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Problem: Health care today is facing serious problems: quality of care does not meet patients’ needs
and costs are exploding. Inefficient utilization of expensive operating rooms is one of the major problems
in many hospitals worldwide. A benchmark study of 13 hospitals in the Netherlands and Belgium showed
that, for a variety of reasons, surgery consistently started too late.

Approach: For a short and a somewhat longer period, two selected hospitals from the benchmark
study agreed to record the start times of the first operation each day for each of their operating rooms.
In addition to start times, the improvement team also recorded potential influence factors (covariates, or
X's). Statistical techniques used during the project were statistical graphics, Pareto charts, histograms, box
plots, time-series plots, Box—Cox transformations, and ANOVA to determine possible influential factors.

Results: It is shown that anesthesia technique and specialty are influence factors. However, the poor
planning and scheduling process turned out to be the most important factor in the delay of start times.
After introducing a new planning process, the hospitals involved were able to gain substantial cost savings,
increased efficiency, and substantial reductions of the delay in start times for surgery.
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Process Description

EALTH CARE worldwide is facing serious prob-

lems. Costs are escalating and quality of care
often fails to meet expectations, see, e.g., Institute
of Medicine (2001). Improving quality while reduc-
ing costs is, or should be, a major strategic prior-
ity for health care organizations. It may strike the
uninitiated as a contradiction, but quality improve-
ment projects applied to health care processes can
simultaneously produce reductions in costs while in-
creasing quality. This study provides an example of
this empirical finding.

In this case study, we describe how Six Sigma
projects carried out at two hospitals helped to im-
prove the efficiency of operating rooms (see the brief
introduction of Six Sigma in the Appendix). The first
hospital was the Red Cross Hospital (RCH) in Bever-
wijk, the Netherlands, a 384-bed medium size hospi-
tal with a staff of 1,250 and a yearly budget of $95
million. In addition to being a general hospital, the
RCH is also the site of a national burn care center
with 25 beds that provides specialized services to all
of the Netherlands. The RCH introduced Six Sigma
in 2002 and five groups, each of about 15 green belts
(GBs), were trained during the first 3 years; see Van
den Heuvel et al. (2005). The second hospital was the
Canisius Wilhemina Hospital (CWH) in Nijmegen,
the Netherlands. This is a much larger hospital, with
653 beds, employing 3,200, with a yearly budget of
$185 million. The CWH started to implement Six
Sigma in early 2005. The introduction of Six Sigma
at CWH was guided by the same leadership team
previously responsible for the implementation at the
RCH. Initially, two groups of 20 GBs were trained.
In 2006, a second wave of GBs were trained; see Van
den Heuvel et al. (2006). At both hospitals, the GB
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training included instructions in the use of the statis-
tical software package Minitab. Thus, the statistical
analyses and graphs shown below are all prepared
with Minitab.

Operating rooms are expensive and capacity lim-
iting facilities in hospitals. Their optimal utilization
is key to efficient hospital management. The RCH
and the CWH have 9 and 13 operating rooms, re-
spectively. To illustrate the business case for focusing
on operating rooms, suppose the official start time is
8:00 am but the actual average start time is 8:40 am.
An average of 40 minutes may not sound extraor-
dinary, but for a hospital with 13 operating rooms
and an average of 250 days in a year, this adds up
to about 2,150 lost hours or 270 full days that could
be used for productive work. In the Netherlands, the
cost of an operating room is estimated to be approx-
imately $1,500 per hour. Hence, 2,150 lost hours is
equivalent to $3.2 million per year and more than
the full capacity of one entire operating room. Fur-
thermore, operating rooms in modern hospitals are
capital intensive units, staffed by highly skilled and
expensive staff. Starting too late means considerable
wait time for staff and patients. Waste and ineffi-
ciency on such a scale when there are waiting lists
for surgery ought not be tolerated.

For those reasons, both hospitals decided to im-
prove the efficiency of their operating rooms. In the
following, we mainly report on the statistical aspects
of the project at the RCH without dwelling on de-
tails that otherwise may be relevant for discussing a
Six Sigma case or for more general issues related to
the application of Six Sigma in health care.

One of the first steps in an improvement project
is to describe the process with a process map or flow
chart. Figure 1 shows a much simplified process map
describing the major process steps a typical patient
undergoing surgery goes through.

Note that an operation is defined here to start
after anesthesia. Hence, the operational definition of
start time is at the time of the incision.

Data Collection

The measure phase starts with the selection of
critical-to-quality (CTQ) characteristics; see, e.g., De
Mast et al. (2006). A commonly used tool to guide a
team from the project definition to specific and mea-
surable CTQs is the CTQ flow down (CTQF); see,
e.g., De Koning and De Mast (2007). The CTQF
helps structure the logic underlying a project. Fur-
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FIGURE 1. Overview Process Map for a Surgical Procedure.

thermore, it shows how CTQs relate to higher level
goals, such as performance indicators, and helps the
team align the project with the organization’s strate-
gic goals. At a lower level of the hierarchy, it shows
how the CTQs are related to measurements. Figure
2 shows the CTQF for this project.

The primary stakeholder in this case is the hospi-
tal and the strategic goal is the overall reduction of
the cost of running the hospital. Further, the CTQF
shows that efficiency (i.e., the key performance indi-
cator, KPI) can be divided into the number of op-
erations and the amount of unused time of an oper-
ating room; in Figure 2, we denote these quantities
by PI (performance indicators). The PI “amount of
unused time” is related to two one-dimensional mea-
surements (the CTQs). In the present project, the
CTQs “start time of the first operation” and “chang-
ing time of operations” are used. In what follows, we
focus on the start time of the first operation.

Stakeholder

Strategic focal

point

KPI

The next step of the measure phase is to develop a
precise description of the measurement plan. For each
operation, we collected a number of time stamps and
important characteristics (covariates, or X’s), such
as type of anesthesia technique and type of specialty.
For each operating room and for each first operation,
we recorded the following;:

1. Official start time (i.e. the target time of the
incision).

2. Time of arrival at the front door of the operat-
ing room of the first patient.

w

. Time of arrival in the operating room of the
first patient.

4. Time anesthesia starts.
5. Time incision starts.

6. Time surgery ends.
7

. Time patient leaves operating room.

Hospital

Operational cost
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(to hospital)
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FIGURE 2. CTQ Flow Down.
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FIGURE 3. Pareto Chart of the First Operations Stratified by Specialty.

8. Anesthesia technique.

9. Specialty.

The delay in start time was defined as the start
time of the incision minus the official start time. With
this operational definition in place, we see that the
overriding purpose of the project is to decrease this
delay. The measurement unit is minutes. As we indi-
cate below, occasionally some of the characteristics
were not recorded. Such cases were in the subsequent
data cleaning process labeled as “missing”.

Analysis and Interpretation

Before we engage in the analysis of the start
times, it is useful to perform a Pareto analysis of
the data collected. The first surgeries can be cate-
gorized according to the methods of anesthesia used
and the medical specialty performing the operation.
The method of anesthesia involved 10 different types
and the operations were performed by 11 different
specialist departments. Figure 3 shows a Pareto chart
of the specialties.

We see that more than 30% of all first operations
were performed by the Surgery Department. Plas-
tic surgery is another large category, with more than
20%, and the Orthopedic Department contributed
about 12%. The remaining approximately 38% of the
(first) operations came from eight other departments,
each contributing a relatively low volume of patients.
Thus, any effort to improve start time should initially
be focused on working with the large volume depart-
ments.

Journal of Quality Technology

A second Pareto analysis shown in Figure 4 pro-
vides a break down of the first surgeries on the type
of anesthesia technique used.

From this chart, we see that the overwhelming
majority (63%) of first operations used total (com-
plete) anesthesia. Another approximately 20% used
spinal anesthesia. The remaining 17% of first oper-
ations used a variety of seven other methods. Thus,
again it would be useful to focus effort on improving
start time on total anesthesia and spinal anesthesia.
Finally, Figure 5 shows a two-way Pareto chart of
anesthesia technique used by specialty.

The main observation from Figure 5 is that the
two major specialties, surgery and plastic surgery,
primarily use full anesthesia, whereas the orthopedic
department rarely uses full anesthesia but primarily
prefers to use spinal anesthesia. Also, we see that
ophthalmology is, with few exceptions, the only user
of bulbar.

We now turn to an analysis of the actual start
time. The data collected showed that the average
start times were 8:35 am and 8:55 am at the RCH
and the CWH, respectively. The target start time of
the incision at the RCH was 8.00 am and 8.30 am at
the CWH. Figure 6 is a time series plot of the delay
in start times at RCH during a period of 6 months
in all nine operating rooms.

A visual screening of the data in Figure 6 reveals
a nonsymmetrical distribution of the times, with a
tendency to extreme outliers on the high side—a phe-
nomenon typical of waiting times. This distributional
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FIGURE 6. Time Series Plot of the Delay in Start Times for All Nine Operating Rooms at RCH.

skewness of the start time at the RCH is further
borne out in the histogram and normal plot shown
in Figures 7 and 8.

Data Transformations

In the analysis of data with many standard tech-
niques of statistics, such as analysis of variance and
regression analysis, it is often assumed the data are

independently normally distributed with constant
variance. However, such idealized assumptions are
often violated in practice. The operating room de-
lay times are a typical example; as can be seen
from the previous plots, the normality assumption is
clearly violated. Such violations of the assumptions,
if grave enough, can lead to misleading conclusions
from a statistical analysis unless proper precautions
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FIGURE 7. Histogram of the Delay in Start Times at the RCH.
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FIGURE 8. Normal Probability Plot of the Delay in Start Times at the RCH.

are taken. One such precaution, that is relatively sim-
ple and of wide utility, is to apply a suitable data
transformation.

It is often the case that the scale in which the data
originally were recorded is not necessarily the best
for the subsequent statistical analysis. For example,
which is better for measuring the efficiency of a car,
miles per gallon, as in the United States, or liters
per 100 kilometer, as is common in Europe? Both
are proper measures of gas consumption but one is
the inverse transformation of the other (as well as
some linear transformations from miles to kilometers
and gallons to liters that in this context are not so
important).

For the operating room start time data, logical
arguments and experience suggest that the data will
exhibit variability that is proportional to the mean.
When that is the case, experienced data analysts may
immediately resort to using a log transformation; see
Box et al. (2005, page 321). However, we may also
proceed more formally to estimate a proper trans-
formation from the class of Box—Cox power transfor-
mations originally proposed by Box and Cox (1964).
Using this family of transformations, it is tentatively
assumed that, for some A, an additive model with
normally distributed errors having constant variance
is appropriate for ) defined by

A
yr—1
y(/\) — { h\
In(y)
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for A#0 (1)
for A =0.

This family of transformations is continuous in A
and contains the log transformation as a special case
(i.e., A = 0). We estimate A using the maximum like-
lihood method. The likelihood in this case is given
by

1
N — E{vOOy (v — BIy )
% exp {_(y {y }Q)J(Zy {y })}
x J(Ay), (2)
where B o
sy =11 (ﬁ’y)

is the Jacobian of the transformation. To find the
maximum likelihood estimate, we proceed in two
steps. For a given A, the likelihood in Equation (2)
is, except for a constant factor, the likelihood for a
standard least squares problem. Thus, for a range
of values of A\, we perform the regular least squares
analysis in terms of y®. The maximum likelihood
value for A is then the value for which the residual
sum of squares is minimized.

The formulation of the Box—Cox transformation
in Equation (1) is the most commonly discussed ver-
sion. However, although the transformation y» is
continuous in A, the variances of the transformed
data are not comparable for different values of A\ and
the scale depends on . In technical terms, when we
use Equation (1), we do not appropriately take into

Www.asq.org
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account the Jacobian of the transformation. An al-
ternative normalized transformation that does take
into account the Jacobian recommended by Box and
Cox (1964) for the practical implementation is given
by

A
Yyt —1
Z_—— for\#0
z()\) — )\yk—l 7& (3)
yln(y) for A—0,

where 3 = (y1y2 - - - yn)"/™ is the geometric mean of

the sample. Box and Cox (1964) then showed how,
for the standardized transformation (M, the appro-
priate A can be estimated using maximum likelihood
estimation.

Cautionary Remarks About Inappropriate
Implementations of Transformations

Before we proceed to show how the Box—Cox
transformation can be applied relatively simply with
standard software, we first discuss a few subtle points
in the calculations that must be kept in mind to do
this properly. The first subtlety that we have often
seen overlooked in (Six Sigma) teaching is that, to
apply the Box—Cox transformation algorithm for the
determination of \, we need to carefully consider the
expected value of the model we want to estimate; the
transformation is applied to transform the error, not
the response, to approximate normality. To be more
specific, suppose we have control chart data that are
highly skewed to the right, like the start times above.
If we, for example, would like to make an individuals-
moving range chart for this data and for the moment
ignore that the specialties and the anesthesia tech-
niques are factors, then, because of the skewness of
the data, we clearly would violate the assumption of
normality and would end up with a control chart with
many false alarms. Thus, we may want to consider a
transformation to make the data more approximately
normal. The model assumption in this case would
be that, after a proper transformation of the data
yi, the transformed data yg)‘) could be modeled as
varying around a fixed mean and that the statistical
) = p+ e, where g; ~ N(0,0?%). In other

model is y;
words, the expected value of the transformed data is

E{yg)‘)} = 1. In that case, we seek an estimate A of
the transformation parameter A that will make the
residuals &; = yg’\) — [i approximately normally dis-
tributed. For example, using Minitab’s Stat — Con-
trol Charts — Box-Cox Transformation directly on

y; for this simple model is legitimate.

Now consider the situation where the expected

Journal of Quality Technology

value no longer is assumed to be a fixed constant.
For example, suppose the data generating process
is a one-way ANOVA model (with fixed effects).
The expected value of the one-way ANOVA model

is E{yl(j‘)} = pu+ Aj, where A;, j = 1,...,k are
constants. Thus, we should now seek an estimate
A of the transformation parameter that will make
the residuals &;; = yl(;‘) — [ — flj approximately nor-
mally distributed. In other words, for a given A, we

need to estimate the expected value of the model

E{yl(]/\)} = 4+ A; and subtract that estimate from

yg‘) to get £;; = yg‘) — fi — Aj. However, if we inad-

vertently use standard software that assumes a fixed
mean model E{y?‘)} = u, as for example Minitab’s
(version 15) Stat — Control Charts — Box—Cox
Transformation, then we end up finding a A\ that

i(]’-\) - y;;) look nor-

mally distributed, where gz(j) is the average of all the
transformed data. However, it will likely not be very
successful.

will try to make the quantity y

Another subtlety is that, for a data transforma-
tion like Equation (1) to make an effective impact
on the analysis, it is usually recommended to check
the ratio of the maximum to the minimum observa-
tion of the sample to see if max(y;)/ min(y;) > 2; see
Box et al. (2005, p. 326). In the case of the operating
room start times, max(y;)/ min(y;) ~ 32, so this is
a good candidate for a transformation. However, if
max(y;)/ min(y;) < 2, then the transformation over
such a narrow range is approximately linear and will
likely have almost no effect.

Box—Cox Transformation Applied to the
Operating Room Data

We now turn to the data at hand. A key ques-
tion in the analysis of the start time data is whether
the two covariates “specialty” and “anesthesia tech-
nique” had an influence on the delays. To investigate
this question, we want to test the effects of each of
these categorical X’s. In this case, an exploratory
(i.e., informal) statistical test can be carried out sep-
arately for specialty and anesthesia technique by per-
forming two separate one-way analyses of variances
(ANOVA). Because this was an observational study
and not a designed experiment, a two-way ANOVA of
the simultaneous effects of specialty and anesthesia
technique in this case produced a highly unbalanced
two-way table of factors and was therefore deemed in-
appropriate. Furthermore a complication, as already
mentioned, is the extreme skewness of the data and
the need for a transformation.

Vol. 41, No. 1, January 2009
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FIGURE 9. Box—-Cox Transformation for One-Way
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We therefore proceed to use two separate one-way
ANOVAs one for specialty and one for anesthesia
technique. The expected means for the two models
are E{yl(]/\lz} =pu+5; and E{yfj‘g} = pu+ Ty, where
S; are the specialty effects and T}, are the anesthesia-
technique effects. Thus, for these ANOVA models, we
do not assume the mean to be a fixed constant for
all observations. The Minitab pull-down menu com-
mand for estimating A for control-chart data will
therefore not be appropriate if used directly. How-
ever, Minitab, via its website, does provide a macro
called BCtrans that performs a maximum likelihood
estimation of A for linear regression models using
the Box—Cox transformation (1). Because analysis of
variance is a special case of regression analysis where
the X’s are indicator variables (see e.g., Draper and
Smith (1998)), we can create indicator variables for
the 11 specialties and the 10 anesthesia techniques.
Now, because the study as indicated was unbalanced,
we estimated A two different ways with the BCtrans
macro, as one-way ANOVA with specialty and as
one-way ANOVA for anesthesia technique. The re-
sults are all similar, so only the ANOVA with anes-
thesia technique will be discussed. Figure 9 shows the
log likelihood function for the anesthesia-techniques
analysis.

Vol. 41, No. 1, January 2009

From Figure 9, we see that the optimal lambda
value is approximately zero. The pragmatic choice is
therefore the log transformation. Thus, using the BC-
trans macro with Minitab 15, we found that the best
Box—Cox transformation is the natural logarithm of
the start time. However, as we indicated above, the
transformation (1) has the disadvantage that the
scale of observations depends on A, which in some
cases can lead to problems; see Box and Cox (1982).
Indeed, in an analysis of the Box—Cox transforma-
tion (1), Bickel and Doksum (1981) found that “...
the performance . . . is unstable and highly dependent
on the parameters in the model in structured mod-
els with small to moderate error variance.” This oc-
curs because, using transformation (1), the estimate
of A and the model parameters are highly correlated.
However, as Box and Cox (1982) point out, this prob-
lem can be avoided if we, instead as recommended in
Box and Cox (1964), use the normalized Box—Cox
transformation (3) for practical application.

The transformation (3) is currently not available
as a Minitab macro. However, it is relatively simple
to carry out the transformation in practice. Figure
10 provides a simple algorithm.

Compute the geometric mean y of the data

X

4 Compute a series of transformed columns N

of z*) values for an array of discrete A's :

(' -1
z(’“: Wfor&:to

yIn(y)forA=0

. /

A
4 ™

Fit the model to each of the transformed data
columns of values

A

Plot the residual sum of squares (RSS) for

each A value versus A.

A S

FIGURE 10. Algorithm for Manually Carrying Out a Box—
Cox Transformation.
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FIGURE 11. Alternative Box—Cox Transformation for One-Way ANOVA Anesthesia Techniques.

Note that a simple way to compute the geomet-
ric average § = (y1y2---yn)/™ is by using y =
exp{In(y)}, where In(y) = n~'>"  In(y;). The
residual sum of squares for the techniques ANOVA is
plotted for a range of A from —2 to +2 (Figure 11).

Again we see that the log transformation seems
to be the appropriate transformation. Of course, this
should not be a surprise, as it is common to find
that waiting time distributions are approximately log
normal, but it is comforting to actually have verified
it as a proper transformation for the data at hand.

Analysis of the Operating Room Data at the
RCH

Figure 12 shows a residual plot of ANOVA anes-
thesia techniques from the RCH using the log-
transformed start times.

We notice that the distribution of the residuals,
despite the log transformation, still has moderately
heavy tails, but not more extreme than what should
be acceptable. Although it is appropriate to use a
transformation to remedy for the extreme nonnor-
mality exhibited by the original data, the ANOVA
is relatively robust to such more minor differences
in the distributional form we see in the transformed
data; see Box et al. (2005, p. 140). Thus, we proceed
to use ANOVA for the log-transformed data to look

Journal of Quality Technology

for possible effects.

The use of formal tests for multiple comparisons
is popular but, in practice, it is questionable how far
we should go with such formal testing. For example,
how precise does it make sense to be about some-
thing that is inherently very uncertain? Moreover,
the significance levels for example 5% are somewhat
arbitrarily chosen benchmarks; see Box et al. (1978,
p. 206).

Figure 13 shows a graphical representation of an
ANOVA per anesthesia technique. We see that the
anesthesia technique clearly influences the start time.
However, the explained variation is small. The spe-
cialists of the RCH argued that this was the major
reason for the delay in start times. However, the anes-
thetists of the RCH argued that the specialization
was the reason for the late start times. From Figure
14, we see that, although the effect of the different
specialties is statistically significant, like the anesthe-
sia technique, the practical significance on the start
times is minor. Thus, both influence factors did not
give a good answer to the question: “What really
causes the delay in start times?”

Benchmark Study

In 2005, the first and third authors of this arti-
cle were invited to run a workshop on Six Sigma in

Vol. 41, No. 1, January 2009
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FIGURE 14. Box Plots of the Log Start Times by Specialty in the RCH.

Belgium. The purpose of the workshop was to in-
terest health care professionals in the application of
Six Sigma to hospital management. To stimulate the
discussion, we asked the participants to collect data
for a period of 4 weeks on start times of the oper-
ating rooms in their hospitals. Eleven hospitals pro-

vided data. Combined with the data from the RCH
and CWH, we therefore have data available from 13
hospitals for a benchmark study. The average de-
lay in start times ranges from 25 minutes to 103
minutes. Figure 15 provides an overview of the log-
transformed data of the 13 hospitals presented as box
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FIGURE 15. Benchmark Study of 13 Hospitals.
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FIGURE 16. Histogram of the Transformed Start Times of Hospital 2.

plots. Note that we have excluded the 20 zeros out of
4,318 data points (3 from hospital 3, 2 from hospital
8, and 15 from hospital 10; in the data set, they are
denoted by 0.01). It clearly shows that all hospitals
start too late with respect to their target values.

To gain further insight about the processes in the
individual hospitals, we analyzed them separately.
The worst hospital in regard to start times was hos-
pital 2. An interesting discovery for that hospital was
that the distribution of the transformed start times
seemed to be a mixture of two distributions; see the
hump in the upper tail of the histogram in Figure 16.

Note that the histograms of hospitals 5, 6, 8, and
9 clearly show the same phenomenon. Using the idea
that there could be a mixture of different distribu-
tions, we carefully studied again the original data of
the RCH. With the observation from hospital 2 in
mind, we see that the right-hand tail of the start
times is much heavier than the tails based on a nor-
mal distribution (see Figure 7). Even after transform-
ing the data, this still appears to be true. In the first
analysis, we could not show that the delays in start
time were mainly due to the anesthesia technique
or the specialty. The benchmark study reveals that
there could be additional but unidentified causes, so-
called lurking variables.

During brainstorming sessions with the RCH
team, many influence factors were suggested. Col-

Vol. 41, No. 1, January 2009

lectively, however, they all provided the unmistaken
symptoms of a poorly defined planning process. For
example, it was not clear at what time the patient
should arrive at the admissions room for the oper-
ating room, at what time to start the premedica-
tion, and at what time the anesthesiologist should
be available. Furthermore, there were many adverse
incidents during the week—failures of the anesthe-
sia technique, patient not fasting, traffic jams—which
delayed arrival times of the specialists, etc. Similar
results were found in the CWH.

Based on the post data analysis discussions, a new
planning process using a few simple rules was de-
signed: (a) patients must be present at the operating
room no later than 7:35 am in the RCH and no later
than 8.00 am in the CWH, (b) measures should be
taken to assure that patients have received preop-
erative medication before arriving at the operating
room, (c) the referring department and the anes-
thesiologist must be informed one day in advance
of the scheduled procedure. These simple rules and
procedures were communicated to all employees in-
volved. To control this new scheduling process, visual
management was introduced, showing the start times
of the past week. The resulting graph is reviewed
weekly. As a result of these standard operating pro-
cedures (SOPs), the start time delay at RCH was
reduced by more than 25%. At CWH, the reduction
was more than 30%.
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Conclusions

The Six Sigma approach with the accompanying
thorough data analysis has been very helpful in pro-
viding insight into the problem and has helped reduce
the classical “blaming the other party” problem that
often derails problem solving processes. The addi-
tional sessions with the team redirected the focus to
the real issue, a poor planning and scheduling sys-
tem.

After one year, both hospitals have achieved struc-
tural annual savings by reducing the delay in start
times: in the RCH, more than $350,000; in the CWH,
more than $100,000. In the CWH, additional savings
of more than $400,000 were obtained by reducing the
changing times of operations and the breaks. They
were able to increase the number of operations by
10% without requiring additional resources.

In this case study, quality improvement was mea-
sured in terms of reduced delays in start times and
especially reduced cancellations of operations at the
end of the day. The latter is particularly important
with respect to patient safety. The projects clearly
show that it is possible to reduce the costs while in-
creasing quality.

Appendix:
Six Sigma in a Nutshell

Six Sigma is a company wide quality improvement
approach that aims at optimizing processes while re-
ducing defects and costs; see Snee (2004). Six Sigma
uses a project based deployment approach in which a
project is defined as a chronic problem scheduled to
be solved. It is based on one of the principles of Juran
(1989): nonstandard problems are only solved project
by project. The Six Sigma method was put in an op-
erational form as the so-called DMAIC roadmap. It
employs five phases: define (D), measure (M), ana-
lyze (A), improve, (I) and control (C). The roadmap
guides the project leaders, individuals with training
to the level of a Green Belt or Black Belt, in Six
Sigma methods, through their projects, helps them
ask the right questions, shows them which tools and
techniques can be used, and encourages them to or-
ganize their findings in a structured form. The five
phases are briefly characterized as follows:

1. Define: Select project and Black Belt/Green
Belt.

2. Measure: Make the problem quantifiable and
measurable.
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Define

. Select the internal CTQ
. Operationalize the CTQ
. Validate the measurement system

Measure

. Establish the process capability
. Define the objective of the project
. Identify potential influence factors

Analyze

. Select the important influence factors
. Establish relationships
. Design improvement actions

Improve

OCOoON|IOOBR]JTWN -

10. Improve the quality control system
(06)717ge] M| 11. Determine the new process capability
12. Close the project

FIGURE Al. DMAIC Roadmap for Improvement Pro-
jects.

3. Analyze: Analyze the current situation and
make a diagnosis.

4. Improve: Develop and implement improvement
actions.

5. Control: Improve the quality control system
and discontinue the project.

These phases are discussed in, e.g., Harry (1997)
or Snee and Hoerl (2005). Each of the DMAIC phases
is broken down into three steps (see Figure A.1).

Note that the abbreviation CTQ in Figure A.1
means "critical to quality,” i.e., a specific and mea-
surable characteristic to quantify the problem. For
each step, a list of end goals is defined as well as a
set of techniques that are typically used to achieve
them; see, e.g., De Mast et al. (2006). Black Belts and
Green Belts report progress with their projects fol-
lowing these steps, which makes it easy for program
management and champions to track progress.

Six Sigma has been developed and widely used in
industry;, see Breyfogle (2003). Recently, the appli-
cation of Six Sigma has also been suggested in health
care; see Barry et al. (2002). A number of health-
care institutions have implemented Six Sigma; see
Thomerson (2001), Sehwail and De Yong (2003), Van
den Heuvel et al. (2005), Christianson et al. (2005),
and Van den Heuvel et al. (2006).
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