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This paper studies several issues regarding the design of the X control chart under
normality. Different estimators of the standard deviation are considered and the effect
of the estimator on the performance of the control chart is investigated. Furthermore,
the choice of the factor used to get accurate control limits for moderate sample sizes is
addressed. The paper gives an overview on the performance of the charts by studying
different characteristics of the run length distribution, both in the in-control and in
the out-of-control situation. Copyright © 2008 John Wiley & Sons, Ltd.

KEY WORDS: average run length; percentiles; relative efficiency; run length distribution; standard
deviation

INTRODUCTION

The X control chart is extensively used in practice to monitor the process mean. The chart consists of
a graph with time on the horizontal axis, the sample mean plotted on the vertical axis and an upper
and lower control limit indicating the thresholds at which the process mean can be considered out-

of-control. Assuming that the process follows a normal distribution, the control limits depend on the mean
� and the standard deviation � of the normal distribution. When both � and � are known the limits can be
obtained directly. Let Yi j i=1,2, . . . and j =1,2, . . . ,n denote the j th observation in sample i . We assume
that Yi j are independent and N (�+��,�2) distributed, where � and � are known and � is a constant. When
�=0, the process is in-control, otherwise the process is shifted. Then the process mean can be monitored
by plotting the sample means Ȳi =1/n

∑n
j=1Yi j on a traditional Shewhart control chart with limits

UCL=�+3
�√
n
, LCL=�−3

�√
n

(1)

We define P� as the probability that a sample gives an out-of-control signal when the process mean equals
�+��. P� is given by 1−�(3−�

√
n)+�(−3−�

√
n), where � denotes the standard normal distribution.

Further, denote the event that the i th sample mean falls beyond the limits by Ei and the number of samples
until the first sample mean falls beyond the limits when the process mean equals �+�� by RL�. As the
events Es and Et (s �= t) are independent, RL� is geometrically distributed with parameter P�. It follows that
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the average run length (ARL�) equals 1/P�. From the preceding we can derive from (1) the probability of an
incorrect signal and the average run length when the process is in-control: P0=0.0027 and ARL0=370.4.
In practice, � and � are unknown. Therefore, they must be estimated on samples taken when the process

is assumed to be in-control. Woodall and Montgomery1 define this phase as Phase I. They define the
monitoring phase as Phase II. Estimating the parameters has two consequences for the performance of the
control chart in Phase II. First, when the fixed constant 3 is applied for the control limits and the estimations
are simply plugged into (1), P0 will deviate from its intended value 0.0027. Second, the events Es and
Et are no longer independent and therefore the run length distribution is not geometric. The latter issue is
first addressed by Quesenberry2. He uses simulation to study the performance of the X control chart, for a
various number of estimation samples k and sample sizes n. His results show that when the parameters are
estimated on limited data, the ARL and the standard deviation of the run length increase, while the false
alarm probabilities also increase. Quesenberry concludes that the number of estimation samples k should
be at least 400/(n−1) in order to get limits that perform like known limits. This is of course unrealistic
in most practical situations, where we usually have 20–30 subgroups of sizes around 3–10 (see, e.g. Ryan3

(p. 74) and Montgomery4 (p. 181)). This differs substantially with the recommendations of Quesenberry2.
Nedumaran and Pignatiello5 propose an approach for constructing control limits that attempt to match any
specific percentile point of the run length distribution of the true limits (see also Albers and Kallenberg6).
Hence, to get accurate limits for moderate sample sizes, one could consider factors that replace the fixed
constant 3 in (1). Another option would be to investigate the influence of the estimator of the standard
deviation in (1).
Summarizing, the issues that need to be resolved to get meaningful limits are the choice of the estimators

and the determination of the factor used to get accurate limits for commonly used sample sizes. This paper
studies these issues for the X control chart for various values of k and n. The mean � in (1) is usually
estimated by the mean of the sample means. The key question is the choice of the estimator of the standard
deviation. Therefore, we consider different estimators of the standard deviation and investigate the effect
of the estimator on control chart performance. Besides, the choice of the factor is discussed and factors
different from 3 are derived. Simulations are used to study the run length characteristics of the charts, both
in the in-control and in the out-of-control situation.
The paper is structured as follows. In the following section the design schemes for the X chart are

presented. This section also presents the estimators that are considered and the factors that are applied. The
subsequent section shows the results of the simulation of the performance of the charts, followed by the
conclusions.

DESIGN SCHEMES

We shall use in this section the following manner of writing: a hat above an alphabet represents an estimator:
e.g. �̂. When the process parameters are unknown, the control limits become

̂UCL= �̂+c(n,k, p)
�̂√
n
, ̂LCL= �̂−c(n,k, p)

�̂√
n

(2)

where c(n,k, p) denotes the factor that is dependent on the number of samples k, the sample size n and p,
the latter being equal to P0 (the probability that a sample gives an out-of-control signal when the process
mean equals �). Let Xi j i=1,2, . . . ,k and j =1,2, . . . ,n denote the historical data used to estimate � and
� (Phase I) and let Yi j i=1,2, . . . and j =1,2, . . . ,n denote the monitoring data (Phase II). We assume that
Xi j are N (�,�2) distributed and Yi j are N (�+��,�2) distributed. When the parameters are estimated on
limited data, the fixed constant 3 that is applied for the limits when the parameters are known (cf. (1)) is
not adequate. Therefore, it is replaced by c(n,k, p) in (2). In this section we present the estimators of � and
� that are considered and the derivation of the factor c(n,k, p).
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Estimators of location and spread
We estimate the process mean � by the unbiased estimator

¯̄X = 1

k

k∑
i=1

(
1

n

n∑
j=1

Xi j

)
(3)

i.e. the grand sample mean. The primary issue is the choice of the estimator of �. We consider a number of
estimators of �. They are given below.
The first estimator of � that we consider is based on the pooled sample standard deviation

S̃=
(
1

k

k∑
i=1

S2i

)1/2

(4)

where Si is the i th sample standard deviation defined by

Si =
(

1

n−1

n∑
j=1

(Xi j − X̄i )
2

)1/2

An unbiased estimator of � is S̃/c4(k(n−1)+1), where c4(m) is defined by

c4(m)=
(

2

m−1

)1/2 �(m/2)

�((m−1)/2)

Another unbiased estimator of � is S̄/c4(n), where S̄ is the mean sample standard deviation

S̄= 1

k

k∑
i=1

Si (5)

We also consider the estimator based on the mean sample range

R̄= 1

k

k∑
i=1

Ri (6)

where Ri is the range of the i th sample. We estimate � by the unbiased estimator R̄/d2(n), where d2(n)

is the expected range of a random N (0,1) sample of size n. Values of d2(n) can be found in Duncan7

(Table M).
The next estimator we propose is based on Gini’s mean sample differences. Gini’s mean differences of

sample i is defined by

Gi =
n−1∑
j=1

n∑
l= j+1

|Xi j −Xil |/(n(n−1)/2)

An unbiased estimator of � is given by Ḡ/d2(2), where

Ḡ= 1

k

k∑
i=1

Gi (7)

The last estimator that we consider is based on the mean sample interquartile range. The interquartile
range for sample i is defined by

IQRi =Q75,i −Q25,i

where Qr,i is the r th percentile of the values in sample i . For a sample of size n, the sorted values can
be interpreted as the 100(i−0.5)/n, i=1,2, . . . ,n percentiles; linear interpolation is used to compute the
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Table I. Proposed estimators of spread

�̂

Unbiased pooled sample standard deviation S̃/c4(k(n−1)+1)
Unbiased mean sample standard deviation S̄/c4(n)

Unbiased mean sample range R̄/d2(n)

Unbiased Gini’s mean sample differences Ḡ/d2(2)
Unbiased mean sample interquartile range IQR/q(n)

percentiles when 100(i−0.5)/n is not an integer. In Kimball8 it is shown that the best choice would be
100(i−3/8)/(n+1/4) instead of 100(i−0.5)/n. We could also have used the definition that for a sample
of size n, the sorted values are the 100i/n, i=1,2, . . . ,n percentiles. However, the choice 100(i−0.5)/n
is more intuitively and better known (cf. Madansky9). The unbiased estimator is IQR/q(n) where

IQR= 1

k

k∑
i=1

I QRi (8)

and q(n) is defined as the expectation of the interquartile range of a random sample of n N (0,1) distributed
variables. Values of q(n) can be derived from the mean positions of ranked normal deviates, which are given
in Table 28 in Pearson and Hartley10.
An overview of the estimators of spread considered is given in Table I.

Derivation of the control limits
The �̂±3�̂/

√
n limits do not perform like the known limits defined by (1) when the process parameters are

estimated on limited historical data. Two issues are present. First, P0 will deviate from the intended value
0.0027. Second, the run length distribution is no longer geometric. Quesenberry2 argues that the number of
estimation samples k should be at least 400/(n−1) in order to get limits that perform like known limits.
However, this is not realistic for most applications.
A solution to this problem is to correct the control limits by replacing the fixed constant 3 by c(n,k, p),

cf. (2). However, we should keep in mind that it is not possible to construct limits that perform overall like
known limits, e.g. both in terms of P0 and ARL0, since the run length distribution is no longer geometric.
Therefore, when the limits are estimated on limited data, one should make in advance a decision on the
purpose of the control chart. For example, should the chart perform well in terms of P0, in terms of ARL0
or in terms of a specific percentile point of the in-control run length distribution? In the literature, several
suggestions for the correction of the control limits can be found. Hillier11 determines the factors based on the
values of P0, resulting in correct false alarm probabilities. A second starting point could be to take the values
of ARL0. Taking ARL0 as starting point is usually not the best option as ARL0 is strongly determined by
the occurrence of extreme long runs, which is often not relevant in practice, see in this respect Does and
Schriever12. The last option we address is to determine the factor on the basis of the probability that the run
length is at most a specified value x , see Nedumaran and Pignatiello5 and Albers and Kallenberg6.
In this study we choose to take P0 as point of departure, i.e. we determine the factor c(n,k, p) such that

P(Ȳi ≤ L)= P

(√
n
Ȳi − �̂

�̂
≤c(n,k, p)

)
= p (9)

where L= ÛCL and p=(1−0.0027)/2=0.99865 for the upper control limit, L= L̂CL and p=0.0027/2=
0.00135 for the lower control limit, and Ȳi is supposed to be in-control. In the following section we investigate
the impact of this choice on the run length distribution, both in the in-control and in the out-of-control

situation. Below for each estimator �̂ the factor c(n,k, p) for the control chart based on ( ¯̄X , �̂) is derived.
First note that all estimators �̂ of � are stochastically independent of the estimator ¯̄X of �, see Lehmann13.

To derive the factor c(n,k, p) for the control chart based on S̃, we use the fact that (Ȳi − ¯̄X)
√
nk/(

√
k+1S̃)
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Table II. Factors c(n,k,0.99865) to determine control limits

c(n,k,0.99865)

n k=20 k=30 k=50 k=100 k=500

4 Equation (10) 3.19 3.13 3.08 3.04 3.01
Equation (11) 3.22 3.14 3.08 3.04 3.01

6 Equation (10) 3.14 3.10 3.06 3.03 3.01
Equation (11) 3.17 3.11 3.07 3.04 3.01

8 Equation (10) 3.12 3.08 3.05 3.02 3.00
Equation (11) 3.14 3.09 3.05 3.02 3.00

10 Equation (10) 3.11 3.08 3.05 3.02 3.00
Equation (11) 3.12 3.08 3.05 3.02 3.00

has a t-distribution with k(n−1) degrees of freedom. It follows that the factor c(n,k, p) is defined by

c(n,k, p)=c4(k(n−1)+1)
√
k+1tk(n−1)(p)/

√
k (10)

where tk(n−1)(p) denotes the pth percentile of a t-distribution with k(n−1) degrees of freedom.
The factors c(n,k, p) for the control charts based on the estimators defined by (5)–(8) are not derived

exactly since the distribution of (Ȳi − ¯̄X)/�̂ is hard to find. We consider the following approximations for
c(n,k, p). First we approximate the distribution of the unbiased estimators based on (5)–(8) simply by the
distribution of S̃/c4(k(n−1)+1). As a result, the approximation of c(n,k, p) is given by (10).
For the factor c(n,k, p), for the control chart based on R̄, we also consider an alternative approximation

based on a result of Patnaik14. He approximates the distribution of R̄/� by a(n,k)��(n,k)/
√

�(n,k), where
��(n,k) is the square root of a chi-square distribution with �(n,k) degrees of freedom and a(n,k) is a scale
factor. The factors a(n,k) and �(n,k) are obtained by equating the first two moments of R̄/� to the first two

moments of a(n,k)��(n,k)/
√

�(n,k). These values are given in Table 7.3.2 of David15. Hence, (Ȳi − ¯̄X)/�̂ is

approximately distributed as d2(n)
√
k+1t�(n,k)(p)/(a(n,k)

√
k). The approximation of c(n,k, p) becomes

c(n,k, p)∼=d2(n)
√
k+1t�(n,k)(p)/(a(n,k)

√
k) (11)

Values of c(n,k,0.99865) obtained by (10) and (11) are given in Table II, for various values of n and k.
The table shows that the values obtained by (10) are close to the values obtained by the regularly applied but
more complex equation (11). Therefore, from now on we will use (10) to obtain c(n,k, p) for all estimators
considered.

EVALUATION

In this section the design schemes presented in the previous section are evaluated. The performance of the
schemes is measured in terms of the probability of a signal in an individual sample (P�), the average run
length (ARL�) and the run length distribution (P(RL� ≤ x)), for � equal to 0, 0.25, 0.5, 1 and 2. We use
simulation to obtain these performance characteristics. The simulation procedure is described in the first
paragraph of the section. The second and third paragraphs present the simulation results for the in-control
situation (�=0) and the out-of-control situation (�=0.25,0.5,1,2), respectively.

Simulation procedure
Let Xi j i=1,2, . . . ,k and j =1,2, . . . ,n denote the data collected in Phase I to estimate the process parame-
ters. Xi j is assumed to be statistically in-control. Let Yi j i=1,2, . . . and j =1,2, . . . ,n denote the monitoring

data and denote the conditional probability that for given ¯̄X and �̂ by P(Ei | ¯̄X , �̂), the sample mean Ȳi falls
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beyond the control limits

P(Ei | ¯̄X , �̂)= P(Ȳi<L̂CL or Ȳi>ÛCL)

Given ¯̄X and �̂, the events Es and Et (s �= t) are independent. Therefore, the run length RL has a geometric

distribution with parameter P(Ei | ¯̄X , �̂)

P(RL≤ x | ¯̄X , �̂)=1−(1−P(Ei | ¯̄X , �̂))x

and an average run length

E(RL| ¯̄X , �̂)=1/P(Ei | ¯̄X , �̂)

When we take the expectation over the estimation data Xi j we get the unconditional probability of one
sample showing a false alarm

P(RL=1)=E(P(Ei | ¯̄X , �̂))

the unconditional run length distribution

P(RL≤ x)=E(1−(1−P(Ei | ¯̄X , �̂))x )

and the unconditional ARL

ARL=E(1/P(Ei | ¯̄X , �̂))

These expectations have been obtained by simulation. We have generated 100 000 times k data samples of
size n and for each data set we have computed the conditional value of each performance characteristic. The
unconditional values have been obtained by averaging the conditional values over the data sets. We have
performed these simulations for a number of samples k equal to 20, 30, 50, 100 and 500, and sample sizes
n equal to 4, 6, 8 and 10.

The in-control situation
In this section we study the performance of the design schemes in the in-control situation. First, we study
the performance in terms of the probability of a false alarm (P0). Values of P0 are presented in Table III.
As the factors c(n,k, p) have been derived by controlling P0, we do not expect that P0 differs much from
its intended value 0.0027. For the control chart based on S̃, c(n,k, p) has been derived exactly, thus, P0
is exactly 0.0027 in this case, while when the traditional 3�̂ limits had been used P0 would have been
significantly higher: e.g. for n=4, 0.0047 for k=20 and 0.0034 for k=50. For the charts based on the other
estimators of � (cf. (5)–(8)), the factors have been approximated. As can be derived from Table III, these
approximations are accurate except for the control chart based on IQR when n is equal to 6, 8 or 10. This is
due to the fact that c(n,k, p) has been obtained by approximating the distribution of �̂ by the distribution
of S̃/c4(k(n−1)+1), while the distribution of IQR/q(n) has heavier tails for these values of n. This can
be shown by the relative efficiency of the estimators, i.e. the variance of the estimators compared with the
variance of the estimator S̃/c4(k(n−1)+1), which is an unbiased estimator with minimum variance. The
relative efficiency is defined by

Reff(�̂)= Var(S̃/c4(k(n−1)+1))

Var(�̂)
∗100%

The efficiency comparisons are presented in Table IV. The table shows that the variance of IQR/q(n) is
considerably higher than the variance of the other estimators considered, especially for n equal to 6, 8 and 10.
This results in more variable control limits. In order to make a fair comparison between the estimators in
the sequel of the study, we fix P0=0.0027 for the chart based on IQR and recalculate the factor c(n,k, p).
The resulting factors are presented in Table V.
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Table III. P0 of proposed charts (2) and traditional 3�̂ charts

P0×102 for unbiased �̂

Proposed charts Traditional charts

n �̂ k=20 k=30 k=50 k=100 k=500 k=20 k=50

4 S̃ 0.27 0.27 0.27 0.27 0.27 0.47 0.34
S̄ 0.28 0.27 0.27 0.27 0.27 0.47 0.34
R̄ 0.28 0.28 0.27 0.27 0.27 0.48 0.35
Ḡ 0.28 0.28 0.27 0.27 0.27 0.48 0.34
IQR 0.28 0.28 0.28 0.27 0.27 0.48 0.35

6 S̃ 0.27 0.27 0.27 0.27 0.27 0.41 0.32
S̄ 0.27 0.27 0.27 0.27 0.27 0.42 0.32
R̄ 0.28 0.27 0.27 0.27 0.27 0.42 0.33
Ḡ 0.27 0.27 0.27 0.27 0.27 0.42 0.33
IQR 0.34 0.32 0.30 0.28 0.27 0.50 0.35

8 S̃ 0.27 0.27 0.27 0.27 0.27 0.39 0.31
S̄ 0.27 0.27 0.27 0.27 0.27 0.39 0.32
R̄ 0.28 0.27 0.27 0.27 0.27 0.40 0.32
Ḡ 0.27 0.27 0.27 0.27 0.27 0.40 0.32
IQR 0.30 0.29 0.28 0.28 0.27 0.43 0.33

10 S̃ 0.27 0.27 0.27 0.27 0.27 0.38 0.31
S̄ 0.27 0.27 0.27 0.27 0.27 0.38 0.31
R̄ 0.28 0.27 0.27 0.27 0.27 0.39 0.31
Ḡ 0.27 0.27 0.27 0.27 0.27 0.38 0.31
IQR 0.31 0.30 0.29 0.28 0.27 0.44 0.33

Table IV. Efficiency comparison

Reff (�̂) of unbiased �̂ in percentages

�̂ n=4 n=6 n=8 n=10

S̃ 100 100 100 100
S̄ 94 96 97 98
R̄ 92 89 86 83
Ḡ 93 94 95 96
IQR 86 48 56 43

Table V. Factors c(n,k,0.99865) for control charts when � is estimated by IQR/q(n)

c(n,k,0.99865)

n k=20 k=30 k=50 k=100 k=500

4 3.19 3.13 3.08 3.04 3.01
6 3.23 3.15 3.09 3.05 3.01
8 3.16 3.11 3.06 3.03 3.00
10 3.16 3.11 3.06 3.03 3.00
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Table VI. ARL0 of control charts based on k samples of size n

ARL0 for unbiased �̂

n �̂ k=20 k=30 k=50 k=100 k=500 k=∞
4 S̃ 1069 702 532 439 383 370

S̄ 1110 725 540 442 383
R̄ 1145 737 541 443 383
Ḡ 1141 733 540 443 384
IQR 1207 762 554 449 385

6 S̃ 682 545 461 411 378
S̄ 701 547 462 412 378
R̄ 720 561 469 415 379
Ḡ 699 551 464 412 378
IQR 1474 848 589 453 381

8 S̃ 580 489 433 399 375
S̄ 584 492 434 400 375
R̄ 603 504 439 402 377
Ḡ 588 493 435 400 376
IQR 805 608 479 419 378

10 S̃ 530 462 421 393 374
S̄ 532 465 421 392 375
R̄ 549 474 424 394 374
Ḡ 534 465 421 393 374
IQR 812 613 482 419 378
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Figure 1. In-control run length distribution when n=4 and k=20

A higher variance also causes that the ARL0 would be higher, as there will be more extreme runs. Values
of ARL0 are presented in Table VI. It is remarkable that the control chart based on IQR has a higher ARL0
for n=6 compared with n=4, which is also the case for n=10 compared with n=8. This is due to the
fact that the variance of the estimator is higher for these values of n. Riaz16 studies extensively the control
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chart based on the interquartile range. He also notes that for different values of n the design structure of the
control chart based on the interquartile range shows irregular patters (see also Table I of Rocke17).
In general, from Table VI it turns out that the ARL0 is significantly higher than the intended 370 when we

fix P0=0.0027. However, the relevance of the ARL is questioned as its value is strongly determined by the
occurrence of extreme runs, while in practice processes do not remain unchanged for a very long period.
A more relevant performance measure is the run length distribution.
Figures 1 and 2 show the in-control run length distribution for n=4 and 6, respectively, and k=20. It

turns out that the charts based on the different estimators perform similarly for n=4, but for n=6 the
control chart based on IQR loses power. In general, the choice of constructing the limits by controlling P0
seems to be suitable also for short monitoring runs (e.g. start-ups). When the monitoring period is expected
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Figure 2. In-control run length distribution when n=6 and k=20

Table VII. P� of control charts based on k samples of size n

P� for unbiased �̂

n �̂ k=20 k=30 k=50 k=100 k=500 k=∞
P0.25×102 4 S̃ 0.59 0.61 0.62 0.64 0.64 0.64

S̄ 0.60 0.62 0.63 0.64 0.64 0.64
R̄, Ḡ 0.61 0.62 0.63 0.64 0.64 0.64
IQR 0.62 0.63 0.63 0.64 0.64 0.64

6 S̃, S̄, R̄, Ḡ 0.81 0.83 0.84 0.85 0.86 0.86
IQR 0.77 0.80 0.82 0.85 0.86 0.86

P0.5×10 4 S̃, S̄, R̄, Ḡ, ¯IQR 0.20 0.21 0.22 0.22 0.23 0.23
6 S̃, S̄, R̄, Ḡ 0.34 0.35 0.36 0.37 0.38 0.38

IQR 0.32 0.33 0.35 0.36 0.38 0.38
P1 4 S̃, S̄, R̄, Ḡ, ¯IQR 0.13 0.14 0.15 0.15 0.16 0.16

6 S̃, S̄, R̄, Ḡ 0.25 0.27 0.28 0.28 0.29 0.29
IQR 0.24 0.25 0.27 0.28 0.29 0.29

P2 4 S̃ 0.78 0.80 0.82 0.83 0.84 0.84
S̄, R̄, Ḡ, IQR 0.77 0.80 0.82 0.83 0.84 0.84

6 S̃, S̄, R̄, Ḡ 0.95 0.96 0.96 0.97 0.97 0.97
IQR 0.94 0.95 0.96 0.97 0.97 0.97
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Table VIII. ARL� of control charts based on k samples of size n

ARL� for unbiased �̂

� n �̂ k=20 k=30 k=50 k=100 k=500 k=∞
0.25 4 S̃ 528 331 241 192 162 155

S̄ 547 342 243 193 162
R̄ 554 344 244 193 162
Ḡ 553 343 244 192 162
IQR 590 354 249 195 163

6 S̃ 265 198 159 135 119 116
S̄ 270 199 159 135 119
R̄ 274 201 161 136 120
Ḡ 269 200 160 135 120
IQR 509 286 193 148 120

0.5 4 S̃ 127 83.9 65.6 52.4 45.4 43.9
S̄ 129 85.6 64.1 52.6 45.5
R̄ 132 85.3 64.0 52.5 45.5
Ḡ 131 85.7 63.9 52.6 45.5¯IQR 136 87.7 65.1 52.9 45.6

6 S̃ 51.0 40.0 33.6 29.7 27.0 26.4
S̄ 51.6 40.4 33.7 29.6 27.0
R̄ 52.5 40.7 33.9 29.8 27.0
Ḡ 51.7 40.3 33.7 29.7 27.0
IQR 81.3 52.3 38.8 31.7 27.0

1 4 S̃ 11.4 9.08 7.76 6.97 6.43 6.30
S̄ 11.6 9.14 7.79 6.97 6.43
R̄ 11.6 9.17 7.80 6.98 6.43
Ḡ 11.6 9.18 7.80 6.98 6.43
IQR 11.8 9.27 7.84 7.01 6.44

6 S̃ 4.68 4.18 3.85 3.63 3.47 3.44
S̄ 4.70 4.20 3.85 3.63 3.47
R̄ 4.73 4.20 3.86 3.64 3.48
Ḡ 4.68 4.19 3.86 3.64 3.47
IQR 5.11 4.75 3.94 3.74 3.47

2 4 S̃, S̄, R̄, Ḡ 1.32 1.27 1.23 1.21 1.19 1.19
IQR 1.33 1.27 1.23 1.21 1.19

6 S̃, S̄, R̄, Ḡ 1.05 1.04 1.04 1.03 1.03 1.03
IQR 1.07 1.05 1.04 1.04 1.03
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Figure 3. Out-of-control run length distribution when n=4 and k=20 and delta=0.25
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Figure 4. Out-of-control run length distribution when n=6 and k=20 and delta=0.25
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Figure 5. Out-of-control run length distribution when n=4 and k=20 and delta=0.5

to be longer, we recommend other factors, for example, the one that determines the factor based on the
probability that the run length is at most a specified value x , see Albers and Kallenberg6.

The out-of-control situation
In this section we investigate the performance of the X design schemes when the process is out-of-control.
The out-of-control situations that we consider concern shifts in the mean to a level of �+��, for � equal
to 0.25, 0.5, 1 and 2. We study the same performance characteristics as in the in-control situation: P�
(Table VII), ARL� (Table VIII) and P(RL� ≤ x) (Figures 3–8 and Tables IX and X). Table VII indicates that
the probabilities P� of the charts based on (4)–(7) are acceptable. This means that these charts are suitable
for the purpose for which they have been derived, that is, approaching the intended value of P�. The chart
based on IQR turns out to be less powerful in the out-of-control situation for n equal to 6 as the P� is
lower, ARL� higher and the run length distribution is less powerful compared with the other estimators. This
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Figure 6. Out-of-control run length distribution when n=6 and k=20 and delta=0.5
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Figure 7. Out-of-control run length distribution when n=4 and k=20 and delta=1

is also the case for n=8 and 10. This is caused by the higher limits of the IQR chart that are needed to
control P0.

CONCLUDING REMARKS

In this paper two issues relevant to the design of the X chart have been studied. First, the impact of the
estimator on the control chart performance is investigated. Different estimators are considered. When the
estimator has a higher variance, in case of IQR/q(n) when n is equal to 6, 8 and 10, the tails of the run length
distribution are heavier. In our case, the charts have been constructed by fixing the false alarm probability
(P0); hence, the right tail of the run length distribution is heavier, i.e. there are more extreme runs resulting
also in a higher ARL0. Of course, when the charts had been constructed by fixing ARL0, the opposite would
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Figure 8. Out-of-control run length distribution when n=6 and k=20 and delta=1

Table IX. Out-of-control run length distribution when n=4 and k=20 and �=2

P(RL2≤ x)

x Estimated limits Known limits

1 S̃ 0.78 0.84
S̄, R̄, Ḡ, IQR 0.77 0.84

2 S̃, S̄, R̄, Ḡ, IQR 0.94 0.97
3 S̃, S̄, R̄, Ḡ, IQR 0.98 1.00
4 S̃, S̄, R̄, Ḡ, IQR 0.99 1.00
5 S̃, S̄, R̄, Ḡ, IQR 1.00 1.00

Table X. Out-of-control run length distribution when n=6 and k=20 and �=2

P(RL2≤ x)

x Estimated limits Known limits

1 S̃, S̄, R̄, Ḡ 0.95 0.97
IQR 0.94 0.97

2 S̃, S̄, R̄, Ḡ 1.00 1.00
IQR 0.99 1.00

3 S̃, S̄, R̄, Ḡ, IQR 1.00 1.00

have been the case. In addition, in the out-of-control situation the IQR chart shows less power in terms of
P� and ARL�. The differences between the performance of the charts based on S̃, S̄, R̄ and Ḡ are smaller.
These charts all perform well for the purpose for which they have been constructed, that is, approaching the
intended value of P�.
The second issue that has been addressed is the choice of the factor c(n,k, p) that replaces the fixed

constant 3 in the traditional limits, in order to obtain accurate limits for moderate sample sizes. We have
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explained that it depends on the purpose of the control chart which factor suits the best. For example, the
factor c(n,k, p) can be constructed by fixing the in-control probability of a signal in one sample or by fixing
another specific point of the in-control run length distribution such that the chart performs well for several
runs. We have chosen to construct the limits by fixing P0 and showed the impact of this choice on the
run length distribution. The resulting factors can be obtained more easily compared to the factors based on
the Patnaik approximation and they have shown to perform well for the estimators (4)–(7) in terms of the
probability of signalling. In addition, for short monitoring runs they perform well. When longer monitoring
runs are considered, we suggest to derive c(n,k, p) on the basis of a specific point of the in-control run
length distribution.
If we also evaluate the smaller differences, then it becomes clear that the best choice is the control chart

based on S̃ as was to be expected. The differences between the control charts based on S̄ and Ḡ are negligible.
The performance of the control chart based on R̄ is slightly less than the ones based on S̄ and Ḡ, mainly
for higher values of n.
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