yi
 | ri), the latter denoting
the estimated best linear unbiased prediction of yi


(thus, we plug in both the estimated random effects
and the estimated fixed effects). More details on the
definition of these estimated residuals and estimated
random effects can be found in chapter 9 of Searle et
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FIGURE 8. NLS Estimates for (A, r, h) According to Model (8) for Each Tablet Separately.

al. (1992). Except for a few outlying points, the resid-
ual plots in Figure 10 do not contradict adequacy of
the fitted model. Because the tablets are drawn from
a population of tablets, it is natural to assume that
there are small differences in characteristics between
tablets. With the present setup, we model these dif-
ferences by differences in the fractional dissolution
rate.

Examination of the residuals against covariate
time indicates heteroscedasticity. Figure 11 shows
box plots of raw residuals for each measurement time.
A Levene test on equality of variance was rejected at
the 0.001 level. We could include heteroscasticity in
our model by replacing the constant residual stan-

dard deviation σε by σε × g(t), where g accounts
for the differences in residual variation over time.
However, to keep the exposition at an elementary
level, we take a simpler route. We treat the obtained
residuals at each time instance as filtered measure-
ments, where tablet-to-tablet variation has been fil-
tered out. Subsequently, we collect all residuals that
correspond to measurements executed at time t
 and
fit model (7) to these residuals for each � separately.
The results are summarized in Table 11. From this
table, we see, for example, that if operator B mea-
sures a tablet at apparatus 1 at time t = 45, say
he/she measures m%, then the unknown true value
is approximately within the interval m± 2× 0.294%
(with 95% confidence). A more naive approach (ig-
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FIGURE 9. Comparison of NLS Fitted Values from Model (8) (Indexed by “Fixed”) and NLME Predicted Values from

Model (10) (Indexed by “Tablet”) for 15 Randomly Chosen Tablets. The “tablet” curves nearly interpolate the data, indicating

that Model (10) fits the data accurately.

FIGURE 10. Residual Plots for Model (10).
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FIGURE 11. Box Plots of Raw Residuals Against Measurement Time for Model (10).

noring tablet-to-tablet variation) would give the in-
terval m ± 2 × 0.910% (see Table 10).

By adjusting the design such that a single tablet
is measured at various times by different operators,
better randomization is achieved (reducing the con-
founding of tablet and measurement spread). This
can be done by the methods discussed in the section
on experimental design and henceforth is very similar
to our food-product example.

Conclusion

In gauge R&R studies on nonrepeatable measure-
ment system, one is often forced to replace replica-

TABLE 11. Each Line Shows the Results from

Fitting Model (7) to the Residuals of Model (10)

at a Certain Fixed Time

Time 103σA1 103σA2 103σB1 103σB2

7.5 8.45 7.02 10.60 3.73
15 5.23 4.83 6.40 1.64
30 0.92 3.21 1.87 1.11
45 2.70 2.01 2.94 0.87
60 3.39 4.02 3.81 1.20
75 4.49 5.66 5.11 1.79
90 4.19 6.53 5.40 2.00

tions with measurements of different objects, thus
confounding measurement variation with between-
objects within sample variation. This paper presents
a methodology for reducing the resulting overestima-
tion by exploiting patterns in both object-to-object
variation and temporal variation of objects. The use-
fulness of the Latin-square–related design has been
shown for a couple of real data examples.

The standard errors of the estimates for variance
components are quite large in the first two examples,
especially the errors in the estimate for reproducibil-
ity. This is due to the fact that, in the current design,
only three operators are used. Three is the typical
number of operators in gauge R&R studies reported
in literature and expected in practice. Also in the
standard gauge R&R study, this small number re-
sults in very large standard errors for the estimated
variance components (Burdick and Larsen (1997)).
To get better estimates one has to replicate the de-
sign, but it only helps to use the replication scheme
in which the number of operators is increased.
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