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Abstract

Serial correlation can seriously affect the performance of traditional control charts. Many authors have studied the effect of
autocorrelation on EWMA control charts and have shown how to modify the control limits to account for autocorrelation. In this
paper we compare three different estimation methods for the variance of the EWMA statistic that is adapted to autocorrelated data.
This comparison is based on the asymptotic relative efficiency of the estimators.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Today’s manufacturing environment hardly resembles the period in which control chart methods were introduced.
Due to high-tech measurement devices, the sampling rate may increase easily. Because of this increasing sampling
rate, independence of successive observations – one of the fundamental assumptions for control charts – is often
violated. This so-called serial correlation of the observations heavily affects the performance of the traditional
Shewhart control charts. This justifies the development of control charts which take serial correlation into
account.

As it turns out, two approaches for dealing with autocorrelated data can be distinguished. The first approach is to
use standard control charts with adjusted control limits for autocorrelation (cf. Zhang (1998a,b), Jiang et al. (2000),
Apley and Lee (2003), and Shiau and Hsu (2005)). The second approach consists of fitting a time series model,
followed by a study of the residuals with standard control charts such as individual charts, X̄ charts or Exponentially
Weighted Moving Average (EWMA) charts (cf. Montgomery and Mastrangelo (1991), Wardell et al. (1994), and
Koehler et al. (2001)). In this paper we restrict ourselves to EWMA charts with adjusted control limits.

Consider observations from a stationary process X = (X t , t = 0, 1, . . .). The EWMA statistic at time t is
defined by

Wt = λX t + (1 − λ)Wt−1, t = 0, 1, . . . (1)
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where λ is a constant satisfying 0 < λ ≤ 1. The control limits of the EWMA chart converge to µ± L
√
α, where L is

an appropriately chosen constant (often 3), µ = EX and α is given by

α = lim
t→∞

Var(Wt ).

Therefore, after an initial period, the control limits are determined by α.
We are interested in estimating α. Let ρ(k) denote the autocorrelation of X at lag k ∈ N. Zhang (1998a)

approximates α by Var(WM ) for M sufficiently large. The expression obtained in this way depends on the
autocorrelations at lags up till M , λ, and σ 2

X . Subsequently, Zhang (1998a) uses sample autocorrelations to estimate the
first M autocorrelation coefficients ρ(1), . . . , ρ(M). Knowing that X is an AR(1) or AR(2) process, we can estimate α
by a plug-in estimator, using the Yule–Walker estimators for the model parameters (cf. Brockwell and Davis (1991)).
It is a natural question to ask which of these estimators should be preferred. It is the goal of the paper to answer
this question. To analyze the performance of the estimators, we study their asymptotic properties as the number of
observations tends to infinity. Their asymptotic distributions are used to study the relative efficiency of the estimators.
It turns out that if X is an autoregressive process, the estimator based on plugging in the Yule–Walker estimators
outperforms the estimator of Zhang (1998a) in terms of relative efficiency. Intuitively, this was to be expected since
less parameters have to be estimated and more information is available. The analysis is checked by a simulation study.

This paper is organized as follows. In the next section we present a few preliminary results on autoregressive
processes. In Section 3 we present the variances of the EWMA statistic as in Zhang (1998a), Schmid (1997), and
Vermaat et al. (2008). In Section 4 we introduce the estimators for these variances. In the subsequent section we will
study their asymptotic distributions and their relative efficiencies. Section 6 contains a simulation study on the effect
of model misspecification. We finish this paper with some concluding remarks.

2. Preliminaries on second order autoregressive processes

In this section we summarize some results on autoregressive processes that we will need later on. Let A =

(At , t = 0, 1, . . .) be a white-noise series, i.e. a series of zero mean, uncorrelated random variables. A second order
autoregressive process (an AR(2) process) X = (X t , t = 0, 1, . . .) is defined via the recursive relation

X t = φ1 X t−1 + φ2 X t−2 + At , t = 1, 2, . . . . (2)

Define the quadratic function φ by φ(z) = 1 − φ1z − φ2z2. If

φ(z) 6= 0 for all z ∈ C with |z| ≤ 1, (3)

then the unique stationary AR(2) process exists and is given by X t =
∑

∞

j=0 ψ j At− j where {ψ j }
∞

j=0 is a sequence
of numbers that is absolutely summable and which can be determined from φ by the relation ψ(z) = 1/φ(z) =∑

∞

j=0 ψ j z j (see Brockwell and Davis (1991), Theorem 3.1.1). The latter implies that the relationship between A and
X is causal (cf. Brockwell and Davis (1991), Definition 3.1.3). The set of values of (φ1, φ2) for which φ(z) 6= 0 for
all z ∈ C with |z| ≤ 1 is given by

{(φ1, φ2) ∈ R2
: φ1 + φ2 < 1, φ2 − φ1 < 1 and − 1 < φ2 < 1}.

Of course, the case that φ2 = 0 corresponds to a first order autoregressive process.
We recall that the autocovariance function of a stationary time series is given by γ (h) = cov(X t+h, X t ),

h = 0, 1, . . . . The autocorrelation function is given by ρ(h) = γ (h)/γ (0).

3. The variance of the EWMA statistic

In this section we give expressions for the variance of the EWMA statistic. Zhang (1998a) derived the variance of
the EWMA statistic Wt at time t as

αt = Var(Wt ) =
λ

2 − λ
σ 2

X

(
1 − (1 − λ)2t

+ 2
t−1∑
k=1

ρ(k)(1 − λ)k(1 − (1 − λ)2(t−k))

)
. (4)
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If t → ∞, this becomes

α := lim
t→∞

αt =
λ

2 − λ

(
2

∞∑
k=0

ρ(k)(1 − λ)k − 1

)
σ 2

X . (5)

The following lemma shows that if we assume that X is a causal stationary AR(2) process, α can be expressed in the
AR(2) model parameters.

Lemma 1. Suppose X is a causal stationary AR(2) process as defined in (2). Then

α =
λ

2 − λ

(
φ1(1 + φ2)(λ− 1)+ (φ2 − 1)(1 + φ2(λ− 1)2)

(1 − φ2)(−1 + φ1(1 − λ)+ φ2(λ− 1)2)

)
σ 2

X . (6)

In particular; if φ2 = 0 (i.e. an AR(1) process), then

α =
λ

2 − λ

(
1 + φ1(1 − λ)

1 − φ1(1 − λ)

)
σ 2

X . (7)

Proof. The autocorrelation function ρ(k) for an AR(2) process satisfies the second order difference equation

ρ(k) = φ1ρ(k − 1)+ φ2ρ(k − 2), k > 0 (8)

with starting values ρ0 = 1 and ρ1 = φ1/(1 − φ2). The general solution of (8) can be found in Brockwell and Davis
(1991) p. 108. As it turns out, this solution depends on the zeros of the characteristic equation corresponding to (8):
π2

− φ1π − φ2 = 0. These zeros are given by

ν1 =

(
φ1 +

√
φ2

1 + 4φ2

)
/2, ν2 =

(
φ1 −

√
φ2

1 + 4φ2

)
/2. (9)

Hence, we can distinguish three cases: (i) both zeros are real, (ii) there is one real zero with multiplicity two, (iii) both
zeros are conjugate complex numbers. Some tedious computations yield that the solution to (8) is given by

ρ(k) =


νk

2 (φ1 + ν1(φ2 − 1))− νk
1 (φ1 + ν2(φ2 − 1))

(ν1 − ν2)(φ2 − 1)
if ν1 6= ν2 are real

νk−1(−kφ1 + ν(k − 1 + φ2(1 − k)))

φ2 − 1
if ν1 = ν2 = ν is real,

cνk
1 + c̄ ν1

k if ν1 = ν2 are complex,

(10)

where c = (1 − iφ1(1 + φ2)(1 − φ2)
−1

|φ2
1 + 4φ2|

−1/2)/2. Note that condition (3) ensures that max{|ν1|, |ν2|} < 1.
Hence, substituting (10) into (5) yields a convergent series. After some thorough calculations we find that

∞∑
k=0

ρ(k)(1 − λ)k =
−1 + φ2(1 + (λ− 1)φ1)

(φ2 − 1)(1 + (λ− 1)φ1 − (1 − λ)2φ2)
.

Substituting this expression into (5) gives the result. �

Remark. (i) Denote the variance of A by σ 2
A. The variance of the marginal distribution of X is related to σ 2

A by (cf.
Box et al. (1994), p. 62)

σ 2
X =

(
1 − φ2

1 + φ2

)
σ 2

A

(1 − φ2)2 − φ2
1

.

Substituting this expression into (7), we recover the result of Schmid (1997): for a causal stationary AR(1) process
α is given by

α =

(
λ

2 − λ

)
σ 2

A

(1 − φ2
1)

1 + φ1(1 − λ)

1 − φ1(1 − λ)
. (11)

(ii) The resulting variance in (6) is also derived in Vermaat et al. (2008). Moreover, in their paper also an expression
for αt in the AR(2) model parameters is derived.
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4. Estimators for the variance of the EWMA statistic

In this section we define three estimators for α.

Zhang’s estimator: For a stationary time series Zhang (1998a) approximates α by αM (cf. (4)), where M is an integer
greater than 25, setting (1 − λ)2M

≈ 0. This gives the following approximation for α (cf. (5))

α(Z) =
λ

2 − λ
σ 2

X

(
1 + 2

M∑
k=1

ρ(k)(1 − λ)k(1 − (1 − λ)2(M−k))

)
. (12)

We suppress the dependence on M in the notation. We estimate α(Z) by a plug-in estimator α̂(Z)n , which is defined by

α̂(Z)n =
λ

2 − λ
γ̂n(0)

(
1 + 2

M∑
k=1

ρ̂n(k)(1 − λ)k(1 − (1 − λ)2(M−k))

)
.

Here ρ̂n(k) is the sample autocorrelation at lag k, which is defined by ρ̂n(k) = γ̂n(k)/γ̂n(0), where

γ̂n(k) =
1
n

n−k∑
t=1

(X t − X̄n)(X t+k − X̄n) k = 0, 1, 2, . . . .

Schmid’s estimator: For a causal stationary AR(1) process, Schmid (1997) estimates α by (cf. (11))

α̂(S)n =
λ

2 − λ

(
1 + φ̂1(1 − λ)

1 − φ̂1(1 − λ)

)
γ̂n(0), (13)

where φ̂1 = γ̂n(1)/γ̂n(0) is the Yule–Walker estimator for φ1.

Vermaat’s estimator: For a causal stationary AR(2) process, Vermaat et al. (2008) estimate α by (cf. (6))

α̂(V )n =
λ

2 − λ

(
φ̂1(1 + φ̂2)(λ− 1)+ (φ̂2 − 1)(1 + φ̂2(λ− 1)2)

(1 − φ̂2)(−1 + φ̂1(1 − λ)+ φ̂2(λ− 1)2)

)
γ̂n(0). (14)

Here φ̂1 and φ̂2 are the Yule–Walker estimators for φ1 and φ2 respectively. The latter are given by

φ̂1 =
γ̂n(1)(γ̂n(0)− γ̂n(2))

γ̂n(0)2 − γ̂n(1)2
and φ̂2 =

γ̂n(0)γ̂n(2)− γ̂n(1)2

γ̂n(0)2 − γ̂n(1)2
. (15)

Hence, for a first order autoregressive process we have two estimators that can be used to derive the control limits
of the EWMA-chart: α̂(Z)n and α̂(S)n . In the next section we compare these estimators by studying their asymptotic
distribution. Similarly, we will compare α̂(Z)n and α̂(V )n for second order autoregressive processes.

As Zhang (1998a) reported, the advantage of using the approximate variance as in (12) hinges on the fact that no
modelling efforts are required. Only a number of autocorrelations has to be estimated to obtain an estimator for the
variance of the EWMA statistic. However:

1. In practice it is valuable to know whether the process under study exhibits autocorrelation. Modelling the
autocorrelation structure of a process gives insight into the working of the process. This may generate improvement
actions besides the monitoring purpose.

2. With a modern software it is relatively easy to fit a time series model for a given series.
3. Zhang (1998a) reported that for certain values of the parameters of the time series model other control charts

perform better than his proposal, in the sense that they have better average run length (ARL) properties for
signalling out-of-control situations, like a shift in the mean. So, to choose the most appropriate control chart we
need to estimate the time series parameters.

4. As we can see the estimator α̂(V )n uses only estimators for φ1, φ2, and σ 2
X , while the estimator α̂(Z)n uses up to M

estimates for the autocorrelations and an estimate for the process variance σ 2
X . Hence, Zhang’s approach might be

very prodigal with parameters, whereas the approach via the estimated model parameters is parsimonious.
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5. The estimators α̂(S)n and α̂(V )n are asymptotically more efficient for AR(1) respectively AR(2) processes than the
estimator α̂(Z)n , which is shown in Section 5 of this paper.

We illustrate the difference in the two approaches by analyzing the asymptotic behavior of the estimators for the
control limits.

5. Asymptotics of the estimators

In this section we analyze the asymptotic behavior of the estimators α̂(Z)n ,α̂(S)n , and α̂(V )n as defined in (12)–(14)
respectively.

5.1. Asymptotic distributions

The following result will be used in the sequel. We will use the abbreviation IID to denote Independent and
Identically Distributed.

Proposition 1. Suppose X is a causal AR(p) process generated by the IID sequence A. Assume E(A4) < ∞ and let
η = E(A4)/σ 4

A. For any non-negative integer k,

√
n



γ̂n(0)
γ̂n(1)
...

γ̂n(k)

−


γ (0)
γ (1)
...

γ (k)


 d

→ Nk+1(0,Ωk+1)

where
d
→ denotes convergence in distribution and

Ωk+1 =

[
(η − 3)γ (q)γ (r)+

∑
i

(γ (i)γ (i − q + r)+ γ (i + r)γ (i − q))

]
q,r=0,...,k

. (16)

Proof. See Brockwell and Davis (1991), p. 230–231. �

Theorem 1. Suppose X is a causal AR(p) process generated by the IID sequence A. Assume E(A4) < ∞ and let
η = E(A4)/σ 4

A, then

√
n(α̂(Z)n − α(Z))

d
→ N (0, V (Z)),

where V (Z) is given by V (Z)
= c′ΩM+1c for c as in (17) and ΩM+1 as in (16).

Proof. Recall the definition of α̂(Z)n in (12). Write α̂(Z)n = c′γ̂ n := c′(γ̂n(0), . . . , γ̂n(M))′ for c ∈ RM+1 defined by

c =
λ

2 − λ



1
2(1 − λ)(1 − (1 − λ)2(M−1))

2(1 − λ)2(1 − (1 − λ)2(M−2))
...

2(1 − λ)M−1(1 − (1 − λ)2)

0


. (17)

Let γ = (γ (0), . . . , γ (M))′. Using Proposition 1 and applying the Cramér–Wold device (cf. Pollard (2002) p. 202)
gives

√
n(α̂(Z)n − α(Z)) =

√
n(c′γ̂ n − c′γ )

d
→ N (0, c′ΩM+1c). �
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Theorem 2. Suppose X is a causal AR(1) process generated by the IID sequence A. Assume E(A4) < ∞ and let
η = E(A4)/σ 4

A, then

√
n(α̂(S)n − α)

d
→ N (0, V (S)).

where V (S) is given by V (S)
= b′Ω2b with b defined by

b = λ(2 − λ)−1

(
2γ0 + γ1(1 − λ)

γ0 − γ1(1 − λ)
−
γ 2

0 + γ0γ1(1 − λ)

(γ0 − γ1(1 − λ))2
,

2γ 2
0 (1 − λ)

(γ0 − γ1(1 − λ))2

)′

and Ω2 as in (16).

Proof. If we define f : R2
→ R by

f (x, y) =
λ

2 − λ

(
x2

+ xy(1 − λ)

x − y(1 − λ)

)
,

then
√

n(α̂(S)n − α) =
√

n( f (γ̂n(0), γ̂n(1))− f (γ (0), γ (1))).

By the Delta-method (cf. Pollard (2002) p. 184), together with Proposition 1, this converges weakly to a normal
distribution with variance ∇ f (γ0, γ1)Ω1∇ f (γ (0), γ (1))′. One can verify that the gradient ∇ f (γ (0), γ (1)) equals
the vector b. �

Theorem 3. Suppose X is a causal AR(2) process generated by the IID sequence A. Assume E(A4) < ∞ and let
η = E(A4)/σ 4

A, then

√
n(α̂(V )n − α)

d
→ N (0, V (V )),

where V (V ) is given by V (V )
= d′Ω3d for d = ∇h(γ (0), γ (1), γ (2))′ as in (18) and Ω3 as in (16).

Proof. Substituting (15) into (14) we obtain α̂(V )n = h(γ̂n(0), γ̂n(1), γ̂n(2)), with h : R3
→ R defined by

h(x, y, z) =

(
λ

2 − λ

)
x3

+ 2y3(λ− 1)− x2(λ− 1)(y + z(1 − λ))− xy(z(λ− 1)+ y(2 + (λ− 2)λ))

x2 + x(λ− 1)(y + z(1 − λ))+ y(z(1 − λ)+ y(λ− 2)λ)
.

An application of Proposition 1, combined with the Delta method, gives
√

n(α̂(V )n − α)
d
→ N (0,∇h(γ (0), γ (1), γ (2))Ω3∇h(γ (0), γ (1), γ (2))′).

Here, the gradient ∇h : R3
→ R3 of h has elements

∂h(x, y, z)

∂x
= uλ(x, y, z)x4

+ 2x3(λ− 1)(y + z − zλ)+ 2xy{−z2(λ− 1)3 + yz(λ− 1)4

− y2(λ− 1)(2 + (λ− 2)λ)} + x2(y + z(λ− 1)){−z(λ− 1)3 + y(1 + 3(λ− 2)λ)}

+y2
{z2(λ− 1)2 + 2yz(λ− 1)(2 + (λ− 2)λ)− y2(2 + (λ− 2)λ(4 + (λ− 2)λ))}

∂h(x, y, z)

∂y
= uλ(x, y, z)

(
2(λ− 1){−x4x2(2y2

+ 2yz(λ− 1)+ z2(λ− 1)2)− 2x3 y(λ− 1)+

2xy2(λ− 1)(y + z − zλ)+ y3(−2z(λ− 1)+ y(λ− 2)λ)}
)

∂h(x, y, z)

∂z
= uλ(x, y, z)2(λ− 1)2(x2

− y2)2,

(18)

where,

uλ(x, y, z) = λ(2 − λ)−1
(

x2
+ x(λ− 1)(y + z − zλ)+ y(z − zλ+ y(λ− 2)λ)

)−2
. �
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Fig. 1. Plot of the asymptotic relative efficiency of Schmid’s estimator (cf. (13)) over Zhang’s estimator (cf. (12)) for a stationary AR(1) process.

Remark. For autoregressive processes the Yule–Walker estimators are asymptotically equivalent to the maximum
likelihood estimators based on a Gaussian likelihood (cf. Brockwell and Davis (1991) p. 240). That is, the rescaled
differences of the estimators subtracted by their true value converge weakly to a multivariate normal distribution with
the same variance. This implies efficiency of the Yule–Walker estimators. Our estimators are obtained by plugging in
these efficient estimators.

5.2. Asymptotic relative efficiencies

In this section we study the efficiency of α̂(S)n over α̂(Z)n for an AR(1) process and α̂(V )n and α̂(Z)n for an AR(2)
process. Note that α(S)n and α̂(V )n are consistent estimators for α while α̂(Z)n is not.

Suppose that the process under study is a causal stationary first order autoregressive process (this is equivalent to
|φ1| < 1). We define the asymptotic relative efficiency for the estimators α̂(Z)n and α̂(S)n by

Reff(α̂(Z)n , α̂(S)n ) =
V (S)

V (Z)
=

b′Ω2b
c′ΩM+1c

.

In this definition we neglect the fact that α̂(Z)n estimates α(Z), whereas α̂(S)n estimates α. We use the current definition
of relative efficiency purely to compare the asymptotic variances of the estimators. In Fig. 1 we have plotted the
asymptotic relative efficiency for different φ1s in the stationary region of an AR(1) process with M = 25. As we can
see Reff(α̂(Z)n , α̂

(S)
n ) varies from 0.4 to 1. Only at the boundaries of the stationary region Reff(α̂(Z)n , α̂

(S)
n ) > 1 the

estimator of Zhang (1998a) (cf. (12)) is more efficient.
For a causal stationary AR(2) process we define the asymptotic relative efficiency for the estimators α̂(Z)n and α̂(V )n

by

Reff(α̂(Z)n , α̂(V )n ) =
V (V )

V (Z)
=

d′Ω3d
c′ΩM+1c

.

In Fig. 2 we have drawn contour lines of Reff(α̂(Z)n , α̂
(V )
n ) for different φ1 and φ2 in the stationary region of an AR(2)

process, i.e. φ1 +φ2 < 1, φ1 −φ2 < 1, and −1 < φ2 < 1 and with M = 25. The asymptotic relative efficiency varies
from .56 to 1. Again Reff(α̂(Z)n , α̂

(V )
n ) > 1 at the boundaries of the region of stationarity.

Effect of overfitting. Suppose X is a (stationary, causal) first order autoregressive time series, but we estimate α by
α̂
(V )
n , which is “designed” for a second order autoregressive process. In Fig. 3 we have plotted

Reff(α̂(V )n , α̂(S)n ) =
V (S)

V (V )
=

b′Ω2b
d′Ω3d
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Fig. 2. Contour plot of the asymptotic relative efficiency of Vermaat’s estimator (cf. (14)) over Zhang’s estimator (cf. (12)) for a stationary AR(2)
process.

Fig. 3. Plot of the asymptotic relative efficiency Schmid’s estimator (cf. (13)) over Vermaat’s estimator (cf. (14)) for a stationary AR(1) process.

for φ1 ∈ (−1, 1). As we can see the Reff(α̂(V )n , α̂
(S)
n ) < 1 for all φ1 ∈ (−1, 1). Thus, overfitting by one degree results

in a loss of efficiency, which can be up to 35%.

6. Simulations and the effect of misspecification

We have studied the asymptotic properties in the previous section by simulation. The obtained analytical results
are confirmed by the simulation.

The simulation study was done as follows. We simulate
√

n(α̂n −α) 1000 times for all three estimators. The length
of the time series n is 1000. For the estimation of α we have chosen to set λ = 0.2 and the noise to be gaussian with
zero mean and standard deviation one. The sample means of the 1000 simulations of

√
n(α(Z)n −α(Z)),

√
n(α(S)n −α),

and
√

n(α(V )n − α) are denoted by
√

n(α(Z)n − α(Z)),
√

n(α(S)n − α), and
√

n(α(V )n − α) respectively and their sample
variances are denoted by V (Z)

n , V (S)
n , and V (V )

n respectively.
The empirical relative efficiency between Zhang’s and Schmid’s estimator is defined by

Reffn(α̂
(Z)
n , α̂(S)n ) =

V (S)
n

V (Z)
n

. (19)
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Fig. 4. Contour plot of the simulated asymptotic relative efficiency of Schmid’s estimator (cf. (13)) over Zhang’s estimator (cf. (12)) for a stationary
ARMA(1,1) process.

Fig. 5. Contour plot of the simulated asymptotic relative efficiency of Schmid’s estimator (cf. (13)) over Zhang’s estimator (cf. (12)) for a stationary
AR(2) process.

The empirical relative efficiency between Zhang’s and Vermaat’s estimator is defined mutatis mutandis as in (19).
To study the effect of misspecification, we consider three cases to judge the performance of the Zhang’s, Schmid’s

and Vermaat’s estimator.

(i) Suppose that the data are generated by a stationary causal ARMA(1, 1) process, i.e. the process dynamics are
given by the relation X t = φX t−1 + θ At−1 + At , where (At ) is a sequence of independent standard Normally
distributed random variables and (φ, θ) ∈ (−1, 1)2. Zhang’s estimator is designed to handle this case adequately,
whereas both Schmid’s as Vermaat’s estimator are not. Fig. 4 shows a contour plot of the simulated asymptotic
relative efficiency of Schmid’s estimator over Zhang’s estimator (cf. (19)). From this figure we can conclude that
roughly only in the region (φ, θ) ∈ (−0.5, 0.5)× (−1,−0.5) Zhang’s estimator outperforms Schmid’s estimator
strongly.

(ii) Consider the same setting as under (i), but now compare Vermaat’s and Zhang’s estimator. The resulting contour
plot is not included, since the pattern of lines in the plot is very similar to that of Fig. 4. The only notable difference
is that the values corresponding to the lines are smaller in the region where Zhang’s estimator performs better
(around twice as small).
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(iii) Suppose the data are from a stationary AR(2) process. Fig. 5 shows contour lines of the simulated asymptotic
relative efficiency of Schmid’s estimator over Zhang’s estimator within the stationary region of the AR(2) process.
If φ2 is negative, then Zhang’s estimator turns out to be much more efficient.

7. Conclusions

We have derived the asymptotic distributions for three estimators for the variance of the EWMA statistic introduced
by Zhang (1998a), Schmid (1997) and Vermaat et al. (2008). The asymptotic relative efficiency of the estimator by
Zhang (1998a) is compared to those by Schmid (1997) and Vermaat et al. (2008). The estimators of Schmid (1997)
and Vermaat et al. (2008) are more efficient for AR(1) respectively AR(2) processes. Hence, for processes that can
be modelled by an AR(1) or an AR(2) process, we would advocate the EWMA control chart based on Schmid’s and
Vermaat’s estimators respectively.
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