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We describe a methodology for the assessment of the repeatability and reproducibility (R&R) of mea-
surement systems that measure on a binary scale, such as pass–fail inspections. We focus on the situation
where no reference values can be obtained for the objects in the experiment and consequently model the
results of the R&R experiment as a latent class model. We provide estimators based on the maximum
likelihood approach and the method of moments, and compare their properties. We also give guidelines
for model checking and recommendations for sample sizes. The methodology is illustrated by an example.
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1. INTRODUCTION

Measurement system analysis (MSA) describes, categorizes,
and evaluates the quality of measurements (cf. Allen and Yen
1979). An important aspect of the quality of measurements is
their repeatability and reproducibility (R&R), referring to the
extent to which similar results are obtained when the same
object is measured multiple times. The degree of similarity
of measurements done by the same rater and under identi-
cal circumstances is the repeatability, whereas reproducibility
refers to the degree of similarity when multiple raters perform
the measurements, possibly under varying conditions. R&R
is assessed from an experiment, designed to quantify the ef-
fect of factors onto the variability of the measurements. In the
standard-gauge R&R experiment (Burdick, Borror, and Mont-
gomery 2003), applicable to measurements on a numerical
scale, the experimental setup involves the factors objects and
raters.

In this article we study the assessment of the R&R of mea-
surements on a binary scale that have only two values, such as
pass and fail. The omnipresence of pass/fail and other binary
inspection systems in industry makes a sound methodology to
study their R&R an important subject of study. We focus on
the situation in which a so-called “gold standard” is not avail-
able, that is, the true state of the objects included in the ex-
periment (e.g., “defective” or “functional”) cannot be known.
Boyles (2001) described the evaluation of binary measurement
systems. In his experimental setup, a single measurement sys-
tem (i.e., one rater) rates each object multiple times (enabling
the assessment of repeatability only). Boyles used a latent class
model to model the outcome of the experiment. Latent class
models describe experiments with categorical outcomes and
assume an underlying, unobservable (latent) categorical vari-
able, which is used to explain the structure in the observed data
(Bartholomew and Knott 1999). Boyles (2001) estimated the
parameters of the latent class model by the maximum likeli-
hood method. The same model and estimation method was de-
scribed briefly by Van Wieringen and Van den Heuvel (2005),
who compared them to alternative approaches.

The standard experimental design considered in the biosta-
tistical literature (e.g., Hui and Walter 1980; Garrett, Eaton,
and Zeger 2002) involves two factors, namely objects and tests
(similar to our factor raters). Repetitions are not considered in

the biostatistical literature, however. Latent class models are the
basis of analysis in the biostatistical literature as well. An im-
portant application of R&R studies for binary measurements in
biostatistics is in evaluating the performance of diagnostic tests
in the absence of a gold standard.

In this article we extend the methods proposed by Hui and
Walter (1980), Boyles (2001), Van Wieringen and Van den
Heuvel (2005), and others, in the sense that our setup involves
both factors objects and raters, as well as repetitions (multi-
ple raters judge each object multiple times), thus allowing the
assessment of both repeatability and reproducibility. The la-
tent class models provided in the literature are modified to de-
scribe such experiments. In industry, the possibility to assess
both R&R components of measurement spread is considered
important, because it provides vital clues needed to improve
the reliability of the measurements. We describe the maximum
likelihood method for estimating the parameters. We also out-
line estimation by the method of moments (not given in Boyles
2001 or Van Wieringen and Van den Heuvel 2005). Normal ap-
proximations to the (asymptotic) variance of both estimators are
given, and the two estimation methods are compared in a sim-
ulation study. Assessment of the validity of the models, an is-
sue not covered by Boyles (2001) and Van Wieringen and Van
den Heuvel (2005), is a crucial aspect of latent class model-
ing. We propose diagnostics for the latent class model. As a
final contribution, we offer sample size recommendations (ob-
tained from additional simulations) and an example illustrating
the proposed method.

Thus the purpose of this article is to generalize methods pro-
posed earlier to be able to cope with the important situation
in which both repeatability and reproducibility are to be esti-
mated, and to consummate these methods by outlining how to
obtain diagnostics and standard errors for the estimates and by
supplying guidelines for sample sizes.

2. THE MODEL

The experimental design for evaluating the R&R of a binary
measurement system involves n objects that are judged repeat-
edly by m raters. The data from the experiment are denoted by

© 2008 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, NOVEMBER 2008, VOL. 50, NO. 4
DOI 10.1198/004017008000000415

468



MEASUREMENT SYSTEM ANALYSIS FOR BINARY DATA 469

Xijh, with i = 1, . . . ,n and j = 1, . . . ,m indexing the objects and
raters. We denote repeated judgments by h = 1, . . . , �; note that
the estimation methods discussed later can be generalized to sit-
uations where the number of repetitions is not the same for all
raters. The Xijh’s are 0 (“reject”) or 1 (“pass”). We assume that
the “true” (henceforth called “reference”) value of the measured
object, Yi, is also either 0 (“defect”) or 1 (“good”), and we write
θ = P(Yi = 1) for the proportion of good objects. Further, we
assume that, conditional on Yi, the {Xijh}j,h’s are independent.
This is the assumption of conditional independence, standard in
latent class models, which can be formulated as

P(Xi,1,1,Xi,1,2, . . . ,Xi,m,�|Yi) =
∏

j,h

P(Xijh|Yi).

The measurement Xijh depends on Yi, and we define πj(y) =
P(Xijh = 1|Yi = y). We have the unconditional distribution

P(Xijh = x) = P(Xijh = x|Yi = 0)P(Yi = 0)

+ P(Xijh = x|Yi = 1)P(Yi = 1)

= (1 − θ)πj(0)x(1 − πj(0))1−x

+ θπj(1)x(1 − πj(1))1−x,

where x = 0,1. The latent class model distinguishes between
a manifest variable (the measurement of a rater) and an unob-
served, latent variable (the reference value of the object, which
is assumed to be unknown). The latter is used to explain the
correlation structure in the observations (namely, that ratings
of the same object are correlated, unless the ratings are done
completely at random). In line with Hui and Walter (1980) and
Boyles (2001), this approach is built around the notion that the
latent variable is binary as well, and, in combination with the
conditional independence assumption, it assumes that the pop-
ulation of objects divides into two subpopulations (of good and
defective objects), and that these subpopulations are homoge-
neous, in the sense that P(Xijh = x) depends only on Yi and not
on other characteristics of the object. The assumption may be
violated in cases where the underlying characteristic is a con-
tinuum (such as a continuous quality characteristic), rather than
a dichotomy (good or defective). In this case P(Xijh = x) is not
equal within the subpopulations of good and defective objects,
and the conditional independence assumption is violated. We
recommend an approach based on a latent trait (instead of latent
class) model in that case, such as that described by De Mast and
Van Wieringen (2008). Note that in a later section we describe
diagnostic checks that allow the user to verify whether the con-
ditional independence assumption holds; we demonstrate the
effectiveness of these diagnostic checks from an example. In
addition, by carefully sampling the objects for the MSA exper-
iment, ensuring conditional exchangeability, the user achieves
robustness against violations of conditional independence (as
described later).

We let X we denote the matrix containing the experimental
outcomes, which we rewrite in terms of response patterns. Let
R = (Rij)i=1,...,n;j=1,...,m, with Rij = ∑�

h=1 Xijh. The likelihood

function is

L(R;�) =
n∏

i=1

(
(1 − θ)

m∏

j=1

(
�

Rij

)
(1 − πj(0))�−Rij(πj(0))Rij

+ θ

m∏

j=1

(
�

Rij

)
(1 − πj(1))�−Rij(πj(1))Rij

)
, (1)

where � = (θ,π1(1), . . . , πm(1),π1(0), . . . , πm(0))T .
To ensure identifiability, it is sufficient to require θ ∈ (0,1),

1 ≥ πj(1) > πj(0) ≥ 0 for all j, and

(� + 1)m − 1 ≥ 2m + 1. (2)

(A more general form was proved in Van Wieringen 2005.)
This model treats the differences among raters as fixed ef-

fects, because the parameters πj(1) and πj(0) reflect character-
istics of the raters individually, not of a population of raters.
Often there is a single rater (who could be a person, but also
an automatic device) for each of a limited number of produc-
tion lines; here one would typically include all raters in the ex-
periment, and a model with fixed rater effects is appropriate.
On the other hand, if the population of raters is large, then one
takes a sample of the raters and fits a random-effects model, as
is done by Qu, Tan, and Kutner (1996) for the situation where
� = 1. But even in this case, where the raters are a sample from
a larger population, there is an argument that can be made for
a fixed-effects model. The number of raters that should be in-
cluded in the experiment to allow a reliable estimation of the
random-effects model is so large as to make it practically im-
possible in general. One work-around is to include far less raters
than needed, and accept that confidence intervals are very wide.
This strategy is common practice in industry (see Vardeman and
Van Valkenburg 1999 for numerical R&R studies). An alterna-
tive strategy is to be more modest about the generalizability of
one’s conclusions and accept that the sample of raters typically
is too small to allow reliable inferences about the population of
raters. In that case, one fits a fixed-effects model and focuses
on solving the inspection problems encountered by the raters
in the experiment, hoping that improvement actions will have a
positive spinoff for the other raters as well.

The latent class model allows a natural operationalization of
the R&R of the measurements. For binary ratings, measurement
error comes down to misclassification, and we propose to ex-
press R&R as a probability of misclassification. From biosta-
tistics, we adopt the terms “sensitivity” and “specificity.” The
sensitivity of rater j is defined as πj(1), the probability that a
good object passes. Rater j’s specificity is 1 − πj(0), the proba-
bility that a defective object is failed. Sensitivity and specificity
are the complements of type I error and type II error. Given
the distribution θ of the objects and estimates π̂1(0), . . . , π̂m(0)

and π̂1(1), . . . , π̂m(1), and assuming that all raters measure the
same number of objects, the estimated probability of misclassi-
fication is

P(misclassification)

= 1

m

m∑

j=1

(
θ(1 − π̂j(1)) + (1 − θ)π̂j(0)

)
. (3)
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If raters measure different numbers of objects, then minor mod-
ifications are required. In addition, for a particular object, one
can indicate from which category the object is most likely
to originate, namely the category y that maximizes P(Yi =
y|Ri1,Ri2, . . . ,Rim).

3. ESTIMATION

In this section we describe how the parameters of the latent
class model can be estimated using the maximum likelihood
(ML) method and the method of moments (MoM).

3.1 Maximum Likelihood Method

The EM algorithm approaches the problem of maximizing
the likelihood function indirectly by exploiting the more con-
venient form of a related likelihood. The related likelihood is
obtained by rewriting the likelihood assuming that we know
the actual values of the reference values Yi, which is called the
“complete” likelihood function. It can be shown that the ML es-
timator produced by the EM algorithm maximizes not only the
complete likelihood function Lc, but also the original likelihood
function L related to the “incomplete” data (i.e., where the Yi’s
are unknown). McLachlan and Krishnan (1997) have given a
general account of ML estimation with the EM algorithm with
many properties, generalizations, and applications.

The complete likelihood is given by

Lc((R,Y);�) =
n∏

i=1

{(1 − θ)P�(Ri = ri|Yi)}1−Yi

× {θP�(Ri = ri|Yi)}Yi .

Taking the logarithm, we get

log
(
Lc((R,Y);�)

)

∝
n∑

i=1

(
(1 − Yi) log(1 − θ) + Yi log(θ) + (1 − Yi)

×
m∑

j=1

(
Rij log(πj(0)) + (� − Rij) log(1 − πj(0))

)

+ Yi

m∑

j=1

(
Rij log(πj(1)) + (� − Rij) log(1 − πj(1))

)
)

, (4)

a convenient form when it comes to maximization.
The EM algorithm, applied to the estimation of � in

model (1), can be described as follows (McLachlan and Kr-
ishnan 1997):

Step 1. Choose initial values for the estimate �̂(0), and spec-
ify a stopping criterion.

Step 2 (E-step). We have no knowledge of Y; however, us-
ing the current estimate of �̂(t), we replace Y by its con-
ditional expectation given R,

Ŷi = E�̂(t) (Yi|R).

In fact, real values from the interval [0,1] are substituted
for Y, whereas their proper value is either 0 or 1. Further-
more, using Bayes’s theorem,

E�̂(t) (Yi|R) =
1∑

y=0

yP�̂(t) (Yi = y|R) = P�̂(t) (Yi = 1|R)

= (
P�̂(t) (R|Yi = 1)P�̂(t) (Yi = 1)

)
/
(
P�̂(t) (R)

)
.

Calculating this expectation we find that

Ŷ(t)
i = θ̂ (t)P�̂(t) (Ri = ri|Yi = 1)

/
(
θ̂ (t)P�̂(t) (Ri = ri|Yi = 1)

+ (
1 − θ̂ (t))P�̂(t) (Ri = xi|Yi = 0)

)
. (5)

Step 3 (M-step). The M-step consists of maximizing the
complete log-likelihood function (4). Taking the first-
order partial derivatives, equating them to 0, and solving
these equations with respect to the parameters yields the
estimates

θ̂ (t+1) = 1

n

n∑

i=1

Ŷ(t)
i ,

π̂
(t+1)
j (1) =

∑n
i=1 RijŶ

(t)
i

�
∑n

i=1 Ŷ(t)
i

,

and

π̂
(t+1)
j (0) =

∑n
i=1 Rij(1 − Ŷ(t)

i )

�
∑n

i=1(1 − Ŷ(t)
i )

.

Thus the next estimate �̂(t+1) of the parameters � is ob-
tained.

Step 4. Go back to step 2 until the stopping criterion has
been satisfied.

We establish the variance of the ML estimator by means of
the normal approximation. To obtain the Fisher information ma-
trix, I(R;�), of the incomplete information, we use the follow-
ing relation, given by McLachlan and Krishnan (1997):

I(R;�) = − ∂2

∂� ∂�T log(L(R;�))

= −E�

(
∂2

∂� ∂�T log

(
Lc((R,Y);�)

L(R;�)

)∣∣∣R = r
)

− cov�

(∇� log
(
Lc((R,Y);�)

)|R = r
)
.

This relation allows a straightforward calculation (Van Wierin-
gen 2003) of the observed Fisher information matrix and, con-
sequently, the construction of confidence regions for the esti-
mates.

The confidence intervals also may be constructed empiri-
cally, following, for instance, De Menezes (1999), using the
bootstrap. New experimental data are generated by randomly
drawing (with replacement) n samples (objects) from the origi-
nal experimental data. The parameters are estimated for the new
data. The process (resampling and estimation) is repeated nu-
merous, say B, times. The limits of the 95% confidence interval
of the parameter estimates are given by the .025 and .975 quan-
tiles of each set of B estimated parameters. Alternatively, the
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profile likelihood approach suggested by Boyles (2001) may be
used.

These approaches may not result in reliable confidence inter-
vals of the parameter estimates in small sample size situations
with near-perfect sensitivity and specificity. We have found that
in the case where θ = .5, πj(1) = .975, and πj(0) = .025, at
least n = 100 (and preferably more) is needed for these proce-
dures to yield reliable confidence interval estimates, based on
an experiment with three raters and assuming (in line with our
recommendation made later) � = 3 repetitions per rater.

3.2 Method of Moments

The MoM requires that the model parameters be expressed
in terms of the moments of the distribution, whereupon es-
timators for the moments can be substituted in these expres-
sions. In constructing moment estimators, we need the con-
cept of mixed factorial moments. If Ri1, . . . ,Rim are random
variables, then we define their mixed factorial moments, for
a1, . . . ,am = 0,1,2, . . . , as

μ(a1,...,am) = E

(
m∏

j=1

Rij(Rij − 1) · · · (Rij − aj + 1)

�(� − 1) · · · (� − aj + 1)

)
. (6)

It can be shown (Van Wieringen 2005) that the mixed factorial
moments of Ri1, . . . ,Rim, distributed as in (1), are related to the
parameters as μ(a1,...,am) = (1−θ)

∏m
j=1 π

aj
j (0)+θ

∏m
j=1 π

aj
j (1)

if 0 ≤ aj ≤ � for all j, and μ(a1,...,am) = 0 if there is a j such that
aj > �.

The mixed factorial moment μ(a1,...,am) is estimated by the
mixed factorial sample moment, defined by

μ̂(a1,...,am) = 1

n

n∑

i=1

m∏

j=1

Rij(Rij − 1) · · · (Rij − aj + 1)

�(� − 1) · · · (� − aj + 1)
.

Henceforth, factorial moments are denoted with the use of
unit vectors ej = (0, . . . ,0,1,0, . . . ,0) (with all entries 0, ex-
cept for the jth, which is 1), for example

μ2e1+e2 = μ(2,1,0,...,0) = E

(
Ri1(Ri1 − 1)Ri2

�(� − 1)�

)
.

When dealing with one rater, the identifiability restric-
tions (2) dictate that the rater measures at least three times
(� ≥ 3). Assuming that this holds, we express the parameters
in terms of mixed factorial moments. For this particular situa-
tion, this has been done by Blischke (1962). Because this case
is illustrative for other numbers of raters, we repeat it here. Af-
ter algebraic manipulation of the mixed factorial moments, and
exploiting their relationship with the parameters, we arrive at

π1(1) + π1(0) = (
μ3e1 − μ2e1μe1

)
/
(
μ2e1 − μe1μe1

)

= b1,

π1(1)π1(0) = (
μ3e1μe1 − μ2e1μ2e1

)
/
(
μ2e1 − μe1μe1

)

= b2,

and

θ = (
μe1 − π1(0)

)
/(π1(1) − π1(0)).

From these equations, we can solve, for θ , π1(1), and π1(0),

π1(1) = 1

2

(
b1 ±

√
b2

1 − 4b2
)
,

π1(0) = 1

2

(
b1 ∓

√
b2

1 − 4b2
)
,

and

θ = (
2μe1 − b1 ±

√
b2

1 − 4b2
)/(±2

√
b2

1 − 4b2
)
.

Taking π1(1) > π1(0), in line with the identifiability restric-
tions, only one solution for each parameter remains, fixing the
solution for θ . Resubstituting the explicit form of the mixed fac-
torial moments, given just after equation (6), proves the identity.
To obtain estimates for the parameters, we replace the mixed
factorial moments by the corresponding mixed factorial sample
moments.

Analogous to the one-rater case, we can express the para-
meters of the more-than-one-rater latent class model in terms
of mixed factorial moments. Details have been given by Van
Wieringen (2005).

The variance of the MoM estimator is established by means
of the normal approximation. Hereafter, we let �̂(μ̂) denote
the estimate of the parameters � = (�1, . . . ,�2m+1), where
μ = (μ1, . . . ,μ2m+1) is the vector containing the 2m + 1
mixed factorial moments used in constructing the estimators
for the 2m + 1 parameters and μ̂ the estimate of μ. It can
be shown (Van Wieringen 2003) that the variance of these
moment estimators is asymptotically normally distributed as
N(�(μ),n−1D�DT), where, in line with Serfling (1980),

D =
[
∂�s

∂μ̂t

∣∣∣∣
μ̂=μ

]

1≤s≤2m+1
1≤t≤2m+1

and

� = [cov(μ̂s, μ̂t)]1≤s≤2m+1
1≤t≤2m+1

.

Explicit expressions of the terms in the covariance matrix have
been given by Van Wieringen (2003). This normal approxima-
tion can be used in constructing confidence regions for the es-
timates. Alternatively, as for the ML method, confidence inter-
vals may be constructed empirically, using a resampling tech-
nique like the bootstrap, as was done by De Menezes (1999).

4. COMPARISON OF THE ESTIMATION METHODS

To study the performance of the two estimation methods de-
scribed earlier, we conducted a simulation experiment for the
situations involving one, two, three, and four raters (situations
in which the rater effect often is considered fixed). We varied
the number of objects n from 20 to 150, the number of rep-
etitions � from 2 (if identifiability restrictions allowed) to 15,
and the parameters θ from .50 to .90, πj(1) from .55 to .95,
and πj(0) from .10 to .40. The simulation consists of generat-
ing realizations, X, from the distribution (1), followed by es-
timating the parameters by ML and MoM. For any specific
choice of n, �, and � , we generated 10,000 realizations, each
resulting in estimates for the parameters. From these 10,000 es-
timates, we computed the average and standard deviation for
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each parameter. We carried out the simulations with Matlab ver-
sion 6.5.0.189013a, release 13. What can be observed in the
simulation results can be summarized as follows:

• The bias and standard deviation of the estimates of both
methods are comparable when θ ≈ .5 and πj(1) 	 πj(0).
This is the most relevant situation. Any practical inspec-
tion system will operate with πj(1) > .9 and πj(0) < .1,
and our sample size recommendations (Sec. 6) will pre-
scribe performing the MSA experiment with a sample in
which good and defective specimens have about equal
presence (i.e., θ ≈ .5).

• Parameter estimates of both methods become heavily
biased if the identifiability restrictions (2) are close to
being violated by all parameters, for example, θ be-
ing close to 1.00 and the πj(1)’s being only slightly
larger than the πj(0)’s. To illustrate this, consider the
one-rater situation with parameters (θ,π1(1),π1(0)) =
(.90, .55, .40) and (n, �) = (150,15). The average of
estimates (θ̂ , π̂1(1), π̂1(0)) yielded by simulations are
(.638, .603, .385) for ML and (.726, .571, .422) for MoM.

• When the experiment involves poor inspection systems
[1 	 πj(1) > πj(0) 	 0] and the objects used in the MSA
experiment are far from balanced over good and defective
(say θ ≈ .95), the ML method produces estimates that are
less biased and have a smaller standard deviation than the
MoM.

• The MoM sometimes produces estimates that are outside
the parameter space, for example, π̂1(1) > 1.00. The fre-
quency at which this occurs depends on how close parame-
ters are to violating the identifiability restrictions. It also
depends on the sample size; increasing n and � decreases
this frequency. The problem is unlikely to occur if θ ≈ .5
and πj(1) 	 πj(0).

A sample of the simulation results is given in Table A.1 in the
Appendix. Given the results of the simulation study, we recom-
mend performing the MSA experiment with a sample of ob-
jects in which good and defective specimens are approximately
equally represented. The simulation showed that in the practi-
cally most relevant situation, where the inspection systems have
good specificity and sensitivity and the quality of the sample is
balanced, both methods can be used. The closed expression esti-
mators of the MoM may even be preferred over the algorithmic
approach of the ML. Alternatively, the MoM estimates could
be used as an initial guess in the EM algorithm, decreasing the
number of iterations to satisfy the stopping criterion. But when
either the specificity and sensitivity are poor or the sample is
nonbalanced, the ML method is preferred, although both meth-
ods then produce biased and highly variable estimates.

5. MODEL DIAGNOSTICS

5.1 Goodness of Fit

When fitting the latent class model to the experimental data,
it is important to assess the validity of the model. The issue of
model checking when using latent class models has been ad-
dressed in the biostatistical literature (Collins, Fidler, Wugalter,
and Long 1993; Garrett and Zeger 2000; Formann 2003a,b).
The need for model checking becomes apparent from the pos-
sible biasedness of the estimates when the identifiability re-

strictions are close to being violated, or when the conditional
independence assumption does not hold (Torrance-Rynard and
Walter 1997).

A commonly used goodness-of-fit test for latent class mod-
els, proposed by Collins, Fidler, Wugalter, and Long (1993),
evaluates the null hypothesis H0 :� = �̂ by comparing the re-
sponse frequencies predicted by the model with the observed re-
sponse frequencies. Their test uses a special case (λ = 2

3 ) of the
power-divergence statistic of Cressie and Read (1984), which is
given by

2

λ(λ + 1)

∑

R∈{0,...,�}m

{#i : 1 ≤ i ≤ n, ri = R}

×
[( {#i : 1 ≤ i ≤ n, ri = R}

E�̂({#i : 1 ≤ i ≤ n, ri = R})
)λ

− 1

]
. (7)

It sums over response patterns Ri = (Ri1, . . . ,Rim), and for the
observed response patterns accumulates the extent of dissim-
ilarity between observed and expected frequencies. This is a
generalization of Pearson’s chi-squared statistic (λ = 1) and
the log-likelihood statistic G2 (λ = 0). It is approximately chi-
squared distributed with (� + 1)m − 1 − (2m + 1) degrees of
freedom (the total number of different responses minus 1, and
one subtracted for each parameter estimated). Cressie and Read
(1984) pointed out that this statistic with λ = 2

3 is less sensitive
to low frequencies than Pearson’s chi-squared statistic and the
log-likelihood statistic G2. But Formann (2003a) pointed out
that if λ = 0, 2

3 or 1, then problems arise for sparse data. A bet-
ter choice then may be λ = − 1

2 , resulting in the Freeman–Tukey
statistic. This may be an advantage, especially if the R&R are
good. In that case, response patterns with disagreement may
have low frequencies.

The chi-squared approximation to the distribution of the
goodness-of-fit test statistic (7) may be poor for sparse data
and when expected frequencies are small (both of which oc-
cur in situations with near-perfect sensitivity and specificity).
The null distribution of the test is then better obtained empir-
ically through Monte Carlo resampling (also called the para-
metric bootstrap). Toward this end, we draw new experimen-
tal data from model (1) with estimated �̂ and reestimate the
parameters from the new data. The test statistic (7) is cal-
culated from the new data and reestimated parameters. This
process (resampling, estimation, and calculation) is repeated
for c = 1, . . . ,M. Let Tobs denote the observed test statistic and
let Tc, c = 1, . . . ,M, denote the resampled test statistics. The
p value for the goodness-of-fit test is calculated as

{#c ≤ M : Tobs < Tc}/M.

One option for residual analysis is the standardized residu-
als. Formann (2003a) gave alternative definitions for residuals
in categorical data, particularly the Freeman–Tukey variance-
stabilized residuals, which can be best used for sparse data.
They are defined as
√{#i : Ri = r} + √{#i : Ri = r} + 1

−
√

4E�̂({#i : Ri = r}) + 1. (8)

Finally, together with the parameter estimates, the confidence
intervals of the estimates should be reported (De Menezes
1999).
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5.2 Reproducibility

In the ML estimation framework, we can test for the pres-
ence of reproducibility issues. The likelihood ratio test statistic
is defined by

2(LRR − LR), (9)

where LRR is the log-likelihood of the model as described in
Section 2 (with both objects and raters effects, accommodat-
ing repeatability and reproducibility). LR is the model with ob-
jects effects only (accommodating repeatability but assuming
no rater effects). In the latter model, π1(0) = · · · = πm(0) and
π1(1) = · · · = πm(1). The test statistic, evaluated at the cor-
responding ML estimates for the parameters, is approximately
chi-squared distributed with 2m + 1 − 3 degrees of freedom.

By comparing deviances (McCullagh and Nelder 1989), we
may quantify the proportions of repeatability and reproducibil-
ity. We propose

Drepeatability = 2(LSaturated − LRR) (10)

and

Dreproducibility = 2(LRR − LR). (11)

The saturated model referred to is a model in which all ob-
served variation is accounted for by the systematic part of the
model. In models based on continuous distributions, the satu-
rated model has as many parameters as there are observations;
the corresponding log-likelihood typically is smaller than 0. In
the ANOVA type of analysis of standard-gauge R&R experi-
ments, these deviances reduce to multiples of sums of squares.
In our case the saturated model is not Rij ∼ B(�;pij) (binomial
with parameters � and pij), which was considered by McCul-
lagh and Nelder (1989, pp. 188 ff.), because this model still
treats a part of the observed variation as stochastic, and, con-
sequently, (10) would represent only part of the repeatability.
Instead, the saturated model is

Xijh ∼ B(1,pijh), with ML fit p̂ijh = Xijh.

Consequently, LSaturated = 0, and (10) reduces to Drepeatability =
−2LRR.

6. SAMPLE SIZE

Our sample size recommendations include the advice to at-
tempt to select a sample of objects in which good and defective
objects have about equal representation. We do not assume that
a gold standard is available (i.e., that the objects’ true values
are known). When a gold standard is available, the ML esti-
mators reduce to simple proportions, and our methods are not
needed (Automotive Industry Action Group 2002, pp. 125–140,
Danila, Steiner, and Mackay 2008). But even if reference val-
ues are unknown, it often is possible for the user to influence
the proportion θ in the sample, typically because he or she can
sample from two subpopulations (e.g., the streams of approved
and rejected objects), one with θ near 0 and the other with θ

near 1. Our method does not require that the user can do so, but
if the user can, then he or she can obtain a sample with θ closer
to .5 than in the original population. This will improve the re-
liability of his MSA study, because our method’s precision is
better as θ is closer to .5.

To give sample size recommendations, we conducted a sec-
ond simulation. In line with the foregoing, we assume that θ

is close to .5 and draw the θ from Beta(50,50). Furthermore,
we assume that the sensitivity, πj(1), is closer to 1 than .8 and
the specificity, 1 − πj(0), is closer to 1 than .8. The πj(1)’s
are drawn from Beta(25,1), and the πj(0)’s are drawn from
Beta(1,25). For each iteration of the simulation, new realiza-
tions of θ , πj(1), and πj(0) are drawn, and the data, X, are
drawn in accordance with distribution (1). The number of ob-
jects n and repetitions � varied from 25 to 150 and 1 (iden-
tifiability restrictions allowing) to 11. For each combination,
the standard error of the estimates is calculated on the basis of
10,000 iterations as

se(πj(1)) =
√√√√ 1

10,000

10,000∑

s=1

(
π̂

(s)
j (1) − π

(s)
j (1)

)2
,

where θ(s), π
(s)
j (1), and π

(s)
j (0) are the drawn parameters for

the sth iteration and θ̂ (s), π̂
(s)
j (1), and π̂

(s)
j (0) are their respec-

tive ML estimates. This is done for m = 1–4 raters.
The results are summarized in Figure 1, where the standard

errors of all πj(1) and πj(0) are averaged, because they stem
from the same distribution. The results of θ are omitted, be-
cause θ is not relevant for evaluating the measurement system.
From Figure 1, we can see that (for two or more raters), much
precision is gained by designing the experiment with � = 3 in-
stead of � = 2 repetitions. (For m = 1 rater, � should be at
least 3, to ensure identifiability of the model.) Including 50
(60 in the case of 1 rater) objects in the experiment ensures that
twice the standard error is smaller than .05. Our recommenda-
tions can be summarized as follows:

• Obtain a sample of objects in which good and defective
specimens have about equal shares.

• A sample size of 50 (in the case of 1 rater, 60) objects is
sufficient.

• Because the factor related to raters is treated as a fixed
effect in the model, the choice of the number of raters will
be driven more by pragmatic considerations than statistical
considerations.

• Design the experiment to include three repetitions per rater
per object.

• Make sure that the suspected good and defective speci-
mens are random samples from the subpopulations of good
and defective objects.

The final recommendation ensures conditional exchangeability;
that is, given the Yi, the objects are exchangeable with respect to
Xijh (see Lindley and Novick 1981). Then de Finetti’s theorem
allows us to extrapolate the estimated π̂i(·) to the population
of all objects, even if the conditional independence assumption
does not hold (again see Lindley and Novick 1981).

7. EXAMPLE

In a real-life example, we demonstrate our methods and also
show the typical problems that users may run into and demon-
strate how our methods provide warning diagnostics and a cer-
tain degree of robustness. We consider the outgoing inspec-
tion of an injection molding process. The company applies an
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Figure 1. Contour plots of the standard error of the estimates of the πj(·) for 1 to 4 raters.

inspection plan based on AQL and LQL specifications. The
molded parts are visually inspected for imperfections and de-
fects, such as splay marks, short shots, broken tabs, scratches,
and so on. Parts are rated as “accept” or “reject,” and, based
on the number of rejected parts in the sample, the lot is either
rejected or shipped to the customer.

The current inspection scheme was not satisfactory for both
the customer and the company itself in terms of inspection ef-
forts and the number of lots of substandard quality reaching
the customer. As a first step in designing a better inspection
process, an MSA experiment was done to determine the R&R of
the visual inspections. The process engineer collected 80 parts,
deliberately aiming for a sample with about equal proportions
of good and defective specimens. He did so by taking a random
sample of about (but not precisely) 40 items from a container of
scrapped parts and a second sample of about 40 items from the
stream of accepted parts. Each part was judged twice by three
operators. Note that the setup of this experiment deviates from
the recommendations given in the previous section; a setup with
50 parts and 3 repetitions per operator would give a slightly bet-
ter precision (see Fig. 1) at a slightly smaller sample size.

The results of the experiment are summarized in the form
of response patterns (Ri1,Ri2,Ri3). There are 27 potential re-
sponse patterns, only 22 of which occurred in the experiment.
Table 1 gives the results.

The ML and MoM estimators of the model parameters, along
with their 95% bootstrapped confidence intervals (CIs), are

given in Table 2. The table readily translates into an intrarater
analysis (i.e., repeatability). The sensitivities of the three oper-
ators (with ML estimates .75, .79, and .81) are fair. The speci-
ficities are good for operators 1 and 2 but substantially poorer
for operator 3 [1 − π̂j(0) = .92, .97, and .69]. Note how the
results presented in Table 2 give tangible directions for identi-
fying the problem with the inspection procedure. The user can
verify whether the problem is in the sensitivity or specificity,
and also can evaluate whether the problem is similar for all
raters or more pronounced for a single rater.

Provided that an estimate θ̂p of the process’s true defect rate
is available, the per-rater probabilities of misclassification are
given as θ̂p(1 − π̂j(1)) + (1 − θ̂p)π̂j(0). The estimated θ re-
ported in the table cannot be used, because it represents the
proportion of defects in the sample, not in the process. Note
that the CIs given in Table 2 are larger than would be expected
from the simulated standard errors reported in Figure 1. This
can be explained by the different parameter values used in the
simulation; drawing from Beta distributions with means equal
to the estimated parameters yields standard errors in agreement
with the observed confidence intervals.

We apply the likelihood ratio test (9) for reproducibility is-
sues. The fitted parameters of the model with no reproducibility
issues are θ̂ = .39, π̂ (1) = .80, and π̂ (0) = .15 (ML estimates).
The test statistic equals 2(−215.75 + 230.31) = 29.12, which,
based on the chi-squared approximation with 7 − 3 = 4 degrees
of freedom, corresponds to a p value < .001, confirming that
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Table 1. Frequency table of the response patterns with corresponding Freeman–Tukey residuals

Response Observed Expected Freeman–Tukey Expected Freeman–Tukey
pattern frequency frequency, ML residual, ML frequency, MoM residual, MoM

(0, 0, 0) 22 18.12 .91 19.39 .62
(0, 0, 1) 12 16.12 −1.02 14.36 −.58
(0, 0, 2) 4 3.63 .30 2.74 .78
(0, 1, 0) 1 .96 .22 3.09 −1.24
(0, 1, 1) 1 1.04 .14 2.43 −.86
(0, 1, 2) 0 .63 −.88 .87 −1.12
(0, 2, 0) 1 .06 1.30 .14 1.17
(0, 2, 1) 1 .40 .80 .28 .96
(0, 2, 2) 2 .83 1.07 .56 1.35
(1, 0, 0) 1 3.27 −1.34 1.93 −.54
(1, 0, 1) 4 3.06 .60 1.65 1.48
(1, 0, 2) 3 1.00 1.49 .96 1.54
(1, 1, 0) 0 .32 −.51 .40 −.62
(1, 1, 1) 1 1.43 −.18 1.39 −.15
(1, 1, 2) 0 2.72 −2.45 3.39 −2.81
(1, 2, 0) 1 .28 .95 .13 1.17
(1, 2, 1) 1 2.37 −.82 1.41 −.16
(1, 2, 2) 4 4.96 −.33 4.03 .10
(2, 0, 0) 0 .18 −.31 .09 −.16
(2, 0, 1) 1 .39 .81 .49 .70
(2, 0, 2) 3 .58 1.91 1.30 1.24
(2, 1, 0) 0 .24 −.40 .20 −.34
(2, 1, 1) 2 1.93 .19 2.18 .03
(2, 1, 2) 1 4.04 −1.73 6.24 −2.68
(2, 2, 0) 1 .42 .77 .23 1.03
(2, 2, 1) 1 3.56 −1.49 2.62 −.97
(2, 2, 2) 12 7.46 1.52 7.51 1.50

Total 80

there are reproducibility issues. This means that the consistency
across raters is significantly worse than the average intra-rater
consistency. Note that repeatability is the larger contributor in
deviance; the 480−7 = 473 degrees of freedom associated with
repeatability account for a deviance of Drepeatability = 431.5,
whereas the 7 − 3 = 4 degrees of freedom associated with the
raters effects account for a deviance of Dreproducibility = 29.12.

For the current inspection system, we find an estimated to-
tal sensitivity of Se = (.75 + .79 + .81)/3 = .78 and specificity
of Sp = (.92 + .97 + .69)/3 = .86 (ML estimates). The mis-
classification probability is θ̂p(1 − .78) + (1 − θ̂p)(1 − .86) =
.08θ̂p + .14.

As mentioned earlier, goodness-of-fit checking is important
in latent class modeling, and we address the matter in some

Table 2. ML and MoM estimates and corresponding 95% CIs
of the parameters

ML 95% CIML MoM 95% CIMoM

θ .41 (.27; .53) .42 (.29; .58)
π1(1) .75 (.61; .91) .79 (.62; .95)
π2(1) .79 (.59; 1.00) .71 (.53; .87)
π3(1) .81 (.68; .95) .85 (.70; .97)
π1(0) .08 (.01; .21) .05 (0; .12)
π2(0) .03 (0; .12) .07 (0; .16)
π3(0) .31 (.18; .44) .27 (.16; .38)

length. The first question is whether the method used, with its
assumed homogeneity of the subpopulations of good and de-
fective objects, is likely to be valid on a priori grounds. We
expect that the subpopulation of good objects (having no im-
perfections) can be considered homogeneous, but we are less
confident about the subpopulation of defective objects. Imper-
fections can be splay marks, short shots, broken tabs, scratches,
and others, and although this is not expected, it may be the case
that not all of these are detected with identical R&R, thus vio-
lating the conditional independence assumption.

The goodness-of-fit test statistic (7) with λ = − 1
2 equals

CML = 43.80 and CMoM = 51.08 for the ML and MoM esti-
mates. The corresponding p values based on the Monte Carlo
resampling are .065 and .025, leading to a rejection for the
MoM fit. We examine the residuals in Table 1 for clues, focus-
ing on the ML estimates and looking for patterns in the large
deviations between observed and expected frequencies (or, al-
ternatively, large FT residuals). The extreme response patterns
(0,0,0) and (2,2,2) are overrepresented at the expense of such
patterns as (0,0,1) and (1,0,0) or (2,2,1) and (2,1,2). Fur-
thermore, response patterns representing extreme disagreement
among the raters tend to be overrepresented; for example, the
response patterns that have at least one 0 and one 2, such as
(2,0,2), have a total observed frequency of 17 versus a total
expected frequency of 8.64. One way to interpret this is that the
sample of objects has a substantial number of extremely good
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and extremely bad specimens that are rated with very high sen-
sitivity and specificity and a substantial number of specimens
that are in a gray area in between good and defective, creating
disagreement among the raters. Our model cannot accommo-
date this, because it assumes the same specificity and sensitivity
for all good and defective objects (i.e., there are no extremely
good or extremely bad items, nor is there a gray area in be-
tween). So in effect, the large residuals hint at a violation of the
conditional independence assumption (which states that sensi-
tivity and specificity do not depend on the degree of badness or
goodness but are identical for all good or defective objects). In
summary, the goodness-of-fit test and residual analysis indicate
that the MoM fit should be rejected and provide some (albeit
not significant) evidence that the conditional independence as-
sumption does not hold.

In the event that the conditional independence assumption is
rejected, the user still can use the estimated πj(y) and proba-
bilities of misclassification, provided that the sampling method
ensures conditional exchangeability of objects (boiling down to
random sampling from both subpopulations, as explained in the
previous section). We have doubts here, because it is plausible
that objects with minor imperfections may be somewhat un-
derrepresented in the container from which supposedly defec-
tive objects were sampled, because they are more likely to slip
through the inspection procedure than objects with major im-
perfections. If the conditional independence assumption does
not hold, then this would result in a slight overestimation of
sensitivity and specificity.

8. CONCLUSION

The standard methodology for standard-gauge R&R studies
cannot be applied in the case of measurements on a binary scale,
such as pass/fail inspection. If it is possible to determine the
true values of the objects in the sample (by some authoritative
inspection system), then determining sensitivity and specificity
is fairly straightforward. We focus on the more challenging situ-
ation in which this gold standard is not available. Unlike current

accounts, our experimental setup involves both an objects fac-
tor and a raters factor, as well as replications. Under a favorable
scenario, we showed that such an experiment would require a
sample size of n = 50 objects that are measured � = 3 times by
each rater. Along with ML estimators, we outline how to obtain
closed-expression estimators based on the MoM. The example
illustrates that model adequacy checking is important, and the
proposed approach provides a goodness-of-fit test and residual
analysis.

The purpose of this article was to extend and refine the
methodology proposed by Boyles (2001) and in the biostatis-
tical literature. Essential to this methodology is that the under-
lying true (“reference”) value be represented as a dichotomy,
such as good versus bad or functional versus defective. Binary
measurements also can be regarded as a limiting case of ordinal
measurements. In that case, one would represent the underly-
ing characteristic as a continuum and use a latent trait model
instead of a latent class model (see De Mast and Van Wierin-
gen 2008). Finally, one can consider binary rating as a limiting
case of nominal measurement and adopt methods based on the
agreement concept (De Mast and Van Wieringen 2007). All of
these approaches are based on latent class modeling; the dif-
ferences are in the details of the models, the parameter estima-
tion methods, and the metrics used for expressing R&R. In fu-
ture work, we intend to study how these three options compare,
aiming to arrive at recommendations for their use for binary
ratings.
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APPENDIX: COMPARISON SIMULATION RESULTS

Table A.1 additional material for Section 4.

Table A.1. Sample of the results of the simulation study comparing the MoM and ML estimators

Scenario m Method n � θ
¯̂
θ se(θ̂) π1(1) ¯̂π1(1) se(π̂1(1)) π1(0) ¯̂π1(0) se(π̂1(0))

1 3 MoM 20 2 .9 .769 .123 .95 .971 .034 .40 .492 .231
2 3 MoM 20 10 .9 .868 .067 .95 .952 .018 .40 .409 .153
3 3 MoM 60 6 .9 .889 .042 .95 .952 .014 .40 .399 .139
4 3 MoM 100 2 .9 .850 .074 .95 .958 .021 .40 .455 .187
5 3 MoM 100 10 .9 .899 .031 .95 .950 .008 .40 .398 .082

1 3 ML 20 2 .9 .800 .176 .95 .953 .056 .40 .508 .333
2 3 ML 20 10 .9 .887 .089 .95 .951 .018 .40 .467 .209
3 3 ML 60 6 .9 .898 .041 .95 .950 .012 .40 .402 .099
4 3 ML 100 2 .9 .883 .072 .95 .952 .021 .40 .401 .190
5 3 ML 100 10 .9 .899 .030 .95 .950 .007 .40 .401 .052

6 3 MoM 20 2 .5 .515 .130 .95 .932 .060 .40 .380 .145
7 3 MoM 20 10 .5 .501 .112 .95 .949 .026 .40 .398 .057
8 3 MoM 60 6 .5 .501 .070 .95 .950 .021 .40 .399 .044
9 3 MoM 100 2 .5 .509 .078 .95 .943 .034 .40 .392 .079

10 3 MoM 100 10 .5 .499 .052 .95 .951 .012 .40 .400 .025
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Table A.1. (Continued)

Scenario m Method n � θ
¯̂
θ se(θ̂) π1(1) ¯̂π1(1) se(π̂1(1)) π1(0) ¯̂π1(0) se(π̂1(0))

6 3 ML 20 2 .5 .512 .152 .95 .942 .072 .40 .382 .154
7 3 ML 20 10 .5 .499 .110 .95 .950 .023 .40 .399 .050
8 3 ML 60 6 .5 .500 .066 .95 .950 .017 .40 .400 .038
9 3 ML 100 2 .5 .500 .070 .95 .951 .032 .40 .398 .064

10 3 ML 100 10 .5 .499 .050 .95 .950 .010 .40 .400 .022

11 3 MoM 20 2 .9 .754 .126 .95 .961 .041 .10 .432 .232
12 3 MoM 20 10 .9 .835 .089 .95 .951 .024 .10 .294 .204
13 3 MoM 60 6 .9 .854 .065 .95 .952 .020 .10 .296 .178
14 3 MoM 100 2 .9 .821 .088 .95 .951 .026 .10 .396 .197
15 3 MoM 100 10 .9 .879 .041 .95 .950 .014 .10 .209 .133

11 3 ML 20 2 .9 .829 .149 .95 .953 .066 .10 .279 .343
12 3 ML 20 10 .9 .890 .082 .95 .950 .017 .10 .203 .281
13 3 ML 60 6 .9 .899 .040 .95 .950 .010 .10 .104 .069
14 3 ML 100 2 .9 .891 .047 .95 .953 .022 .10 .121 .132
15 3 ML 100 10 .9 .900 .030 .95 .950 .010 .10 .100 .032

16 3 MoM 20 2 .5 .511 .127 .95 .861 .099 .10 .177 .115
17 3 MoM 20 10 .5 .506 .110 .95 .916 .058 .10 .122 .068
18 3 MoM 60 6 .5 .509 .077 .95 .920 .052 .10 .116 .063
19 3 MoM 100 2 .5 .508 .085 .95 .883 .072 .10 .152 .084
20 3 MoM 100 10 .5 .505 .056 .95 .941 .031 .10 .101 .039

16 3 ML 20 2 .5 .507 .126 .95 .941 .075 .10 .096 .094
17 3 ML 20 10 .5 .499 .110 .95 .950 .022 .10 .100 .031
18 3 ML 60 6 .5 .500 .065 .95 .950 .017 .10 .100 .023
19 3 ML 100 2 .5 .500 .058 .95 .950 .033 .10 .100 .042
20 3 ML 100 10 .5 .499 .050 .95 .950 .010 .10 .100 .014

Scenario Method π2(1) ¯̂π2(1) sd(π̂2(1)) π3(1) ¯̂π3(1) sd(π̂3(1)) π2(0) ¯̂π2(0) sd(π̂2(0)) π3(0) ¯̂π3(0) sd(π̂3(0)) Realizations

1 MoM .75 .798 .085 .550 .610 .101 .25 .264 .187 .10 .131 .129 1,597
2 MoM .75 .753 .035 .550 .554 .039 .25 .255 .113 .10 .115 .076 7,018
3 MoM .75 .753 .027 .550 .553 .030 .25 .249 .094 .10 .109 .061 8,348
4 MoM .75 .769 .043 .550 .568 .049 .25 .272 .134 .10 .138 .089 4,810
5 MoM .75 .750 .015 .550 .550 .017 .25 .249 .055 .10 .101 .037 9,871

1 ML .75 .774 .104 .550 .587 .125 .25 .316 .290 .10 .159 .218 10,000
2 ML .75 .751 .035 .550 .553 .041 .25 .303 .179 .10 .143 .144 10,000
3 ML .75 .751 .024 .550 .551 .028 .25 .252 .086 .10 .102 .061 10,000
4 ML .75 .755 .040 .550 .556 .045 .25 .252 .156 .10 .107 .109 10,000
5 ML .75 .750 .014 .550 .550 .017 .25 .251 .046 .10 .100 .032 10,000

6 MoM .75 .771 .112 .550 .580 .135 .25 .221 .111 .10 .081 .067 4,019
7 MoM .75 .751 .048 .550 .552 .055 .25 .249 .047 .10 .100 .033 9,709
8 MoM .75 .751 .038 .550 .551 .042 .25 .249 .037 .10 .100 .026 9,904
9 MoM .75 .752 .062 .550 .552 .068 .25 .241 .059 .10 .094 .040 8,556

10 MoM .75 .750 .021 .550 .550 .024 .25 .250 .021 .10 .100 .015 9,999

6 ML .75 .755 .127 .550 .559 .147 .25 .236 .127 .10 .093 .086 10,000
7 ML .75 .751 .045 .550 .550 .052 .25 .250 .044 .10 .100 .030 10,000
8 ML .75 .750 .033 .550 .550 .038 .25 .249 .033 .10 .100 .023 10,000
9 ML .75 .751 .055 .550 .551 .062 .25 .249 .054 .10 .099 .039 10,000

10 ML .75 .750 .020 .550 .550 .023 .25 .250 .019 .10 .100 .013 10,000

11 MoM .75 .817 .087 .550 .628 .093 .25 .266 .189 .40 .238 .159 1,032
12 MoM .75 .775 .047 .550 .564 .039 .25 .260 .128 .40 .354 .094 3,837
13 MoM .75 .774 .037 .550 .560 .028 .25 .249 .111 .40 .366 .077 4,275
14 MoM .75 .796 .055 .550 .578 .042 .25 .245 .130 .40 .322 .102 2,347
15 MoM .75 .760 .020 .550 .554 .017 .25 .244 .078 .40 .394 .050 6,129

11 ML .75 .769 .093 .550 .571 .113 .25 .293 .273 .40 .380 .277 10,000
12 ML .75 .751 .035 .550 .552 .040 .25 .301 .174 .40 .407 .126 10,000
13 ML .75 .750 .024 .550 .551 .028 .25 .251 .083 .40 .398 .091 10,000
14 ML .75 .753 .035 .550 .552 .039 .25 .251 .124 .40 .399 .131 10,000
15 ML .75 .750 .014 .550 .550 .017 .25 .250 .046 .40 .401 .051 10,000
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Table A.1. (Continued)

Scenario Method π2(1) ¯̂π2(1) sd(π̂2(1)) π3(1) ¯̂π3(1) sd(π̂3(1)) π2(0) ¯̂π2(0) sd(π̂2(0)) π3(0) ¯̂π3(0) sd(π̂3(0)) Realizations

16 MoM .75 .803 .110 .550 .644 .110 .25 .187 .108 .40 .298 .110 1,690
17 MoM .75 .768 .061 .550 .563 .049 .25 .226 .057 .40 .385 .047 5,828
18 MoM .75 .766 .053 .550 .558 .037 .25 .226 .049 .40 .389 .037 6,083
19 MoM .75 .795 .077 .550 .576 .051 .25 .194 .073 .40 .370 .051 3,394
20 MoM .75 .752 .030 .550 .552 .023 .25 .243 .027 .40 .398 .022 8,845

16 ML .75 .755 .113 .550 .554 .123 .25 .238 .111 .40 .396 .126 10,000
17 ML .75 .751 .044 .550 .551 .051 .25 .250 .044 .40 .400 .050 10,000
18 ML .75 .750 .033 .550 .550 .037 .25 .249 .033 .40 .400 .037 10,000
19 ML .75 .751 .048 .550 .552 .053 .25 .249 .050 .40 .399 .052 10,000
20 ML .75 .750 .019 .550 .550 .023 .25 .250 .019 .40 .400 .022 10,000

NOTE: This table gives the results (average and standard errors) in the m = 3 raters situation for various choices of number of objects (n) and replications (�), and various choices of
the model parameters. The results are based on a simulation involving 10,000 or less realizations.

[Received October 2006. Revised July 2008.]
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