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ABSTRACT Exploratory data analysis (EDA) is sometimes suggested as a

hypothesis identification approach. It is often used as such in problem sol-

ving and consists of the analysis of observational data, often collected with-

out well-defined hypotheses, with the purpose of finding clues that could

inspire ideas and hypotheses. This article seeks to uncover some of the main

principles of EDA in problem solving. The article discusses and explains

EDA’s main steps: (1) Display the data; (2) identify salient features; (3) inter-

pret salient features. The empiricist notion of EDA, which pervades many

textbook accounts of EDA, is criticized and contrasted to an account that

emphasizes the role of mental models in hypothesis generation. The frame-

work has some implications for the limitations of EDA. It also sheds light on

the role of the statistician compared to the role of the context expert. The

article argues that in teaching EDA the emphasis for statistical data analysis

should be balanced with teaching students to theorize and be inquisitive.

Throughout the article, ideas are illustrated by the well-known case of John

Snow’s studies of the transmission mechanism of cholera.

KEYWORDS discovery, graphical data analysis, hypothesis generation, mental

models, salient features

INTRODUCTION

In 1854 there was a major outbreak of cholera in London. Many

then-prevailing theories failed to associate the transmission of cholera to

hygiene, assuming that cholera was noncontagious or that the disease agent

was airborne (Vinten-Johansen et al., 2003). Some popular accounts of the

story narrate how a doctor named John Snow discovered the cause of the

outbreak by making a map indicating where the victims lived (see

Figure 1, which was taken from Snow 1855). The map showed a cluster

in Soho, and Snow identified a water pump in Broad Street as the epicenter

of the outbreak. Excavations showed that a nearby cesspit leaked fecal bac-

teria into the pump-well. Allegedly, Snow convinced officials to remove the

handle from the pump, thus ending the outbreak (some accounts even claim

that Snow removed the handle himself).
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This article is about exploratory data analysis

(EDA), the study of empirical data to generate ideas

and hypotheses. Compared to confirmatory data ana-

lysis, the literature on EDA is meager, both in pure

volume of texts devoted to the subject and in the pre-

cision and depth of its theoretical development.

Some concede that perhaps EDA is more of an art,

or even a bag of tricks, than a science (Good,

1983). This poor development of theory on EDA in

the academic literature does not do justice to the

importance of EDA in practice, as an often used

approach in discovery and problem solving. It is

the purpose of this article to develop a theoretical

model for EDA that can serve as the backbone for

developing teaching programs for practitioners and

can serve as a paradigm for the scientific study of

EDA techniques in problem solving. The model is

presented and elaborated in later sections of this

article.

EDA cannot meaningfully be studied in isolation

of its contexts, namely, its role in empirical inquiry

and the fact that it proceeds through human cogni-

tive processes. Our model, consequently, is based

on scientific insights not only from the statistical

sciences but from philosophy of science and the cog-

nitive sciences as well. A subsidiary objective of the

article is to provide references to the relevant litera-

ture in all three of these disciplines, thus facilitating

that researchers from one discipline can explore

the work in complementary fields.

Throughout the article, the John Snow story serves

to illustrate our ideas. We think it is an example that

most readers can relate to, and there are not that

many applications of EDA that are so well documen-

ted (both by biographers and historians, but also

Snow’s own account of the events, published in

1855, is very insightful for understanding EDA in

action). Historical research shows that the authenti-

city of some of the details in the story can be ques-

tioned (Brody et al., 2000), and especially the

episode of the map and the Broad Street pump has

taken the forms of a myth (Koch, 2004). For exam-

ple, it is true that Snow became aware of the Broad

Street pump because of the clustered pattern of

casualties, but he did not make a map on paper until

months after the events. Some of the popular

accounts of the story illustrate well what we will call

an empiricist account of EDA, which, as we claim in

the section so titled, seems misguided. The historical

facts and John Snow’s own account, far less smooth

and stylized as they are, serve to illustrate what we

propose as a more realistic notion of EDA.

The reader looking for more examples of EDA is

referred to De Mast and Trip (2007), who describe

EDA examples from problem solving in business

and industry. This earlier paper also represents the

empirical basis on which we developed and tested

our theory.

EXPLORATORY DATA ANALYSIS AS
AN APPROACH TO HYPOTHESIS

GENERATION

The Purpose of EDA

Snow encountered disbelief about his theory that

cholera was water-borne. To prove his theory, he

made a study in 1853–1854 that he called The Grand

Experiment. Two companies supplied South London

with drinking water. The Southwark & Vauxhall

company had its water intake downstream on the

river Thames and, consequently, the water it sup-

plied was contaminated with sewage. The Lambeth

Company had moved its water intake upstream in

1852 and had provided cleaner water since. Snow

focused his study on a number of districts in South

London where both companies delivered water.

FIGURE 1 Part of Snow’s map showing the distribution of

cholera casualties in Soho (from Snow 1855).
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In these districts, a total of 300,000 people lived, of

all classes and occupations, and the clients of both

companies were almost completely mixed: one

house could take its water from Lambeth, and its

neighbors from Southwark & Vauxhall. The situa-

tion approached the conditions of a randomized

experiment—a ‘‘natural experiment’’. Snow pains-

takingly determined from which company house-

holds in the districts under study got their water

and found the mortality rate in the houses supplied

by the Southwark & Vauxhall company more than

eight times as great as in the houses supplied by

Lambeth (Snow, 1855, p. 86).

Snow’s Grand Experiment is a skillful demon-

stration of a confirmatory study. The theories of

experimental design, hypothesis testing, and model

building are some of the greatest contributions of sta-

tistics. But to get a confirmatory study off the ground,

one needs to have identified the hypothesis that is to

be confirmed or refuted in the first place. Before

Snow could collect data about the origin of the water

of cholera victims, he must have identified the water

supply as interesting in the first place.

The term EDA is mostly attributed to Tukey (1977).

In EDA, one’s aim is not to draw conclusions on

predefined research questions (be it the construction

of amodel, the estimation of parameters, or the confir-

mation or rejection of a hypothesis); in fact, EDA in

problem solving is often applied to data collected

withoutwell-definedhypotheses. In EDA, one screens

the data for clues that could inspire ideas and hypoth-

eses. The manner in which discovery through EDA

proceeds is illustrated by Snow, who collected data

(the addresses of cholera casualties), noted the clus-

tered pattern, and identified a particular water pump

as potentially instrumental in the 1854 outbreak.

In empirical inquiry (in its scientific and applied

manifestations) one often pursues the development

of causal explanations. To this end, the phenomena

under study are parameterized; that is, made opera-

tional in the form of dependent (Y) and independent

(X) variables. Confirmatory data analysis is aimed at

testing and modeling conjectured relationships

between dependent and independent variables.

Confirmatory data analysis is aimed at objectivity

and conclusion and therefore its way of working is

methodical and rigorous in nature.

EDA, on the other hand, has as its purpose the

identification of Y- and X-variables that may prove

to be of interest in understanding or solving the

problem under study. It requires an altogether differ-

ent mindset; EDA is speculative (pursuing hypotheses

that have potential, rather than hypotheses that are

true) and open-ended (leaving the conclusion to con-

firmatory data analysis). The way of working is neces-

sarily flexible and adaptive, because the inquirer is

looking for features that he did not expect to find

beforehand. In Snow’s Broad Street study, the depen-

dent variable was whether persons are infected by

cholera. The study resulted in the explanatory

variable whether a person did or did not drink the

contaminated water from the Broad Street pump-well.

An Empiricist Account of EDA

Many statisticians know Snow’s story in the ver-

sion by Tufte (1983) or Gilbert (1958). Both present

a map that they claim is Snow’s but that in fact is a

far less detailed map, indicating victims by dots

rather than bars per household (note that Tufte’s

1997 book has a more authentic map, as well as a

historically more accurate description of the events

in 1854). Tufte’s (1983, p. 24) account of the story

is ‘‘Examining the scatter over the surface of the

map, Snow observed that cholera occurred almost

entirely among those who lived near (and drank

from) the Broad Street water pump.’’

Some historical inaccuracies aside, we find this

account misguided on a more profound level. The

account suggests that, if you look at the map, it is

obvious to identify the water pump as the epicenter

(that is, hypotheses are self-evident inferences from

observations). The fact that city officials, who made

a similar map in the same time, did not identify the

pump as the epicenter illustrates that discovery is

not that straightforward (officials of the General

Board of Health inferred from their own map, as well

as from Snow’s, that the Soho outbreak had an

‘‘atmospheric cause’’; see Brody et al., 2000).

Tufte’s (1983) description is reminiscent of empiri-

cism in the styles attributed to Francis Bacon and

John Stuart Mill (Mulaik, 1985), where discoveries

come ‘‘automatically’’ from looking at data (see

Figure 2). Empiricist ideas pervade many descrip-

tions of EDA found in statistical textbooks. They

give, we claim, a profoundly misguided depiction

of EDA, ignoring the role played in discovery by

mental models. Mental models are the way humans
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store knowledge in their long-term memory

(Johnson-Laird, 2006); mental models and their struc-

ture play a prominent part in modern philosophies of

discovery (for example, Thagard, 1992).

A layman and an expert studying an X-ray will

note different features as salient and will interpret

them differently; the cause is the much more refined

mental models related to anatomy that the expert

has. Mental models guide what the inquirer identifies

as salient, and they provide a vocabulary for specu-

lating about how to interpret the data. A model of

EDA should take the role of mental models into

account; in the next section, we present our model.

A MODEL OF EDA INCORPORATING
THE ROLE OF MENTAL MODELS

Figure 3 displays our model of EDA. It discerns

three steps in the process of EDA (which have been

proposed earlier in De Mast and Trip, 2007).

1. Display the data (for example, Snow’s map of the

distribution of cholera victims).

2. Identify salient features (the cluster around Broad

Street).

3. Interpret salient features (identification of the

water pump as the cluster’s epicenter).

In our model, hypotheses do not originate in data,

they originate in the confrontation between data and

the mental models that the inquirer entertains. As

Figure 3 illustrates, none of the three steps is an

objective derivation from the data; each one of them

is strongly influenced by the inquirer’s mental

models. We discuss each of the three steps in detail.

Display the Data

Snow’s Soho map shows the distribution of victims

over London. For EDA, the relevant information in

data is their distribution, and the data presentation

should be aimed at displaying the data’s distribution

such that the pattern recognition capabilities of our

brains can be used optimally. Given the limited capa-

city of our working memory (typically, about seven

slots), the raw data are too complex for human

brains. Tables of aggregate statistics, on the other

hand, eliminate components of the data’s distribu-

tion, thereby losing information that is potentially

crucial for EDA. Graphical display is ideal for EDA.

Inquirers well trained in statistical techniques have

a refined repository of graphical techniques, as well

as mental models about when and in which combi-

nation to use them.

Techniques useful for EDA reveal the data distri-

bution. Examples include:

. Histograms and ogives (presenting the distribution

of one-dimensional data);

. Time series plots and boxplots per time unit

(showing the data’s distribution over time);

. Boxplots or dotplots per stratum (showing the dis-

tribution within and across strata in the dataset);

. Principal components analysis and projection pur-

suit to project high-dimensional data onto a plane,

and scatter plots showing the data distribution on

this plane.

Identify Salient Features

Once the distribution of the data is displayed, the

inquirer looks for salient features. Salient means

standing out from what was expected a priori. The

inquirer has in mind a reference distribution that

reflects the knowledge he already has about the phe-

nomenon but that is neutral with respect to other fea-

tures. A natural reference distribution for the Soho

FIGURE 3 Discovery, following the three steps of EDA, as an

interaction between the mental models that the inquirer enter-

tains, and the observations that he makes.

FIGURE 2 Model of the empiricist notion of discovery, where

ideas follow from or are derived from data.
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map would be that the distribution of cholera victims

mirrors the population density. The cluster of victims

on Snow’s map is a deviation from this neutral refer-

ence distribution and therefore is a salient feature.

Taking, in a second stage, this cluster as the neutral

reference distribution, Snow observed some further

salient features:

. At a short distance to the epicenter of the cluster

were a factory and a brewery that had surprisingly

low numbers of casualties (mortality rates of 5 per

500 and zero, respectively).

. Some ten victims lived decidedly beyond the outer

bounds of the cluster.

Typical neutral reference distributions are the uni-

form and the normal, the latter, for example, being

the standard reference model in statistical process

control. Deviations from the uniform or normal, such

as bimodality or outliers, are salient. For stratified or

time series data, the neutral reference distribution

typically also assumes the data to be i.i.d. (indepen-

dent and identically distributed), and autocorrelation

or differences between strata (in mean or spread) are

salient. De Mast and Trip (2007) propose Jaynes’s

(1957) maximum entropy principle as the theoretical

model for the identification of salient features. It

suggests to select as neutral reference distribution

the one that has the largest entropy in the class of

distributions that is consistent with prior knowledge.

The maximum entropy principle results in a neutral

reference distribution that is consistent with prior

knowledge but is maximally noninformative (and

therefore neutral) with respect to other features.

Figure 4 shows two examples taken from De Mast

and Trip (2007). Both are taken from problem-

solving projects in industry. The histogram left

concerns measurements of the eccentricity of pins

on cellphone components; the time series plot on

the right displays dimensional variation resulting

from a cutting process (see De Mast and Trip, 2007

for a more detailed description). The salient feature

in the left graph is the bimodality of the distribution;

in the right graph it is the autocorrelation. Note how

powerfully the histogram and time series plot reveal

these salient features. A table of summary statistics

would not have revealed these features, and more

specific analysis techniques, designed to detect

bimodality or autocorrelation, are useful only after

the inquirer has become aware that he should look

for bimodality or autocorrelation (that is, they only

reveal to the inquirer what he is looking for, whereas

graphs have the power to reveal what one did not

expect to find beforehand).

Interpret Salient Features

Having identified, in Figure 4, bimodality and

autocorrelation as possibly interesting features of

the data, the next step in EDA is an essentially non-

statistical one. The next step is to theorize and spec-

ulate about what could have caused these patterns.

In the projects from which these graphs were taken,

the patterns were discussed with the persons operat-

ing the processes in question, and they came up with

the hypotheses that the bimodality was caused by

properties of the two molds that were used, and that

the autocorrelation was caused by the flexibility of

the conveyor belt. Subsequent confirmatory studies

corroborated these hypotheses, thus delivering the

key to solving the problems that these projects

studied.

The model in Figure 3 reflects Hempel’s (1966)

statement that hypotheses are not derived from

FIGURE 4 Two examples of graphs used in EDA in problem-solving in industry.
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observed facts but invented in order to account for

them. Mental models include an ontology of what

sort of things there are in the world and how they

are typically related (Mulaik, 1985); we invent inter-

pretations by combining concepts in our ontology

until we have a combination that could explain our

observations. The operators identified properties of

the mold and conveyor belt as possible causes

because they knew these things were there (and in

addition, that there are two molds, and that the

number of products on one loop of the conveyor

belt matches the seasonality in the right graph of

Figure 4).

The sort of inference where, by combining con-

cepts and analogies, eventually the pieces seem to

fit together and an explanation for the salient fea-

tures emerges is often named abduction (the term

was introduced by Peirce, 1931–1935 CP 5.189; but

see Niiniluoto, 1999 for an introduction). The logical

form is:

Surprising fact C is observed;

If A were true, C would be a matter of course;

Therefore, the hypothesis A is worthy of further

inquiry.

To come up with possible interpretations, human

brains do a mental search, combining concepts until

they have a combination that has explanatory coher-

ence (Thagard, 2004). In extreme cases, these mental

searches are pure trial and error (a so-called neo-

Darwinian search; see Simonton, 1999). In cases

where the inquirer has more familiarity with the pro-

blem, searches tend to be more directed (so-called

neo-Lamarckian searches; Johnson-Laird, 2006).

Going, as John Snow did, from identifying the

clustered pattern of victims, to identifying a water

pump as the epicenter is not a trivial step; one can

imagine that there are dozens of items in the cluster’s

center, each of which might have been instrumental

in causing the outbreak. One can imagine that in

Snow’s mind a mental search took place, until his

subconscious stumbled upon the water pump. In

Snow’s case, it is quite unlikely that the mental

search was a purely neo-Darwinian blind search.

By 1854, Snow had already become aware of the role

of the water system in the spread of cholera. Figure 5

gives an idea of some of the mental models in John

Snow’s ontology. Based on Snow (1855), the figure

reconstructs, in the form of a decision tree, Snow’s

reasoning in the years before the 1854 outbreak.

Given the advanced mental models that he had built

in his long-term memory, his mind probably was

quite fast in identifying the Broad Street pump as a

plausibly crucial element in an explanation of the

outbreak. Someone less immersed in the matter

would probably have needed more trial and error.

PRACTICAL ADVICE

How to Proceed If No Useful

Explanations Emerge?

Tufte’s (1983) account stops when Snow has iden-

tified the pump. But the hypothesis that the Broad

Street pump is the epicenter of the cluster does not

provide a complete causal explanation of what hap-

pened in 1854. This is an important stage in EDA, in

which the inquirer will find himself frequently: the

graph shows salient features, but the mind does

not come up with a complete explanation.

FIGURE 5 Decision tree illustrating what parts of the ontology

in Snow’s long-term memory could have looked like. The page

numbers refer to Snow (1855), but we do not claim that the given

tree accurately reconstructs Snow’s thinking process. The tree

shows how one can become aware of a number of constraints

in the problem (such as: is the disease contagious or nonconta-

gious?) by analyzing observations (these are briefly indicated in

the right margin). These constraints focus the inquirer’s attention.

Following a similar thinking process, by 1854 Snow had identified

human contact as one of the transmission mechanisms, but he

knew that there must be another mechanism that can work over

longer distances.

371 Principles of Exploratory Data Analysis

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
v
a
n
 
A
m
s
t
e
r
d
a
m
]
 
A
t
:
 
0
9
:
0
6
 
1
6
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Confronted with such a situation, many of the pro-

fessionals we teach fall in a trap we call ‘‘torture the

data until they confess.’’ They resort to making more

(and progressively more advanced) data analyses, in

the vain hope that data analysis will give them

answers. It does not; data analysis reveals salient fea-

tures, but their interpretation has to come from the

inquirer’s ontology. If the inquirer’s ontology is not

detailed enough, he has to observe and study the

phenomenon closer to learn more detail. The identi-

fied salient features are valuable clues where infor-

mative data can be collected (see the adjusted

model in Figure 6). Sterile accounts of the like of

Tufte (1983) fail to teach practitioners to be inquisi-

tive (collect empirical detail) and theorize (refine

one’s ontology).

This is what Snow did. Guided by the salient fea-

tures in the distribution of casualties, he collected

detailed information, interviewing people, making

analyses of water samples, thus discovering impor-

tant clues (the following and numerous other obser-

vations are described in Snow, 1855). Reverent

Henry Whitehead informed Snow that in the house

closest to the pump (Broad Street number 40), a

child had been infected by cholera and had died a

few days later (Vinten-Johansen et al., 2003). Its

mother had washed the diapers, and disposed of

the water through a drain that was later shown to

run a few feet from the well of the pump. The

1854 outbreak followed immediately. An excavation

in 1855 showed that both the drain and the

pump-well leaked, thus identifying the probable

cause of the outbreak.

By making inquiries and interviewing people,

Snow also discovered the probable causes of the

other salient features. The factory and the brewery,

having surprisingly low numbers of casualties given

their proximity to the Broad Street pump, turned

out to have their own pump-wells on their premises.

Some victims lived decidedly closer to other pumps;

inquiries taught Snow that some of these people pre-

ferred the taste of the water from the Broad Street

pump (and had their servants get it for them), other

victims were children who went to school close to

the Broad Street pump.

What Can Statistical Procedures

Do in EDA?

Statistics offers a wide range of analysis proce-

dures that are often affiliated with EDA, such as clus-

ter analysis, change-point analysis, runs tests, outlier

detection, projection pursuit, principal components

analysis, and more procedures designed to detect

patterns in data. These procedures are a welcome

complement to human pattern recognition, and in

the case of high dimensional datasets, there is not

really an alternative to these automated procedures

at least as a first step. But it is important to teach

practitioners what these procedures can and cannot

do. They can help in displaying the data, providing

graphs designed to make specific forms of salient

features stand out more clearly. Think of dendro-

grams (designed to reveal clustering) and CUSUM

plots (revealing drifts and shifts in time series). Some

of these procedures also incorporate decision criteria

for automatically flagging salient features, such as

control limits in CUSUM and other types of control

charts.

We wish to mention two important limitations.

First, these procedures miss the versatility of human

pattern recognition. They can do little beyond

screening the data for predefined patterns. For exam-

ple, a CUSUM analysis does not identify patterns in

data, it simply screens the data for drifts and shifts,

just as automatic outlier detection screens the data

for outliers. Second, we find it hard to conceive that,

in the foreseeable future, such procedures can auto-

matically perform the third step in EDA, interpreting

salient features. Thus, these procedures can reveal

and detect salient features, but they cannot automa-

tize discovery.

FIGURE 6 Often, EDA does not result in hypotheses immedi-

ately, because the inquirer’s knowledge about the phenomena

is not yet detailed enough. In such cases, the identified salient

features direct further investigation, suggesting where interesting

observations can be made.
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What Sort of Causes Can EDA
Discover?

Suppose all Londoners had got their water from

the same supply. Would EDA have uncovered the

cause of the cholera outbreak? EDA can only reveal

influence factors that actually vary during data collec-

tion (that is, it uncovers sources of variation). If all

Londoners had drunk polluted water, the distribution

of victims would probably not have revealed the

water-based transmission mechanism; the distribu-

tion would probably have mirrored the population

density in that case, and no salient features would

have emerged. For this reason, EDA should be

complemented by other approaches to hypothesis

generation.

EDA Creeps into CDA

Did Snow’s Soho map prove anything? The flexible

and adaptive style of inquiry in EDA often fails to

produce datasets that are suited for confirmatory data

analysis. Typically, observations made for EDA come

with no warranty that they are representative for a

target population, and because EDA mostly works

with observational data, randomization and ceteris

paribus conditions are usually not met. Since EDA

does not pursue objective conclusions, this is not a

problem (or would even be unwanted) for EDA,

but inquirers should be critical about the appropri-

ateness of EDA data for confirmatory purposes. In

general, it is advisable to collect new data, from

a research design tailored to studying selected

hypotheses.

EDA in Combination with Other
Approaches to Hypothesis

Generation

EDA should not be studied or taught in isolation.

EDA is just one of numerous approaches to hypoth-

esis generation. De Mast and Bergman (2006)

present an inventory of approaches for problem

solving in business and industry, and Halpern

(2002) lists generic problem solving strategies. Some

of these approaches are mostly driven by knowledge

and theories (they focus on the top side of Figure 3);

others favor observations and data (the bottom side

of Figure 3) and some explicitly seek the interaction.

These approaches complement each other. Further,

these approaches can reinforce each other, the

results of one approach making the application of

another approach more fruitful.

Also John Snow exploited other strategies besides

EDA. Failing to identify cholera’s disease agent under

a microscope, Snow reasoned by analogy with

syphilis, small-pox and vaccinia, and speculated that

there must be some kind of morbid material, prob-

ably with the structure of a cell, which passes from

the sick to the healthy, and with the property of mul-

tiplying in the body of persons it attacks (Snow,

1855, pp. 14–15). Reasoning by analogy is one of

TABLE 1 Eight principles for EDA. Principles P1–P4 have

been introduced in De Mast and Trip (2007)
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the strategies described in De Mast and Bergman

(2006) as well as Halpern (2002). Cue acquisition

(a systematic description of symptoms, guided by

questions such as who?, where?, what?, when?, how

much?) is a strategy that Snow demonstrates on

nearly every page of his book, interviewing people,

making examinations of water and local conditions,

and gathering noteworthy details on the spot. The

excavation of the Broad Street pump-well in 1855

could be seen as what is called in industry an

autopsy, a reconstruction of what went wrong based

on a close examination of a malfunctioning product

or machine (or other items that are good specimens

of the problematic behavior under study).

We have summarized, in the form of the eight

principles in Table 1, some of the practical implica-

tions of our theoretical model. These principles give

a tangible prescriptive framework for EDA, and can

be the starting point of a teaching paradigm.

CONCLUSIONS

In this concluding section we discuss some ramifi-

cations of our model. First, Figure 3 suggests that two

sorts of expertise are needed for EDA, which we will

refer to as statistical expertise and context expertise.

Becoming an expert involves building a refined set

of mental models relevant to the field of expertise.

Since mental models representing context knowl-

edge (the inquirer’s ontology) are the source of

hypotheses, the interpretation of salient features (step

III in EDA) is the role of the context expert. On the

other hand, the statistician’s expertise includes a

refined repository of means of graphical display of

data (which are the mental models relevant to step I

in EDA). For the identification of salient features

(step 2), both the statistician and the context expert

bring valuable but partly complementary mental

models. The statistician is trained in noticing generic

salient features (outliers, multimodality, serial corre-

lation, multiple components of variation), whereas

the context expert is more versed in the particular fea-

tures that are relevant in the particular domain (such

as tell-tale configurations on an X-ray). For EDA the

two roles of statistical expert and context expert are

both needed (with the comment that both roles can

be played by a single person).

Second, for data analysis software the account

implies that procedures intended for EDA should

enable a flexible way of working driven by graphics,

thus facilitating a process that aims to reveal what

one did not expect to find beforehand. An emphasis

on formal hypothesis testing and modeling, though

essential for other pursuits, mainly hinders EDA.

The pursuit of objectivity, statistical significance,

and the related worries about assumptions and valid-

ity of the data are the backbone of confirmatory data

analysis, but they are irrelevant for EDA. Further, the

detailed statistical results—p-values, tables with fitted

coefficients, realizations of test statistics—are ineffec-

tive in inspiring hypotheses, and they are a distrac-

tion that keeps the inquirer from being inquisitive

and theorizing. For example, where histograms and

ogives can reveal how data deviate from a normal

distribution, thus inspiring the inquirer to think

about causal explanations, a normality test merely

tells the inquirer whether or not a normal distribution

fits to the data, which is fairly useless in EDA.

In teaching EDA the attention for data analysis

techniques (the statistician’s role) should be

balanced with attention for theorizing and being

inquisitive (the context expert’s role), because both

are inseparable facets of EDA. To facilitate this,

exemplars presented in textbooks should not be

sterile, offering a highly streamlined version of the

inquirer’s investigation, stripped of its contextual

detail. Snow’s own account (Snow, 1855) does a far

better job exemplifying the disposition and tedious

work it takes to discover things than some of the later

accounts. Further, EDA should be presented in rela-

tionship to the many alternative approaches for

hypothesis generation. In teaching EDA the relation

with other approaches should be mentioned, because

they necessarily complement and reinforce each

other. Taking this into account, EDA should prefer-

ably be taught in the wider context of empirical

inquiry (as opposed to the more restricted scope of

statistical data analysis).
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Discussion of ‘‘Principles of Exploratory
Data Analysis in Problem Solving: What Can

We Learn from a Well-Known Case?’’
James R. Simpson

It is an honor and a pleasure to take part in the discussion of this important

article on the much neglected topic of exploratory data analysis. Jeroen de

Mast and Benjamin Kemper are to be commended for not only addressing

the world of found data (what statisticians=analysts=engineers routinely

confront) but for providing a framework for systematic interrogation of

otherwise seemingly disparate information. The authors creatively blend

modern graphical methods with ontological mental models as the founda-

tion for discovery and knowledge acquisition in observational studies. They

also strongly emphasize cooperation between the subject matter experts

and the analyst to combine relative strengths as the key for forward

progress.

What was somewhat necessary for the purposes of unfolding the pro-

posed template for exploratory data analysis (EDA), a stark contrast

between EDA studies and confirmatory data analysis (CDA) experiments,

is the focus of this discussion. Though it may be convenient to bucket

data analysis exercises as either EDA or CDA, many, if not most, times

projects consist of some combination of experiment and observation.

So, analysts operate in environments requiring EDA and CDA, not EDA

or CDA. Most of what follows addresses rationale for integrating EDA with

CDA, common ground between the two, and how well-intentioned-but-

awry CDA can benefit from the EDA methodology proposed by de Mast

and Kemper.

Before commenting on conditions for experiment and observation,

I would like to highlight some of the many contributions of the article.

The authors provide a valuable construct for gaining understanding by

iterating between mental models and various distribution-centric graphics.

This method should serve as the model for purely observational studies,

when no prior hypotheses exist. The complete diagram (de Mast and Kem-

per, Figure 6), involving iterative data gathering when salient features can-

not be resolved, is a sound roadmap. Box et al. (2005) contains a similar

general discovery procedure using induction and deduction iteration, but

it is the details and applications to EDA that make the proposed method

abundantly useful.
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For those not familiar with the groundwork laid

in de Mast and Trip (2007), it is well worth the

read. The initial principles for the proposed EDA

methodology are clearly explained and detailed.

De Mast and Trip also provide sage advice to take

care in treating observational data as if they were a

confirmatory experiment with hypotheses to be

tested for statistical significance. Likewise, when pro-

jects involve some combination of observation and

experiment, it is important to apply rigorous

statistical methods only where appropriate.

Is it proper to draw such clear distinctions

between EDA and CDA? Many of the suggestions

for practice of EDA apply to even routine CDA. Often

we encounter CDA gone awry, or CDA plus obser-

vational variables (covariates), or CDA as part of a

larger observational study. Clearly, unknown noise

sources play a spoiler’s role in any well-planned

experiment, such that searching for salient features

is common practice. So lurking variable identification

via outliers and root cause investigation are good

examples of the need for EDA methods in otherwise

confirmatory tests. In these cases, no prior hypoth-

eses are proposed regarding the particular source

of outside intervention, yet an investigation should

be conducted using the de Mast and Kemper EDA

strategy to uncover the underlying cause. The com-

mon use of covariates in CDA should also drive the

experimenter to adopt a more disciplined, integrated

EDA–CDA investigation that allows for models to be

developed while iterative mental models are enter-

tained. Other routinely encountered exceptions to

the assumptions of CDA are randomization restric-

tions, missing data, imprecise execution, and serial

correlated data.

Randomization in experimentation is fundamental

to success in identifying true underlying signals due

to purposeful manipulation of primary interest vari-

ables. Bisgaard (2008 and discussion) emphasizes

the importance of randomization in experimentation,

especially when processes are not necessarily stable.

In practice, unfortunately, pressures for timely, prac-

tical execution often lead to tests conducted in some

structured run order. Take, for example, the business

of military testing and the goal of determining the

goodness of a new parachute system for use by free-

fall rescue specialists. A seemingly straightforward

experiment becomes difficult to randomize. Suppose

the factors are landing zone altitude, jump initiation

altitude, time of day, jumper weight, jumper equip-

ment, and aircraft velocity. Suppose further that two

aircraft (helicopter and jump plane) are necessary to

achieve the required velocities. Quickly one can see

that more than half of the control variables are

difficult to randomize. Plus, jumper weight may be

difficult to set. Person-to-person jump style varia-

bility, weather conditions, inability to set other vari-

ables precisely, center of gravity variation, and

many other variables make this CDA much more of

a combined CDA with EDA.

Consider next a much more complex study

involving a military weapon system evaluation.

Operational pilots in an exercise are tasked to

employ weapons against targets in an otherwise

chaotic environment. Though some parameters can

be specified to some extent (weapon type, weapon

quantity), most other variables (range, altitude, velo-

cities, aspect angles, pilot tactics, winds) are

observed. This type of problem is not specific to

the military, because it is also prevalent in manu-

facturing and especially in the services arena. Here

CDA takes a back seat to EDA, but it is nonetheless

a combination of the two types of data analyses.

CDA is also cast by de Mast and Kemper as

representative of the population. Again, this

characterization is definitely the aim of a designed

experiment. However, Murphy’s law is invoked

regularly, such that data cannot be collected for var-

ious reasons, experiments are cut short, variables

have set point error, and biases are introduced by

unplanned deviations in execution (operator A, the

only inexperienced one, is the only one available).

What can go wrong will.

Other complications that corrupt the traditional

CDA template exist. Box and Paniagua-Quinones

(2007) point out that data over time are not born of

a stable random process. Any data collected over time

with reasonably short intervals between data should

have the expectation of serial correlation. As such it

makes sense to invoke statistical methods adept at

identifying salient features in time series data. Plots

of the data certainly aid in identifying such behavior;

however, is it not appropriate to hypothesize the

presence of serial correlation? Our job as analysts=

statisticians in such a situation is made all the more

tractable if we anticipate behavior commonly experi-

enced in practice. The presence of and the integration

with subject matter expertise cannot be overstated.
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Hypothesis testing is clearly foundational to CDA

but is also inherent in EDA via mental models—we

often arrive to the scene with either preconceived

notions, agendas, or we note something peculiar

during data collection. For example, back to the

weapon engagement exercise, perhaps the context

expert (pilot project manager) picked up irregular

yet recurring anomalous behavior of the operator

pilot via radio communication prior to strafing runs

that may impact success in hitting a target. For this

largely observational study, a hypothesis is formed

that merits investigation, prior to any analysis of

the data. So hypotheses are not always clearly

defined as a priori or post hoc. More evidence of

commonalities between CDA and EDA are described

by de Mast and Kemper in the first subsection of

Practical Advice and in Figure 6, where a roadblock

to progress is averted by collecting more data. Tar-

geted, iterative experimentation is common practice

in CDA because the questions are not fully answered

through initial experimentation.

So what are the appropriate tools and methods to

apply in this hybrid data environment? Certainly, the

first ones applied should be graphical in nature, tak-

ing care to emphasize plots exposing distributional

properties, just as de Mast and Kemper suggest.

General-purpose statistical software packages have

come a long way in providing revealing graphical

displays of high-dimension (many variables) data in

small multiples, easing the processing of informa-

tion. JMP even has a data distribution feature that

plots multiple variable histograms, allowing the ana-

lyst to highlight subsets of observations in particular

bins in one variable to see the locations of those

observations in the distributions of other variables

to visualize possible correlations. Graphical methods

can lead to finding salient features. Other methods

worthy of consideration are a host of empirical

modeling techniques, partition trees, smoothing

methods for complex functions, and clustering

methods. It is important to note that the investigation

process should place first priority on simpler meth-

ods, include the context expert, and be mindful of

expectations with more complex methods, again as

de Mast and Kemper warn. Empirical statistical

modeling should take into account influence due to

leverage, outliers, collinearity, serial correlation,

and heavily skewed or multimodal responses. Parti-

tion trees such as classification and regression trees

(CART) can be surprisingly helpful, especially when

variables take on many categories. CART is easy to

implement and is well suited to identify breaks or

grouping in variables that may not be obvious in

graphs. Explanatory flexible regression methods

(Hastie et al. 2001) such as multivariate adaptive

regression splines have strengths in providing feed-

back on fairly complex input–output relationships

while accommodating many variables. Clustering

methods aid in identifying salient features in more

than two variables. Analysts can work together with

context experts to move toward better understanding

in observational studies.

The bottom line is that the distinction between stu-

dies=investigations requiring purely EDA or CDA is

nearly always blurred. Some combination of these

methods should always be the preferred solution.

Know what can and cannot be done within the

confines of an investigation. Are hypotheses in place

a priori that enable significance testing? What addi-

tional information can be obtained? Are the context

and statistical experts working together? Are graphi-

cal methods being fully employed prior to any for-

mal statistical methods? Are advanced statistical

methods warranted? Are the salient features correctly

identified? Clearly and thankfully, the authors have

developed a much needed framework for EDA

and, more importantly, raised awareness of the

importance of EDA in any investigation.
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Geoff Vining’s Discussion of ‘‘Principles of
Exploratory Data Analysis in Problem
Solving: What Can We Learn From a

Well-Known Case?’’
Geoff Vining

Virginia Polytechnic Institute and

State University, Blacksburg,

Virginia
I want to thank the authors for such a wonderful article. I am extremely

happy that they chose to submit it to Quality Engineering. Exploratory data

analysis (EDA), properly used, is an excellent start to solving many of the

problems that Six Sigma Black Belts and other applied statisticians face.

The authors do an outstanding job illustrating how one should apply this

methodology. De Mast and Kemper demonstrate, very effectively, that often

the key to successful discovery and problem solving is asking the right

questions to form the proper hypotheses.

Many years ago, I worked with a major chemical company who wanted to

create a problem-solving strategy system like Six Sigma but not exactly like

Six Sigma. They wanted a series of surefire steps to address all of their basic

problems. As the training unfolded, they expected to solve every problem

by first confirming the measurement system, next conducting an appropriate

experiment, and then maintaining the gain through statistical process con-

trol. Basically, they wanted a single process, purely based on confirmatory

data analysis techniques, to solve all of their quality and process problems.

I taught them several of the component parts, such as design of experi-

ments, response surface methodology, and statistical process control. I truly

blew their minds away in the last course, when I told them, ‘‘In some cases,

the solution to the problem is not through some designed experiment but

rather through proper control of the process,’’ as Deming advocated. He

strongly believed that the proper application of Shewhart control charts is

the key to quality and productivity improvement. At a fundamental level,

this company failed to realize that we must understand the right questions

to ask before we can determine the proper tools. The company did not

appreciate that we need the right tools for the right job. De Mast and

Kemper have taken this approach to a whole new level through their focus

on using EDA early in the problem-solving efforts.

I very much like how de Mast and Kemper show the interplay of the men-

tal models with the simple tools of EDA. Their analogy of the interpretation

of an X-ray is perfectly on spot. Can a pure empiricist solve very real
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problems? Yes, but it is a very messy process. Being

able to take simple, graphical tools and combine

them with salient expertise is the key to effective dis-

covery and problem solving. Statisticians, as such,

are pure empiricists. We have a great deal of exper-

tise that can help solve the practitioner’s problem,

but we can only help. We do not know the proper

questions to ask. The beauty of this article is that

de Mast and Kemper show us how we as statisticians

can work with the subject matter experts to find the

real questions of interest through EDA. Once we

have the proper questions, we then have the proper

hypotheses to perform confirmatory data analysis,

which is what many of us statisticians do best.

The idea of an iterative induction–deduction pro-

cess for solving problems is not new. It goes to the

heart of the scientific method. George Box has been

teaching this point for more than fifty years! I suggest

that readers interested in George’s perspective

should look at Box (1999). A wonderful quote from

this paper is ‘‘It is the investigation itself, involving

many designs and analyses, that must be regarded

as the unit, and the success of the investigation must

be regarded as the objective’’ (p. 21). I believe that

this paper offers a nice complement to de Mast and

Kemper’s work. The key that ties these two papers

together is that the proper application of EDA with

an appropriate mental model helps the problem-

solver to do the iterative induction–deduction cycle

more effectively.

Once again, as editor of Quality Engineering, I

thank the authors for submitting this work to our

journal. I know that it will prove invaluable to our

readers as they go out to solve real problems!
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Discussion of ‘‘Principles of Exploratory
Data Analysis in Problem Solving: What

Can We Learn From a Well-Known
Case?’’—Rejoinder

Jeroen de Mast,

Benjamin P. H. Kemper

Institute for Business and

Industrial Statistics (IBIS UvA),

University of Amsterdam,

Amsterdam, The Netherlands
We would like to thank the editor for organizing this discussion of our

paper, and we appreciate the points brought forward by the discussants.

Professor Vining’s example of the chemical company illustrates the

problem that we aimed to address with our paper. The professionals

responsible for designing this company’s problem solving methodology

were tool experts—they were, probably competent, experts on (mostly

confirmatory) tools for data analysis, but they were, apparently, lacking in

understanding of the process of inquiry. For us, being an expert on the tools

of data analysis is not enough for being called a statistician, as the latter for

us also involves understanding of the process of inquiry, and the roles of

exploratory investigations and confirmatory investigations in it. We follow

professor Vining here in acknowledging professor George Box as our

profession’s inspiring tutor on this thought.

Dr. Simpson makes a point in place, warning the reader that in the actual

process of problem solving, EDA and confirmatory data analysis (CDA) can-

not be clearly distinguished—activities, techniques and pursuits related to

these two are often thoroughly intertwined. Dr. Simpson’s assertion that

problem solving cannot be clearly distinguished into studies requiring

purely EDA and studies requiring purely CDA, is illustrated by the case of

John Snow. The reader may have assumed Snow’s Grand Experiment

(mainly CDA in intention and set-up) to be after the Soho episode which

identified the pump, and more generally, the water system, as instrumental

in the epidemic; but in fact, these two investigations were concurrent, with

John Snow frequently traveling between the south and north shore of the

River Thames. The distinction between an EDA phase which identifies the

hypotheses, and a CDA phase in which they are tested, is often a simplifying

reconstruction afterwards.

For us, the reason for contrasting the concepts of EDA and CDA, is

that both represent distinctive functions in the problem solving process

(sometimes characterized as discovery and justification). Each function
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has its own mindset, and distinctive and partly con-

tradictory requirements (adaptivity and imaginative-

ness versus rigour and objectiveness). Although

EDA and CDA activities may be intertwined in the

heat of the battle, we consider it a good mental habit

to take a step back and ask oneself: ‘‘Am I trying to

reach a conclusion and prove something, or am I try-

ing to generate ideas?’’ Failing to relate what one is

doing to either an exploratory or a confirmatory

ambition, brings about the danger of not applying

the proper requirements to what one is doing. This

could result in, for example, one’s EDA not being

imaginative enough due to a misguided pursuit of

objectivity, or one’s CDA being unreliable due to a

way of working which is not methodical.

The danger of not distinguishing EDA and CDA

in teaching and in theorizing about our profession,

is that EDA is underappreciated. It results in the

development of the field of EDA to be marginal

compared to the field of CDA, and it results in stu-

dents overfocused on experiments, and not paying

enough attention to hypothesis generation.
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